[go: up one dir, main page]

JPH01157072A - Oxygen concentration cell - Google Patents

Oxygen concentration cell

Info

Publication number
JPH01157072A
JPH01157072A JP63278551A JP27855188A JPH01157072A JP H01157072 A JPH01157072 A JP H01157072A JP 63278551 A JP63278551 A JP 63278551A JP 27855188 A JP27855188 A JP 27855188A JP H01157072 A JPH01157072 A JP H01157072A
Authority
JP
Japan
Prior art keywords
porcelain
crystal grains
zirconia
solid electrolyte
zirconia porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63278551A
Other languages
Japanese (ja)
Other versions
JPH0446918B2 (en
Inventor
Tadashi Odagiri
正 小田切
Tetsuo Watanabe
渡辺 徹男
Shunzo Mase
俊三 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63278551A priority Critical patent/JPH01157072A/en
Publication of JPH01157072A publication Critical patent/JPH01157072A/en
Publication of JPH0446918B2 publication Critical patent/JPH0446918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To improve the extent of strength in a specified temperature range as well as to aim at reduction in secular deterioration by using such zirconia porcelain that consists of ZrO2 and Y2O3, specifying a mole ratio of Y2O3/ZrO2, and sets mean grain size to be less than the specified one, as a solid electrolyte. CONSTITUTION:In the case of ZrO2-Y2O3 zirconia porcelain, such a tetragonal crystal grain that a mole ratio of Y2O3/ZrO2 is within the range of 2/98-4/96, and mean grain size is less than 2mu is used. This zirconia porcelain is used as a solid electrolyte, installing an electrode, and an oxygen concentration cell is produced. With this constitution, since tetragonalness stably exists there without entailing any phase transformation into a monocline at a temperature range from 500 deg.C to room temperature, higher strength is secured and, what is more, secular deterioration also becomes lessened.

Description

【発明の詳細な説明】 本発明は高強度でかつ特定温度領域における長時間使用
による経時劣化の極めて少ないZrO□−Y2O。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides ZrO□-Y2O which has high strength and exhibits extremely little deterioration over time due to long-term use in a specific temperature range.

系のジルコニア磁器からなる固体電解質を用いた酸素濃
淡電池に関するものである。
The present invention relates to an oxygen concentration battery using a solid electrolyte made of zirconia porcelain.

従来、Zr(h−’lzO+系のジルコニア磁器として
は、立方晶のみより成る完全安定化ジルコニア磁器と、
立方晶と単斜晶より成る部分安定化ジルコニア磁器が知
られており、いずれも耐熱材料、固体電解質等として利
用されている。完全安定化ジルコニア磁器は、常温から
約1500°C迄の温度範囲において安定であり、長時
間使用による経時劣化もほとんどないものであるが、強
度が低いので例えば自動車排ガス中の酸素濃度を検出す
る酸素センサー用固体電解質として利用した場合、熱衝
撃によって極めて破損しやすいという欠点があった。一
方立方晶と単斜晶よりなる部分安定化ジルコニア磁器は
、完全安定化ジルコニア磁器に較べると強度は大きく耐
熱衝撃性もよいものであるが、200°Cないし300
°Cという特定温度域における強度の経時劣化が極めて
大きく、該温度で長時間使用した場合、磁器表面に微細
なりランクが多数発生して吸水性を示すようになり著し
く強度が低下し、ついには破損するという重大な欠点を
有しているものであった。
Conventionally, Zr(h-'lzO+-based zirconia porcelains include fully stabilized zirconia porcelains consisting only of cubic crystals,
Partially stabilized zirconia porcelains consisting of cubic crystals and monoclinic crystals are known, and both are used as heat-resistant materials, solid electrolytes, and the like. Fully stabilized zirconia porcelain is stable in the temperature range from room temperature to approximately 1500°C, and hardly deteriorates over time due to long-term use, but its low strength makes it useful for detecting the oxygen concentration in automobile exhaust gas, for example. When used as a solid electrolyte for oxygen sensors, it has the disadvantage of being extremely susceptible to damage due to thermal shock. On the other hand, partially stabilized zirconia porcelain made of cubic and monoclinic crystals has higher strength and better thermal shock resistance than fully stabilized zirconia porcelain, but it
The deterioration of strength over time in a specific temperature range of °C is extremely large, and when used for a long time at this temperature, many fine cracks appear on the porcelain surface and it becomes water absorbent, resulting in a significant decrease in strength and eventually It had the serious drawback of being easily damaged.

これはZrO□−Y2O3系部分安定化ジルコニア磁器
では約1500°Cの焼成温度において正方晶である結
晶粒子が約1500°Cから室温への冷却中に500°
C付近で単斜晶に相変態を起こし、その際生ずる体積変
化により磁器中に過大な応力が加わりそのため極めて微
小なりラックが結晶粒子内に多数発生し、このクラック
が200″Cないし300°Cの特定温度領域に長時間
おかれると拡大しやがて磁器破壊に至るものであると考
えられる。
This is because in ZrO□-Y2O3-based partially stabilized zirconia porcelain, the crystal grains, which are tetragonal at a firing temperature of about 1500°C, change to 500° during cooling from about 1500°C to room temperature.
A phase transformation to monoclinic crystal occurs near C, and the resulting volume change causes excessive stress in the porcelain, resulting in many extremely small racks occurring within the crystal grains. It is thought that if it is left in a specific temperature range for a long time, it will expand and eventually lead to porcelain destruction.

本発明はこのような部分安定化ジルコニア磁器の欠点を
解消し、優れた強度を有するとともに200°Cないし
300°Cの特定温度領域における強度の経時劣化を著
しく改良したジルコニア磁器を固体電解質として用い、
該固体電解質に接して少なくとも1対の電極を設けた酸
素濃淡電池であり、該固体電解質は、主としてZrO□
とY2O,より成りY2O3/ZrO□のモル比が2ノ
98〜4/96の範囲であって結晶粒子が主として正方
晶の結晶粒子より成りかつ平均結晶粒子径が2μ以下で
あり、200″Cないし300°Cにおける耐久性の優
れたジルコニア磁器および主としてZrO□とY2O3
より成るY2O3/ZrO□のモル比が 2798〜7
/93の範囲であって結晶粒子が主として立方晶の結晶
粒子と正方晶の結晶粒子より成りかつ平均結晶粒子径が
2μ以下であり、200°Cないし300 ’Cにおけ
る耐久性の優れたジルコニア磁器である。
The present invention eliminates these drawbacks of partially stabilized zirconia porcelain, and uses zirconia porcelain as a solid electrolyte, which has excellent strength and significantly improves deterioration of strength over time in a specific temperature range of 200°C to 300°C. ,
It is an oxygen concentration battery that has at least one pair of electrodes in contact with the solid electrolyte, and the solid electrolyte is mainly made of ZrO□.
and Y2O, the molar ratio of Y2O3/ZrO□ is in the range of 2/98 to 4/96, the crystal grains are mainly composed of tetragonal crystal grains, the average crystal grain size is 2μ or less, and the 200″C Zirconia porcelain with excellent durability at temperatures ranging from 300°C to 300°C and mainly ZrO□ and Y2O3
The molar ratio of Y2O3/ZrO□ is 2798-7
/93 range, the crystal grains are mainly composed of cubic crystal grains and tetragonal crystal grains, the average crystal grain size is 2μ or less, and has excellent durability at 200°C to 300'C. It is.

すなわち、本発明はZrO□−Y2O3系ジルコニア磁
器においてY2O3/ZrO□のモル比を特定値とし、
平均結晶粒子を特定値以下とすることにより従来約50
0°C以下では相変態を起して不安定であった正方晶を
500°Cから室温迄の温度範囲内で単斜晶に相変態さ
せることなく安定に存在させたものおよび結晶粒子を主
として正方品の結晶粒子とするかあるいは主として立方
晶の結晶粒子と正方晶の結晶粒子とすることにより極め
て高強度でかつ特定温度領域における経時劣化の極めて
少ないジルコニア磁器を固体電解質として用いこの固体
電解質に接して少なくとも一対の電極を設けた酸素濃淡
電池である。
That is, the present invention sets the molar ratio of Y2O3/ZrO□ to a specific value in ZrO□-Y2O3-based zirconia porcelain,
By keeping the average crystal grain below a specific value, the conventional
Tetragonal crystals, which are unstable due to phase transformation at temperatures below 0°C, are made to exist stably without undergoing phase transformation to monoclinic crystals within the temperature range from 500°C to room temperature, and crystal grains are mainly used. Using zirconia porcelain as a solid electrolyte, which has extremely high strength due to the formation of tetragonal crystal grains or mainly cubic crystal grains and tetragonal crystal grains, and which exhibits extremely little deterioration over time in a specific temperature range. This is an oxygen concentration battery having at least one pair of electrodes in contact with each other.

本発明を更に詳しく説明すれば、正方晶が安定に存在す
るためには磁器の平均結晶粒子径が2μ以下好ましくは
1μ以下であることが極めて重要である。
To explain the present invention in more detail, in order for the tetragonal crystal to exist stably, it is extremely important that the average crystal grain size of the porcelain be 2 μm or less, preferably 1 μm or less.

すなわち平均結晶粒子径と抗折強度の関係は第1図に示
すとおり耐久試験前の曲線Aにおいては平均結晶粒子径
が2μ以上であっても強度の急激な低下は認められない
が、200°C〜300 ’Cの特定温度領域に150
0時間保持した耐久試験後の曲線Bにおいては、平均結
晶粒子径が2μを越えると過剰の単斜晶の生成により微
細なりランクが内在されているため強度が急激に低下し
経時劣化が著しくなる。さらに後述の実施例の記載のと
おり、平均結晶粒子径が2μ以下、好ましくは1μ以下
であると200°C〜300°Cの特定温度領域に放置
しても結晶相がほとんど変化せず、正方晶が安定のまま
存在する。このように本発明において200 ’Cない
し300°Cにおける耐久性に優れていると称するは2
00°Cないし300°Cの間の任意の温度において経
時劣化が少ないこ゛とを意味する。具体的な測定手段の
一例としては実施例で述べるように200°Cないし3
00°Cのすべての温度域を網羅するために、大気中で
200 ’Cないし300°Cの間を10°C/分の昇
降温速度で加熱冷却を繰り返す耐久試験を行い、耐久前
と耐久後の抗折強度あるいは結晶相の変化を測定するの
が良い。耐久時間は長い程劣化の程度が増大するが、1
500時間程度で従来のジルコニア磁器と本発明のジル
コニア磁器との差が明瞭となる。このように結晶粒子径
を小さくすると正方晶より単斜晶への変態が起りにくい
理由は、結晶粒子が微小であると粒子の表面自由エネル
ギーの関係で単斜晶より正方品の方が安定になるものと
考えられる。なお、平均結晶粒子の測定は、次の方法で
行なう。磁器の鏡面研磨面を弗化水素酸でエツチング処
理したものの電子顕微鏡写真で粒子を50個以上含むよ
うな一定面積S内にある粒子数nを数え、粒子1個あた
りの平均面積Sに等しい面積の円の直径dを式d = 
(4s/π) により計算する。そしてdを同一試料の
3ケ所以上の視野について求めその平均値を平均結晶粒
子径とする。
In other words, the relationship between the average crystal grain size and the bending strength is as shown in Figure 1. In curve A before the durability test, no rapid decrease in strength is observed even when the average crystal grain size is 2 μ or more, but at 20° 150 to a specific temperature range of 300'C to 300'C
In curve B after a durability test held for 0 hours, when the average crystal grain size exceeds 2μ, the strength rapidly decreases and deterioration over time becomes significant due to the formation of excessive monoclinic crystals and the inherent fineness rank. . Furthermore, as described in the Examples below, if the average crystal grain size is 2μ or less, preferably 1μ or less, the crystal phase will hardly change even if left in a specific temperature range of 200°C to 300°C, and the crystal phase will be square. The crystal remains stable. In this way, in the present invention, 2 is said to have excellent durability at 200'C to 300°C.
This means that there is little deterioration over time at any temperature between 00°C and 300°C. As an example of a specific measuring method, as described in the examples, 200°C
In order to cover the entire temperature range of 00°C, we conducted an endurance test in which heating and cooling were repeated between 200'C and 300°C in the air at a rate of 10°C/min. It is better to measure the subsequent change in bending strength or crystal phase. The longer the durability time, the greater the degree of deterioration, but 1
After about 500 hours, the difference between the conventional zirconia porcelain and the zirconia porcelain of the present invention becomes clear. The reason why transformation to monoclinic crystals is more difficult to occur than tetragonal crystal grains when the crystal grain size is reduced in this way is that when crystal grains are small, tetragonal crystals are more stable than monoclinic crystals due to the surface free energy of the particles. This is considered to be the case. Note that the average crystal grains are measured by the following method. Count the number n of particles within a certain area S that contains 50 or more particles in an electron micrograph of a mirror-polished porcelain surface etched with hydrofluoric acid, and calculate the area equal to the average area S per particle. The diameter d of the circle is expressed by the formula d =
Calculated using (4s/π). Then, d is determined for three or more visual fields of the same sample, and the average value is taken as the average crystal grain size.

粒子数nは一定面積Sに完全に含まれる粒子の数と一定
面積の境界線で切られる粒子の数の%との和とする。
The number of particles n is the sum of the number of particles completely included in the constant area S and the percentage of the number of particles cut by the boundary line of the constant area.

そしてX線回折線ピーク強度比と抗折強度との関係は第
2図に示すとおり、正方晶の(200)面、単斜晶の(
11丁)面、立方晶の(200)面のX線回折線の強度
をそれぞれT(200) 、 M(111) 、 C(
200)としたとき、本発明を構成する主として正方晶
の結晶粒子よりなるジルコニア磁器Cの強度は、従来の
立方晶の結晶粒子と単斜晶の結晶粒子よりなるジルコニ
ア磁器の劣化前の強度りよりも太き(、また主として立
方晶の結晶粒子と正方晶の結晶粒子とよりなるジルコニ
ア磁器Eは立方晶の結晶粒子と単斜晶の結晶粒子とより
なるジルコニア磁器の特定温度領域における経時劣化後
の強度Fよりも大である。また本発明のジルコニア磁器
CおよびEは立方晶のみよりなるジルコニア磁器Gより
も高強度であり、且つ正方晶が多くなるに従って強度が
向上する。
As shown in Figure 2, the relationship between the X-ray diffraction line peak intensity ratio and the bending strength is as follows:
The intensities of the X-ray diffraction lines of the (200) plane of the cubic crystal are T(200), M(111), and C(
200), the strength of the zirconia porcelain C made of mainly tetragonal crystal grains constituting the present invention is the strength before deterioration of the conventional zirconia porcelain made of cubic crystal grains and monoclinic crystal grains. (Also, zirconia porcelain E, which is mainly composed of cubic crystal grains and tetragonal crystal grains, is a zirconia porcelain E that is mainly composed of cubic crystal grains and monoclinic crystal grains.) This strength is higher than the strength F. Zirconia porcelains C and E of the present invention have higher strength than zirconia porcelain G consisting only of cubic crystals, and the strength improves as the number of tetragonal crystals increases.

なお、本発明で主として正方晶より成るジルコニア磁器
とは、正方晶のみよりなるものは勿論のこと(M(11
1) + C(200))/T(200)のX線回折線
ピーク強度比が0.4以下となるような単斜晶および立
方晶またはそのいずれか一方が存在するものも含まれる
。上記のX線ピーク強度比の範囲は単斜晶および立方晶
またはその一方が概略2o容積パーセント以下と相当す
る。
In the present invention, zirconia porcelain mainly composed of tetragonal crystals refers to zirconia porcelain mainly composed of tetragonal crystals (M(11
1) +C(200))/T(200) X-ray diffraction line peak intensity ratio of 0.4 or less, which includes monoclinic and/or cubic crystals. The above range of X-ray peak intensity ratios corresponds to approximately 20 volume percent or less of monoclinic and/or cubic crystals.

また主として立方晶の結晶粒子と正方晶の結晶粒子とよ
り成るジルコニア磁器とは、正方品の結晶粒子と立方晶
の結晶粒子のみよりなるものは勿論ノコとT(200)
/ (T(200) + C(200))(7)強度比
が0.05以上で、M (111)/T (200)の
強度比が1以下、M(111)/ (T (200) 
+ C(200))(7)強度比が0.4以下となるよ
うな単斜晶が存在するものも含まれる。上記のX線ピー
ク強度比の範囲は、単斜晶の量が全体の概略20容積パ
ーセント以下に相当する。
Also, zirconia porcelain, which is mainly composed of cubic crystal grains and tetragonal crystal grains, includes zirconia porcelain that is composed only of tetragonal crystal grains and cubic crystal grains, as well as zirconia porcelain that is mainly composed of cubic crystal grains and tetragonal crystal grains.
/ (T(200) + C(200)) (7) The intensity ratio is 0.05 or more, the intensity ratio of M (111) / T (200) is 1 or less, M (111) / (T (200)
+ C(200)) (7) Also includes those in which monoclinic crystals exist such that the intensity ratio is 0.4 or less. The above range of X-ray peak intensity ratio corresponds to an amount of monoclinic crystals of approximately 20% by volume or less of the total.

又本発明において主としてZrO2とY2O3より成る
ジルコニア磁器というのは、ZrO2の安定化剤として
Y2O3を主体として用いたジルコニア磁器を意味し、
Y2O,の約30モル%以下を他の稀土類元素酸化物、
例えばYb20z + S+、03 + NbzO3,
Sm2O3 、 CeO2等あるいはCaO、MgOで
置換したものでもよい。
Also, in the present invention, zirconia porcelain mainly composed of ZrO2 and Y2O3 means zirconia porcelain mainly using Y2O3 as a stabilizer of ZrO2,
About 30 mol% or less of Y2O, other rare earth element oxides,
For example, Yb20z + S+, 03 + NbzO3,
It may be substituted with Sm2O3, CeO2, etc., or with CaO or MgO.

また本発明によるジルコニア磁器は5ift + Al
2O2+粘土等の焼結助剤を磁器全体の30重量%以下
含有するものでもよい。なお磁器を構成している結晶相
は磁器表面を研磨し、鏡面とした面を用いてX線回折法
によって同定する。
In addition, the zirconia porcelain according to the present invention has 5ift + Al
The porcelain may contain a sintering aid such as 2O2+clay in an amount of 30% by weight or less based on the total weight of the porcelain. The crystalline phase constituting the porcelain is identified by X-ray diffraction using a mirror-polished surface of the porcelain.

200°Cないし300°Cの温度域に曝した後の磁器
も再度研磨し、鏡面とした面を用いてX線回折を行う。
After being exposed to a temperature range of 200°C to 300°C, the porcelain is also polished again and subjected to X-ray diffraction using the mirrored surface.

また抗折強度は通常行われている3点曲げ法あるいは4
点曲げ法によるが、初期の測定と200″Cないし30
0”Cの温度域に曝した後の測定とは同一方法によるも
のであり、所定のテストピース形状にした後、200″
Cないし300 ’Cの温度域に曝すようにしたもので
ある。
In addition, the bending strength can be determined by the commonly used three-point bending method or by the four-point bending method.
Depending on the point bending method, initial measurements and 200″C to 30°C
The measurement after exposure to a temperature range of 0"C is based on the same method, and after forming the test piece into a predetermined shape,
It is designed to be exposed to a temperature range of 300'C to 300'C.

本発明の数値限定理由は以下のとおりである。The reasons for limiting the numerical values of the present invention are as follows.

Y2O,/ZrO□のモル比は2/98未満では正方晶
のジルコニア磁器は得られず、また7/93を越えると
正方晶がほとんど含まれなくなり立方晶のジルコニア磁
器となる。また2/98〜4/96の範囲外では主とし
て正方晶のジルコニア磁器は得られない。
If the molar ratio of Y2O,/ZrO□ is less than 2/98, tetragonal zirconia porcelain cannot be obtained, and if it exceeds 7/93, almost no tetragonal crystals are contained, resulting in cubic zirconia porcelain. Further, if the ratio is outside the range of 2/98 to 4/96, mainly tetragonal zirconia porcelain cannot be obtained.

本発明において電極としてはPL、 Rh、 Pd等の
白金族金属あるいはLa、、AXBO3(Aはアルカリ
土類金属、Bは遷移金属の1種または複数種)で表わさ
るペロブスカイト型複合酸化物電極、あるいは前記白金
族金属とZr0z 、へ1203等のセラミックスとの
サーメット電極を利用すれば良く、形成方法はスクリー
ン印刷法、焼付は法、メツキ等を用いれば良い。
In the present invention, the electrode includes a perovskite-type composite oxide electrode represented by a platinum group metal such as PL, Rh, or Pd, or La, or AXBO3 (A is an alkaline earth metal, and B is one or more transition metals); Alternatively, a cermet electrode made of the platinum group metal and a ceramic such as Zr0z or He1203 may be used, and the forming method may be a screen printing method, baking method, plating, or the like.

固体電解質とするジルコニア磁器の形状は円筒状、袋管
状、平板状等どの様な形態であっても良いが、円筒状の
ものはジルコニア粉末をプレス圧縮成形し、平板状のも
のはジルコニア粉末を有機バインダーと有機溶剤とに混
練したスラリーとしてこれをドクターブレード法等によ
り成形すれば良い。
The shape of the zirconia porcelain used as the solid electrolyte may be any shape such as a cylinder, a bag tube, or a flat plate, but the cylindrical one is made by press-compression molding zirconia powder, and the flat one is made by pressing zirconia powder. A slurry obtained by kneading an organic binder and an organic solvent may be formed by a doctor blade method or the like.

本発明の酸素濃淡電池を構成する1対の電極が還元性の
ガスに曝される場合は、該電極を多孔質なセラミックス
層によって被覆し直接還元性のガスが電極に接しない様
にすることが望ましい。該多孔質保護層はジルコニア、
アルミナ、スピネル等のセラミックスであれば良く、プ
ラズマ溶射法により形成するか、あるいはスクリーン印
刷法、ドクターブレード法等により平板状の基板に形成
した後焼き付ける等により形成すれば良い。
When a pair of electrodes constituting the oxygen concentration battery of the present invention is exposed to a reducing gas, the electrodes should be covered with a porous ceramic layer to prevent the reducing gas from coming into direct contact with the electrodes. is desirable. The porous protective layer is made of zirconia,
It may be made of ceramic such as alumina or spinel, and may be formed by plasma spraying, or by forming on a flat substrate by screen printing, doctor blade, etc., and then baking.

なお本発明の酸素濃淡電池の固体電解質を構成する主と
して正方晶の結晶粒子または主として立方晶の結晶粒子
および正方晶の結晶粒子より成る特定値以下の平均結晶
粒子径をもつ 200°Cないし300°Cにおける耐
久性の優れたジルコニア磁器をつくるには組成はもとよ
り使用する原料、原料粒度、焼成条件、冷却条件等を選
択することにより容易に実施できるものである。
Note that the solid electrolyte of the oxygen concentration battery of the present invention is composed of mainly tetragonal crystal particles, or mainly cubic crystal particles and tetragonal crystal particles, and has an average crystal particle diameter of not more than a specific value. The production of zirconia porcelain with excellent durability in C can be easily achieved by selecting the composition, raw materials used, raw material particle size, firing conditions, cooling conditions, etc.

本発明の主として正方晶の結晶粒子より成るジルコニア
磁器および主として立方晶の結晶粒子および正方晶の結
晶粒子とよりなるジルコニア磁器を用いた酸素濃淡電池
は固体電解質のイオン輸率がほぼ1で理論値通りの起電
力が得られる為、酸素センサとされるほか、酸素イオン
導電性である為、酸素ポンプあるいは固体電解質燃料電
池とされるものである。次に実施例を述べる。
In the oxygen concentration battery of the present invention using zirconia porcelain mainly composed of tetragonal crystal grains and zirconia porcelain mainly composed of cubic crystal grains and tetragonal crystal grains, the ion transfer number of the solid electrolyte is approximately 1, which is the theoretical value. Because it can generate a normal electromotive force, it is used as an oxygen sensor, and because it is oxygen ion conductive, it is used as an oxygen pump or solid electrolyte fuel cell. Next, an example will be described.

実施例1 酸素濃淡電池を構成する固体電解質のジルコニア磁器と
しての性質を最初に比較した。
Example 1 First, the properties of the solid electrolyte constituting the oxygen concentration battery as zirconia porcelain were compared.

第1表に示す組成となるようにZrO□、 YzOz又
はその化合物を調合しボールミル混合した。その混合物
を800 ’Cで仮焼し、ボールミルにて湿式粉砕し、
乾燥した後その粉末をプレス成形し、1000°Cない
し1400°Cにて1時間ないし3時間焼成して本発明
の酸素濃淡電池に使用するジルコニア磁器を得た。そし
てこれらの磁器について平均結晶粒子径、X線回折線強
度、抗折強度、体積抵抗率を比較測定した。なおX線回
折線強度比は立方晶の(200)面、正方晶の(200
)面および単斜晶の(111)面でのX線回折線ピーク
高さの比とした。抗折強度は磁器を3.5 X3.5 
X50mmの棒状に仕上げ3点曲げ法にて求めた。体積
抵抗率は4端子法により、大気中400°Cにて測定し
た。
ZrO□, YzOz or a compound thereof was prepared and mixed in a ball mill so as to have the composition shown in Table 1. The mixture was calcined at 800'C, wet-pulverized in a ball mill,
After drying, the powder was press-molded and fired at 1000°C to 1400°C for 1 to 3 hours to obtain zirconia porcelain used in the oxygen concentration battery of the present invention. The average crystal grain size, X-ray diffraction line intensity, bending strength, and volume resistivity of these porcelains were compared and measured. The X-ray diffraction line intensity ratio is the (200) plane of the cubic crystal and the (200) plane of the tetragonal crystal.
) plane and the (111) plane of the monoclinic crystal. The bending strength of porcelain is 3.5 x 3.5
It was finished into a bar shape of 50 mm and was determined by a three-point bending method. The volume resistivity was measured in the atmosphere at 400°C by a four-probe method.

なお第1表中200°C〜300 ’C耐久とあるのは
200°C〜300°Cの間を、10°C/分の昇降温
度速度で加熱、冷却を繰り返した耐久試験である。各種
組成による測定結果を第1表に示す。第1表には200
°C〜300°Cの耐久試験後のX線回折線強度比も記
載する。さらに第1表中rB/へX100 Jの欄は耐
久試験後の抗折強度を初期の抗折強度に比較した割合を
パーセントで示し、rC/D4の欄はX線回折線強度比
において単斜晶(11r1面/正方晶(200)面の耐
久試験後の値に対する初期値の割合、すなわち耐久試験
による正方晶から単斜晶への相変態の程度、さらに換言
すれば耐久試験による正方晶の減少率を意味し、これが
1に近い程正方品が安定であることを示す。第1表には
本発明の数値限定範囲外の例を参考例として合わせ記載
した。
In Table 1, 200°C to 300'C durability refers to a durability test in which heating and cooling were repeated between 200°C and 300°C at a rate of temperature rise and fall of 10°C/min. Table 1 shows the measurement results for various compositions. Table 1 shows 200
The X-ray diffraction line intensity ratio after the durability test at °C to 300 °C is also described. Further, in Table 1, the column rB/to The ratio of the initial value to the value after the durability test of the crystal (11r1 plane/tetragonal (200) plane), that is, the degree of phase transformation from tetragonal to monoclinic in the durability test, and in other words, the ratio of the initial value to the value after the durability test of the tetragonal (200) plane It means a reduction rate, and the closer it is to 1, the more stable the square product is.Table 1 also lists examples outside the numerical limit range of the present invention as reference examples.

第3図には第1表中に記載の例について平均結晶粒子径
に対するC/Dの値を図示し、第4図には同様に平均結
晶粒子に対するB/A X100O値を図示する。第3
図、第4図中の各点についている数字は実施例のNαを
示す。
FIG. 3 shows the C/D value with respect to the average crystal grain size for the examples listed in Table 1, and FIG. 4 similarly shows the B/A X100O value with respect to the average crystal grain size. Third
The numbers attached to each point in the figures and FIG. 4 indicate Nα of the example.

第1表および第3図、第4図から明らかなとおり、本発
明のジルコニア磁器は高強度で、かつ200°C〜30
0°Cという特定の温度領域に放置しても結晶相、抗折
強度ともほとんど変化がない。
As is clear from Table 1 and Figures 3 and 4, the zirconia porcelain of the present invention has high strength and
Even if it is left in a specific temperature range of 0°C, there is almost no change in crystal phase or bending strength.

さらにこのように特定温度領域で安定であるためには磁
器の平均結晶粒子径が2μ以下、好ましくは1μ以下で
あることが必要であると判明した。
Furthermore, it has been found that in order to be stable in a specific temperature range, the average crystal grain size of the porcelain must be 2 microns or less, preferably 1 micron or less.

さらに体積抵抗率も低いものであることが確認された。Furthermore, it was confirmed that the volume resistivity was also low.

実施例2 第1表No、16で調製したジルコニア粉末をプレス成
形し、1400°Cにて3時間焼成して第5図に示され
る固体電解質管2を形成し、該固体電解質管2の内外面
にptメツキ法によって基準電極1と測定電極3を設け
、更に測定電極3の外側にプラズマ溶射法により多孔質
保護層4を設け、酸素センサ素子20を10本得た。
Example 2 The zirconia powder prepared in Table 1 No. 16 was press-molded and fired at 1400°C for 3 hours to form the solid electrolyte tube 2 shown in FIG. A reference electrode 1 and a measuring electrode 3 were provided on the outer surface by a PT plating method, and a porous protective layer 4 was further provided on the outside of the measuring electrode 3 by a plasma spraying method to obtain 10 oxygen sensor elements 20.

酸素センサ素子20の温度を600Kに保ちながら内側
雰囲気10を空気、外側雰囲気11をHz : 10%
、HJ:1%残りN、よりなる混合ガスにさらし、基準
電極1および測定電極3との間に発生する起電力を測定
した所、10本全てのセンサが1.14±0.02Vと
なりほぼ理論通りの起電力を発生した。
While maintaining the temperature of the oxygen sensor element 20 at 600K, the inner atmosphere 10 is air and the outer atmosphere 11 is Hz: 10%.
, HJ: 1% residual N, and when the electromotive force generated between the reference electrode 1 and the measurement electrode 3 was measured, all 10 sensors were 1.14±0.02V, which was approximately It generated an electromotive force as expected in theory.

また測定電極3の雰囲気を前記H2雰囲気から空気雰囲
気に急激に変化させた所約2秒で起電力がほぼO(ゼロ
)になった。
Further, when the atmosphere of the measurement electrode 3 was suddenly changed from the H2 atmosphere to the air atmosphere, the electromotive force became almost O (zero) in about 2 seconds.

これは、本発明の酸素濃淡電池が酸素センサとして利用
できることを示すものである。
This shows that the oxygen concentration cell of the present invention can be used as an oxygen sensor.

以上述べたとおり本発明の酸素濃淡電池は、固体電解質
としてジルコニア磁器を利用しており該ジルコニア磁器
は特定のY2O3/ZrO□のモル比において主として
正方晶の結晶粒子または主として正方晶の結晶粒子およ
び立方晶の結晶粒子とより成り、かつその結晶粒子径が
特定値以下であることにより極めて高強度でかつ200
°C〜300 ’Cの特定温度域における経時劣化も著
しく少ないものとなるので、高強度かつ耐熱特性が要求
される自動車用酸素センサ、鉄鋼用の酸素メーター、発
電用燃料電池などとして利用されるものであり、産業上
極めて有用なものである。
As described above, the oxygen concentration battery of the present invention uses zirconia porcelain as a solid electrolyte, and the zirconia porcelain has mainly tetragonal crystal particles or mainly tetragonal crystal particles and It is made of cubic crystal grains and the crystal grain size is below a certain value, so it has extremely high strength and 200%
Deterioration over time in a specific temperature range of °C to 300'C is extremely low, so it can be used in automotive oxygen sensors that require high strength and heat resistance, oxygen meters for steel, fuel cells for power generation, etc. It is extremely useful in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素濃淡電池を構成する固体電解質としてのジ
ルコニア磁器の平均結晶粒子径と抗折強度との耐久試験
前後の関係を示す説明図、第2図は立方晶(200)面
と正方晶(200)面のX線回折線の強度比と抗折強度
との関係および立方晶(200)面と単斜晶(11〒)
面のX線回折線の強度比と経時劣化前後の抗折強度との
関係を示す説明図である。 第3図は本発明の酸素濃淡電池を構成する固体電解質と
してのジルコニア磁器のX線回折線強度比の初期値(C
)と耐久試験後の値(D)との比(C/I))と平均結
晶粒子径との関係を示す特性図、第4図は同じく本発明
の酸素濃淡電池を構成する固体電解質としてのジルコニ
ア磁器の抗折強度(A)と耐久試験後の抗折強度(B)
とのB/A X100%と平均結晶粒子径との関係を示
す特性図、第5図は本発明の酸素濃淡電池の1つである
酸素センサの先端部の断面図である。
Figure 1 is an explanatory diagram showing the relationship between the average crystal particle diameter and bending strength of zirconia porcelain as a solid electrolyte constituting an oxygen concentration battery before and after a durability test, and Figure 2 is a diagram showing the relationship between the cubic (200) plane and the tetragonal plane. The relationship between the intensity ratio of X-ray diffraction lines of the (200) plane and the refraction intensity, and the relationship between the cubic crystal (200) plane and the monoclinic crystal (11〒)
FIG. 2 is an explanatory diagram showing the relationship between the intensity ratio of X-ray diffraction lines of a surface and the bending strength before and after deterioration over time. Figure 3 shows the initial value of the X-ray diffraction line intensity ratio (C
) and the value after the durability test (D) (C/I)) and the average crystal particle size. Transverse bending strength of zirconia porcelain (A) and bending strength after durability test (B)
FIG. 5 is a sectional view of the tip of an oxygen sensor which is one of the oxygen concentration batteries of the present invention.

Claims (1)

【特許請求の範囲】 1、主としてZrO_2とY_2O_3より成り、Y_
2O_3/ZrO_2のモル比が2/98〜4/96の
範囲であって結晶粒子が主として正方晶の結晶粒子より
成り、かつ平均結晶粒子径が2μ以下のジルコニア磁器
よりなる固体電解質と該固体電解質に接して設けられた
少なくとも1対の電極とからなることを特徴とする酸素
濃淡電池。 2、主としてZrO_2とY_2O_3より成り、Y_
2O_3/ZrO_2のモル比が2/98〜7/93の
範囲であって結晶粒子が主として立方晶の結晶粒子およ
び正方晶の結晶粒子とより成り、かつ平均結晶粒子径が
2μ以下のジルコニア磁器よりなる固体電解質と該固体
電解質に接して設けられた少なくとも1対の電極とから
なることを特徴とする酸素濃淡電池。
[Claims] 1. Mainly composed of ZrO_2 and Y_2O_3, Y_
A solid electrolyte made of zirconia porcelain in which the molar ratio of 2O_3/ZrO_2 is in the range of 2/98 to 4/96, the crystal grains are mainly tetragonal crystal grains, and the average crystal grain size is 2 μ or less, and the solid electrolyte and at least one pair of electrodes provided in contact with the oxygen concentration battery. 2. Mainly composed of ZrO_2 and Y_2O_3, Y_
From zirconia porcelain in which the molar ratio of 2O_3/ZrO_2 is in the range of 2/98 to 7/93, the crystal grains are mainly composed of cubic crystal grains and tetragonal crystal grains, and the average crystal grain size is 2 μ or less An oxygen concentration battery comprising a solid electrolyte and at least one pair of electrodes provided in contact with the solid electrolyte.
JP63278551A 1988-11-05 1988-11-05 Oxygen concentration cell Granted JPH01157072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63278551A JPH01157072A (en) 1988-11-05 1988-11-05 Oxygen concentration cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63278551A JPH01157072A (en) 1988-11-05 1988-11-05 Oxygen concentration cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3752280A Division JPS56134564A (en) 1980-03-26 1980-03-26 Zirconia ceramics

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2418104A Division JPH04139062A (en) 1990-12-28 1990-12-28 Zirconia porcelain
JP2418102A Division JPH04349169A (en) 1990-12-28 1990-12-28 Oxygen concentration cell

Publications (2)

Publication Number Publication Date
JPH01157072A true JPH01157072A (en) 1989-06-20
JPH0446918B2 JPH0446918B2 (en) 1992-07-31

Family

ID=17598838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278551A Granted JPH01157072A (en) 1988-11-05 1988-11-05 Oxygen concentration cell

Country Status (1)

Country Link
JP (1) JPH01157072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145663A (en) * 2000-11-02 2002-05-22 Nippon Shokubai Co Ltd Zirconia-based ceramic and method of producing the same
JP2019152508A (en) * 2018-03-02 2019-09-12 日本特殊陶業株式会社 Gas sensor element and gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544913A (en) * 1977-06-14 1979-01-16 Ngk Spark Plug Co Method of making zirconia sintered body having highhstrength and oxygen ion conductivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544913A (en) * 1977-06-14 1979-01-16 Ngk Spark Plug Co Method of making zirconia sintered body having highhstrength and oxygen ion conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145663A (en) * 2000-11-02 2002-05-22 Nippon Shokubai Co Ltd Zirconia-based ceramic and method of producing the same
JP2019152508A (en) * 2018-03-02 2019-09-12 日本特殊陶業株式会社 Gas sensor element and gas sensor

Also Published As

Publication number Publication date
JPH0446918B2 (en) 1992-07-31

Similar Documents

Publication Publication Date Title
EP0036786B1 (en) Zirconia ceramics and a method of producing the same
JPS6116125B2 (en)
JP2001307546A (en) Ion conductor
JPS6121184B2 (en)
JP2000340240A (en) High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
JP2617204B2 (en) Method for producing solid electrolyte
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JPH07315922A (en) Solid electrolyte ceramics and support member for solid electrolyte
CA2516809C (en) Mixed ionic conductor
JPH01157072A (en) Oxygen concentration cell
JPH07126061A (en) Magnesia-based sintered body and method for producing the same
JP2951887B2 (en) Mixed ionic conductor
JPH0258232B2 (en)
JP4337436B2 (en) Method for manufacturing thermistor element
CN110391455B (en) A kind of yttrium-stabilized zirconia-low melting point glass powder composite and preparation method thereof
JPH0555464B2 (en)
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JPH05170444A (en) Stabilized zirconia-alumina powder for solid electrolyte fuel cell
JPS609978B2 (en) Oxygen ion conductive solid electrolyte
JPH11240755A (en) Production of oxygen sensor element
JPH01261267A (en) Solid electrolyte and its production
JP3362644B2 (en) Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element
JP3300077B2 (en) Ion conductor material
CN110391442B (en) Eu (Eu) 2 O 3 、Y 2 O 3 Double-doped ZrO 2 -low melting point glass frit composite and method for preparing the same