[go: up one dir, main page]

JPS6059990B2 - Vapor deposition equipment - Google Patents

Vapor deposition equipment

Info

Publication number
JPS6059990B2
JPS6059990B2 JP4149381A JP4149381A JPS6059990B2 JP S6059990 B2 JPS6059990 B2 JP S6059990B2 JP 4149381 A JP4149381 A JP 4149381A JP 4149381 A JP4149381 A JP 4149381A JP S6059990 B2 JPS6059990 B2 JP S6059990B2
Authority
JP
Japan
Prior art keywords
crucible
hearth liner
metal
vapor deposition
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4149381A
Other languages
Japanese (ja)
Other versions
JPS57155377A (en
Inventor
公昭 勝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4149381A priority Critical patent/JPS6059990B2/en
Publication of JPS57155377A publication Critical patent/JPS57155377A/en
Publication of JPS6059990B2 publication Critical patent/JPS6059990B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は蒸着装置に関し、特に電子ビーム真空蒸着にお
いて金属ソースを高温に熱し蒸発させる際、この金属ソ
ースをルツボの間に介在させることにより低入力電子ビ
ームで蒸着効率を上げる目的で使用するハースライナー
を有する装置の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporation apparatus, and in particular, in electron beam vacuum evaporation, when a metal source is heated to a high temperature and evaporated, the metal source is interposed between a crucible to increase the evaporation efficiency with a low input electron beam. The present invention relates to the structure of a device having a hearth liner used for lifting purposes.

半導体工業の発達に伴ない半導体ウェハー上へ金属薄膜
を被覆し、電極パターンや配線パターン等を微細加工す
る技術が用いられている。
With the development of the semiconductor industry, techniques are being used to coat semiconductor wafers with metal thin films and microfabricate electrode patterns, wiring patterns, and the like.

薄膜金属の被覆方法としては真空蒸着方法が開発された
。しかし、素子の集積化、高周波化が進むにつれて一層
金属配線の微細化、多層構造化が必要となり良質な金属
薄膜を被覆することが望まれている。蒸着方法としては
電子ビーム蒸着が最も一般的であり、これは高融点かつ
低蒸気圧の金属をも蒸着できる。
A vacuum deposition method has been developed as a method for coating thin metal films. However, as elements become more integrated and operate at higher frequencies, it becomes necessary to make the metal wiring even finer and to form a multilayer structure, and it is desired to cover the metal wiring with a high-quality metal thin film. The most common deposition method is electron beam deposition, which can also deposit metals with high melting points and low vapor pressures.

半導体ウェハー上へ金属薄膜を電子ビーム蒸着する場合
、一般に低入力電子ビームで蒸発効率良く蒸着すること
が要求される場合が多い。これは、以下の3項目を目的
としたものてある。第1に金属ソース、ルツボからの2
次電子、反射電子、電磁波等の放射線による半導体表面
への影響を最小限にすること、第2にルツボ周辺からの
異物の混入を最小限にすること、第3のルツボからの熱
幅射を少なくし半導体ウェハーの温度上昇を少なくする
ことである。低入力電子ビームで蒸着速度を高速化する
為に広くハースライナーが使用されている。
When depositing a metal thin film onto a semiconductor wafer with an electron beam, it is generally required to perform the deposition with high evaporation efficiency using a low input electron beam. This is aimed at the following three items. 1st metal source, 2nd from the crucible
The second is to minimize the influence of radiation such as secondary electrons, reflected electrons, and electromagnetic waves on the semiconductor surface.The second is to minimize the intrusion of foreign matter from around the crucible, and the third is to minimize the thermal radiation from the crucible. The purpose is to reduce the temperature rise of the semiconductor wafer. Hearth liners are widely used to increase the deposition rate with low input electron beams.

ハースライナーは蒸着金属ソースに比較して熱伝導の悪
い導電材料で作られ、金属ソースからルツボヘの伝導に
よる熱の逃げを押えることにより低入力電子ビームで金
属ソースのみを高温にし、蒸着効率を上げることを目的
として使用される。従来は、第1図に示すように、タン
グステン、タンタル、モリブデン等を材料としたハース
ライナー1がルツボ2の凹部にはめこまれて使用されて
きたが、これらは高温て蒸着用金属3と反応しやすく、
ウェハー上の被覆金属薄膜の質を悪くするという欠点を
有した。
The hearth liner is made of a conductive material that has poor thermal conductivity compared to vapor-deposited metal sources, and by suppressing the escape of heat through conduction from the metal source to the crucible, only the metal source is heated to a high temperature with a low-input electron beam, increasing vapor deposition efficiency. used for that purpose. Conventionally, as shown in FIG. 1, a hearth liner 1 made of tungsten, tantalum, molybdenum, or the like has been fitted into the recess of a crucible 2, but these liners react with the deposition metal 3 at high temperatures. easy to do,
This method has the disadvantage of degrading the quality of the metal thin film coated on the wafer.

一方、BNとTiB。を材料としたハースライナーを使
用した場合はハースライナー材料と蒸着金属との反応は
おこりにくく被覆金属薄膜中への汚染は起こらない。し
かし該ハースライナーと’゛ぬれ’’の良い金属ソース
を使う場合は、第2図に示す如く金属ソース3がハース
ライナー1にぬれなじんではい出し、ハースライナー1
とルツボ2の間にまで入り込みルツボ2への熱伝導が良
くなつてしまい、ハースライナーの効果がそこなわれて
しまう欠点があつた。本発明の目的は、上記欠点を取り
除き、効果的なハースライナーをもつ蒸着装置を提供す
ることにある。
On the other hand, BN and TiB. When a hearth liner made of is used, a reaction between the hearth liner material and the deposited metal is unlikely to occur, and no contamination of the coated metal thin film occurs. However, when using a metal source that ``wet'' well with the hearth liner, as shown in FIG.
There was a drawback that the heat conduction to the crucible 2 would become better because it would penetrate between the hearth liner and the crucible 2, impairing the effectiveness of the hearth liner. SUMMARY OF THE INVENTION The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a vapor deposition apparatus with an effective hearth liner.

ノー 本発明はBNとTiB2を材料としたハースライナーを
用いて、このハースライナーとルツボとを突起で結合し
、それ以外の対向部分に空間を設けるようにしたもので
、蒸着金属が溶融してハースライナーから外部へはい出
し、ハースライナー表面がこの溶融金属とぬれなじんだ
場合でも、ハースライナーとルツボの接触面積を少なく
すれば熱伝導を最小限にできることに着眼したもので、
ハースライナーとルツボとの接触面積を突起部分のみと
して、両者の中間部に空気絶縁領域を介在させたことを
特徴とする。
No. The present invention uses a hearth liner made of BN and TiB2, and connects the hearth liner and the crucible with a protrusion, leaving a space in the other opposing parts, so that the metal deposited on the crucible is melted. We focused on the fact that even if the surface of the hearth liner gets wet with the molten metal after it crawls out of the hearth liner, heat transfer can be minimized by reducing the contact area between the hearth liner and the crucible.
It is characterized in that the contact area between the hearth liner and the crucible is limited to the protruding portion, and an air insulating region is interposed between the two.

この結果低入力電子ビームで蒸着効率良くウェハーに金
属蒸着することが可能となつた。
As a result, it has become possible to deposit metal onto a wafer with high deposition efficiency using a low input electron beam.

次に本発明の一実施例として、2CCのアルミニウムを
蒸着用金属ソースとして蒸着する場合について第3,4
図を用いて説明する。
Next, as an example of the present invention, the third and fourth cases will be described in which 2 CC of aluminum is vapor deposited as a metal source for vapor deposition.
This will be explained using figures.

ルツボの形状は第4図に示すように、深さ10咽、底面
127T0ftφ、開口部30mφのすり鉢状の凹部形
状を有し、無酸素銅を材料としたものを用いた。
As shown in FIG. 4, the crucible had a mortar-like concave shape with a depth of 10 mm, a bottom surface of 127 T0 ftφ, and an opening of 30 mφ, and was made of oxygen-free copper.

ルツボ4とハースライナー5とはハースライナー5の底
部に設けられた突起6によつて固定した。この結果、第
3図のようにルツボとハースライナーとの間には空間部
7が介在するようになる。蒸着用金属8はハースライナ
ー5の中に入れられる。今、ルツボに直接2CCの99
.99%アルミニウムを入れて電子ビーム蒸着した場合
と、厚さ3mのBNとTiB.を材料とした従来のハー
スライナー(第1図)を使用して同じく2CCの99.
99%アルミニウムを電子ビーム蒸着した場合と、ハー
スライナーの底面に高さ5T!r!n直径5Tn!nφ
の円筒の突起部分を設けた本実施例のハースライナーを
使用して2CCの99.99%アルミニウムを電子ビー
ム蒸着した場合について、それぞれの蒸発効率を比較し
た結果を表1に示す。
The crucible 4 and the hearth liner 5 were fixed by a protrusion 6 provided at the bottom of the hearth liner 5. As a result, a space 7 is provided between the crucible and the hearth liner as shown in FIG. The metal for vapor deposition 8 is put into the hearth liner 5. Now, 99 of 2CC directly into the crucible
.. A case of electron beam evaporation with 99% aluminum, and a case of BN and TiB with a thickness of 3 m. Using the conventional hearth liner (Fig. 1) made of 2CC 99.
When 99% aluminum is electron beam evaporated, the bottom of the hearth liner has a height of 5T! r! n diameter 5Tn! nφ
Table 1 shows the results of comparing the evaporation efficiencies of 2CC of 99.99% aluminum by electron beam evaporation using the hearth liner of this example provided with a cylindrical protrusion.

蒸着は全て真空蒸着チャンバー内真空度〜2刈0−7T
0rr以下、電子ビーム加速電圧ぴ■で行ない、アルミ
ニウムソースから330J17y!離れた位置で300
A/Secの蒸着速度を得る為に必要な工ミッション電
流値をそれぞれの場合について比較した。表1に示す如
く本実施例のハースライナーを使用して蒸着した楊合、
〜300A/Secの速度を得る為に必要な工ミッショ
ン電流はハースライナー無しの場合に比較して4分の1
、従来型のハースラーイナーに比べて約3分の1の値で
あり、大巾に入力電子ビーム電流を低減させることがで
きた。
All evaporation is done in a vacuum evaporation chamber at a vacuum level of ~2.0-7T.
0rr or less, the electron beam acceleration voltage was set to 330J17y from an aluminum source! 300 at a remote location
The processing current values required to obtain a deposition rate of A/Sec were compared for each case. As shown in Table 1, the yanghe deposited using the hearth liner of this example,
The machining current required to obtain a speed of ~300A/Sec is one-fourth of that without a hearth liner.
This value is approximately one-third that of the conventional Haas liner, and the input electron beam current can be significantly reduced.

尚、突起部はルツボ側に設けてもよいし、その形状は任
意でよい。
Note that the protrusion may be provided on the crucible side, and its shape may be arbitrary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のハースライナーとルツボの構
造図、第3図は本発明の一実施例を示すハースライナー
とルツボの構造図、第4図はルツボの凹形部形状図であ
る。 1,5・・・・・・ハースライナー、2,4・・・・・
・ルツボ、3,8・・・・・・金属ソース、6・・・・
・突起部、7・・・・・空間部。
Figures 1 and 2 are structural diagrams of a conventional hearth liner and crucible, Figure 3 is a structural diagram of a hearth liner and crucible showing an embodiment of the present invention, and Figure 4 is a diagram of the concave shape of the crucible. be. 1, 5... Hearth Liner, 2, 4...
・Crucible, 3, 8...Metal source, 6...
・Protrusion, 7...Space.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸着用金属源とこれを収納するるつぼとの間に熱伝
導性の低いハーフライナーを有する金属蒸着装置におい
て、前記ハースライナーを前記るつぼとは所定の空間を
もつて支持部により相互に固定化されていることを特徴
とする蒸着装置。
1. In a metal evaporation apparatus having a half liner with low thermal conductivity between a metal source for evaporation and a crucible that houses the same, the hearth liner and the crucible are fixed to each other by a support part with a predetermined space between them. A vapor deposition apparatus characterized by:
JP4149381A 1981-03-20 1981-03-20 Vapor deposition equipment Expired JPS6059990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149381A JPS6059990B2 (en) 1981-03-20 1981-03-20 Vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149381A JPS6059990B2 (en) 1981-03-20 1981-03-20 Vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPS57155377A JPS57155377A (en) 1982-09-25
JPS6059990B2 true JPS6059990B2 (en) 1985-12-27

Family

ID=12609872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149381A Expired JPS6059990B2 (en) 1981-03-20 1981-03-20 Vapor deposition equipment

Country Status (1)

Country Link
JP (1) JPS6059990B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116595B2 (en) * 1986-08-15 1995-12-13 株式会社ト−ビ Ion plating evaporator
JPS63123667U (en) * 1987-02-05 1988-08-11

Also Published As

Publication number Publication date
JPS57155377A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
US5087297A (en) Aluminum target for magnetron sputtering and method of making same
US4972449A (en) X-ray tube target
US6176931B1 (en) Wafer clamp ring for use in an ionized physical vapor deposition apparatus
JPS6059990B2 (en) Vapor deposition equipment
US3708325A (en) Process for metal coating boron nitride objects
JPH02285067A (en) Device for forming thin film in vacuum
US3063858A (en) Vapor source and processes for vaporizing iron, nickel and copper
JPS586972A (en) Hearth liner for vacuum deposition by electron beam
JPH0673543A (en) Continuous vacuum deposition equipment
JPS61291965A (en) Superhigh-vacuum chamber
JPS5944386B2 (en) Method for producing heat-resistant metal thin film
JPS6120032Y2 (en)
JPH0558775A (en) Molecular beam epitaxy equipment
JPS6013067B2 (en) Vacuum deposition equipment
JPH0139713Y2 (en)
JPH0417668A (en) Vapor deposition method
JPS62235466A (en) Vapor deposition material generator
KR100226891B1 (en) Resistant heating evaporation source for reactive substance evaporation and its manufacturing method
JPH05287524A (en) Target for magnetron sputtering
JPH08250465A (en) Electrode cover for plasma treating device for semiconductor
JPS6136374B2 (en)
JPH11100674A (en) Vacuum processing equipment
JPH05106028A (en) Deposition method by energy beam
JPS597782B2 (en) Vapor deposition equipment
JPH02104659A (en) Device for producing thin film