JPS61291965A - Superhigh-vacuum chamber - Google Patents
Superhigh-vacuum chamberInfo
- Publication number
- JPS61291965A JPS61291965A JP13349985A JP13349985A JPS61291965A JP S61291965 A JPS61291965 A JP S61291965A JP 13349985 A JP13349985 A JP 13349985A JP 13349985 A JP13349985 A JP 13349985A JP S61291965 A JPS61291965 A JP S61291965A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- vacuum
- vacuum chamber
- internal
- external
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
半導体の製造プロセスにおいては、真空装置の内部にウ
ェハーをおいて処理する工程が多く含まれるが、真空チ
ャンバー内の真空度は10− ’ T orr以下の真
空度の維持は困難である。本発明では真空チャンバーを
二重にすることにより10− ’ T orr以下の真
空度を得るチャンバーを実現した。[Detailed Description of the Invention] [Summary] In the semiconductor manufacturing process, there are many steps in which a wafer is placed inside a vacuum apparatus and processed, and the degree of vacuum in the vacuum chamber is 10-' Torr or less. It is difficult to maintain the degree. In the present invention, by duplicating the vacuum chamber, a chamber capable of obtaining a vacuum degree of 10-' Torr or less has been realized.
本発明は、超高真空の維持と、吸着ガス除去の前処理工
程の容易なる超高真空チャンバーに関する。The present invention relates to an ultra-high vacuum chamber that facilitates the maintenance of ultra-high vacuum and the pretreatment process for removing adsorbed gas.
半導体装置の製造には、メタル工程と呼ばれるAl配線
形成の真空蒸着工程、電子ビームを用いた露光工程、あ
るいはスパッタリング工程等の多くの工程において真空
チャンバーが使用される。In the manufacture of semiconductor devices, a vacuum chamber is used in many processes such as a vacuum evaporation process for forming Al wiring, which is called a metal process, an exposure process using an electron beam, and a sputtering process.
これらの真空チャンバー内の真空度は、従来の装置では
10− ’ T orr程度で使用されることが多かっ
た。In conventional devices, the degree of vacuum in these vacuum chambers is often about 10-' Torr.
然し、半導体装置の集積度の上昇に伴ってその歩留りと
信頼度を確保するためには、上記の工程で使用される真
空チャンバー内の真空度を更に一段と向上させ、不純物
の影響を避ける必要のあることが判明している。このた
め真空チャンバーに対しても改善が要望されている。However, in order to ensure yield and reliability as the degree of integration of semiconductor devices increases, it is necessary to further improve the degree of vacuum in the vacuum chamber used in the above process to avoid the influence of impurities. It turns out that there is. For this reason, improvements to vacuum chambers are also desired.
従来の真空チャンバーの一般的なる構造は第2図に示す
。幅、奥行がそれぞれ60〜70cm、高さ50〜60
cm程度の寸法の真空チャンバー1は鉄、ステンレス、
アルミニウム等の厚い材料で製作される。The general structure of a conventional vacuum chamber is shown in FIG. Width and depth are 60-70cm, height 50-60cm respectively
The vacuum chamber 1 with dimensions of about cm is made of iron, stainless steel,
Manufactured from thick material such as aluminum.
上蓋2は取り外し可能で、使用時にはメタルバッキング
4により本体3に締着される。本体3の下部には油回転
ポンプ、油拡散ポンプ、クライオポンプ等の排気系が接
続されている。The top cover 2 is removable and is fastened to the main body 3 by a metal backing 4 during use. An exhaust system such as an oil rotary pump, oil diffusion pump, cryopump, etc. is connected to the lower part of the main body 3.
第2図では半導体の加工プロセスに必要とするチャンバ
ー内に取り付けられる治具、部品等は省略しである。In FIG. 2, jigs, parts, etc. installed in the chamber necessary for the semiconductor processing process are omitted.
真空チャンバーは、使用時その全面にわたり大気圧を受
けるので、厚い金属材料により製作されており、使用時
にチャンバー内はその吸着ガスが放出される。そのため
使用に当たっては前取てチャンバーの予備排気を必要と
する。Since the vacuum chamber is exposed to atmospheric pressure over its entire surface during use, it is made of a thick metal material, and the adsorbed gas is released within the chamber during use. Therefore, it is necessary to pre-evacuate the chamber before use.
予備排気はチャンバーの外壁、または内壁にヒータ15
を巻きつけて加熱する方法、あるいは赤外線ランプをチ
ャンバーの外壁、または内壁に照射する方法等によって
行われるが、チャンバーを、例えば200℃で数10時
間加熱するにしても、これは相当厄介なる作業となって
いる。For preliminary exhaust, a heater 15 is installed on the outer or inner wall of the chamber.
This is done by heating the chamber by wrapping it around the chamber, or by irradiating the outer or inner walls of the chamber with an infrared lamp, but even if the chamber is heated to, for example, 200 degrees Celsius for several tens of hours, this is a fairly troublesome process. It becomes.
上記に述べた、従来の構造の真空チャンバーを使用する
場合には、その真空度を上げるためのチャンバーの予備
排気作業が大掛かりとなる問題がある。When using the vacuum chamber having the conventional structure described above, there is a problem in that preliminary evacuation of the chamber in order to increase the degree of vacuum is a large-scale work.
即ち、この予備排気ではチャンバーの熱容量が大きいた
め、これを加熱する電力も大電力を必要とし、周囲にも
多大な影響を与えることになる。That is, in this preliminary evacuation, since the heat capacity of the chamber is large, a large amount of electric power is required to heat the chamber, which also has a great influence on the surroundings.
従って、この予備排気が充分に行われずに、真空チャン
バーを使用することになると、充分なる吸着ガスの排除
が行われず、プロセス途中で不純物が半導体に付着する
という問題が避けられない。Therefore, if a vacuum chamber is used without sufficient preliminary evacuation, the adsorbed gas will not be removed sufficiently and the problem of impurities adhering to the semiconductor during the process will be unavoidable.
上記問題点は、真空チャンバーの構造として、外部チャ
ンバーと該外部チャンバーに収容された内部チャンバー
の二重槽を構成し、外部チャンバーと内部チャンバーに
はそれぞれ排気装置が接続され、前記内部チャンバーの
外面にはヒータを巻きつけた加熱装置を備えたことより
なる本発明の超高真空チャンバーの構造によって解決さ
れる。The above-mentioned problem is that the structure of the vacuum chamber is a double tank consisting of an external chamber and an internal chamber housed in the external chamber, and an exhaust device is connected to each of the external chamber and the internal chamber, and the external surface of the internal chamber is This problem is solved by the structure of the ultra-high vacuum chamber of the present invention, which is equipped with a heating device having a heater wrapped around it.
二重槽真空チャンバー構造とすることにより、予備排気
時には内部チャンバーの外側も真空となるため、ヒータ
による加熱時、対流による熱損失が殆ど防止出来る。ま
た熱輻射も外部チャンバーより反射されるのでヒータの
加熱電力は著しく低下する。By adopting the double chamber vacuum chamber structure, the outside of the internal chamber is also evacuated during preliminary evacuation, so that heat loss due to convection can be almost prevented during heating by the heater. Furthermore, since thermal radiation is also reflected from the external chamber, the heating power of the heater is significantly reduced.
また、別の作用として内部チャンバーは、大気圧に耐え
得る機械的な強度を必要としないので、充分薄い肉厚の
金属材料を使用することが可能となる。Another effect is that the internal chamber does not require mechanical strength to withstand atmospheric pressure, so it is possible to use a metal material with a sufficiently thin wall thickness.
本発明による一実施例を図面により詳細説明する。 An embodiment according to the present invention will be described in detail with reference to the drawings.
第1図は本発明の超高真空チャンバーの構造断面図を示
す。真空チャンバーは二重槽構造よりなり、外部チャン
バー5は本体6と上蓋7、内部チャンバー8も同じく本
体9、上蓋10により構成されている。FIG. 1 shows a structural sectional view of the ultra-high vacuum chamber of the present invention. The vacuum chamber has a double tank structure, and the outer chamber 5 is composed of a main body 6 and an upper lid 7, and the inner chamber 8 is also composed of a main body 9 and an upper lid 10.
それぞれのチャンバーに真空ポンプ系が接続されるが、
外部チャンバー用のポンプは高い真空度を必要としない
ので、到達真空度10− ” T orr程度で排気速
度の大きい油回転ずンプ11のみで充分である。A vacuum pump system is connected to each chamber,
Since the pump for the external chamber does not require a high degree of vacuum, it is sufficient to use only the oil rotary pump 11, which has an ultimate vacuum of about 10-'' Torr and a high pumping speed.
内部チャンバーに接続される排気系は、10− ’以上
の到達真空度を得る必要があるので、通常の油回転ポン
プ12、油拡散ポンプ13の他にイオンポンプ、あるい
はサブリメーションポンプ、クライオポンプ等の高真空
度を得るドライポンプ14を接続する。The exhaust system connected to the internal chamber needs to achieve an ultimate vacuum of 10-' or more, so in addition to the usual oil rotary pump 12 and oil diffusion pump 13, an ion pump, sublimation pump, cryopump, etc. are used. A dry pump 14 is connected to obtain a high degree of vacuum.
内部チャンバーの外面には加熱用のヒータ15が取りつ
けられていて予備排気時これにより内部チャンバーを加
熱する。A heating heater 15 is attached to the outer surface of the internal chamber, and this heats the internal chamber during preliminary evacuation.
この超、高真空チャンバーでは、内部チャンバーと外部
チャンバーとの間の空間は低真空ではあるが真空に保持
されているので、ヒータによる加熱では対流による熱損
失は殆どなく、また輻射熱も外部チャンバーの内面より
反射されるのでヒータの加熱電力は著しく低減される。In this ultra-high vacuum chamber, the space between the inner chamber and the outer chamber is maintained at a low vacuum, so there is almost no heat loss due to convection when heated by the heater, and there is also no radiant heat in the outer chamber. Since it is reflected from the inner surface, the heating power of the heater is significantly reduced.
また、内部チャンバーは、使用時にはその内部、外部と
も真空に維持されるので大気圧に対する機械的な強度を
必要としない。従って1mm程度の薄い肉厚の材料を使
用することが可能となる。Furthermore, since the internal chamber is maintained in a vacuum both inside and outside during use, mechanical strength against atmospheric pressure is not required. Therefore, it is possible to use a material with a thin wall thickness of about 1 mm.
このため内部チャンバーの熱容量が小さくなり加熱時間
を短くすると共に、内部チャンバーに吸蔵されるガスを
少なくするのにも寄与している。For this reason, the heat capacity of the internal chamber is reduced, which contributes to shortening the heating time and reducing the amount of gas occluded in the internal chamber.
以上に説明せるごとく、本発明の超高真空チャンバーを
用いることにより、真空チャンバーの予備排気が容易と
なり、またそのための加熱電力も小電力で済む。この装
置を用いた高真空のプロセスにより不純物の付着が著し
く軽減出来る。As explained above, by using the ultra-high vacuum chamber of the present invention, preliminary evacuation of the vacuum chamber is facilitated, and the heating power required for this purpose is small. The high vacuum process using this equipment can significantly reduce the adhesion of impurities.
第1図は本発明にかかわる超高真空チャンバーの構造断
面図、
第2図は従来の構造の真空チャンバーの構造断面図、
を示す。
図面において、
1は真空チャンバー、
2.7.10は上蓋、
3.6.9は本体、
4はメタルバッキング、
5は外部チャンバー、
8は内部チャンバー、
11.12は油回転ポンプ、
13は油拡散ポンプ、
14はドライポンプ、
15はヒータ、
をそれぞれ示す。
3−4トロ月11・υ相ル彦j迦ンこ寸キ涜−−オ駕お
艷凶Yσ口図第1図
第 2図FIG. 1 is a structural sectional view of an ultra-high vacuum chamber according to the present invention, and FIG. 2 is a structural sectional view of a conventional vacuum chamber. In the drawings, 1 is a vacuum chamber, 2.7.10 is an upper lid, 3.6.9 is a main body, 4 is a metal backing, 5 is an external chamber, 8 is an internal chamber, 11.12 is an oil rotary pump, and 13 is an oil 14 is a dry pump, and 15 is a heater. 3-4 Toro month 11・υ phase Ruhiko j Ka nko size Ki sacrilege--Ogawa Omori Yσ mouth diagram Figure 1 Figure 2
Claims (1)
た内部チャンバー(8)の二重槽よりなり、該外部チャ
ンバーと内部チャンバーにはそれぞれ排気装置が接続さ
れ、 前記内部チャンバーの外面に加熱装置(15)を備えた
ことを特徴とする超高真空チャンバー。[Claims] Consisting of a double tank consisting of an external chamber (5) and an internal chamber (8) accommodated in the external chamber, an exhaust device is connected to each of the external chamber and the internal chamber, and An ultra-high vacuum chamber characterized by having a heating device (15) on its outer surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13349985A JPS61291965A (en) | 1985-06-18 | 1985-06-18 | Superhigh-vacuum chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13349985A JPS61291965A (en) | 1985-06-18 | 1985-06-18 | Superhigh-vacuum chamber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61291965A true JPS61291965A (en) | 1986-12-22 |
Family
ID=15106199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13349985A Pending JPS61291965A (en) | 1985-06-18 | 1985-06-18 | Superhigh-vacuum chamber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61291965A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH027421A (en) * | 1987-10-15 | 1990-01-11 | Solems Sa | Apparatus for manufacture of thin film by plasma deposition especially for electronic and/or optoelectronic technology device and its driving method |
JP2005347582A (en) * | 2004-06-04 | 2005-12-15 | Nikon Corp | Vacuum container, exposure device, and inspection device |
JP2007146292A (en) * | 2002-04-01 | 2007-06-14 | Ans Inc | Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same |
KR100961007B1 (en) | 2007-01-31 | 2010-05-31 | 도쿄엘렉트론가부시키가이샤 | Substrate processing apparatus |
US7948603B2 (en) | 2003-08-27 | 2011-05-24 | Nikon Corporation | Vacuum device, operation method for vacuum device, exposure system, and operation method for exposure system |
KR101093667B1 (en) * | 2010-09-20 | 2011-12-15 | (주)에스엔텍 | Large vacuum chamber |
WO2025041583A1 (en) * | 2023-08-18 | 2025-02-27 | 東京エレクトロン株式会社 | Substrate processing device |
-
1985
- 1985-06-18 JP JP13349985A patent/JPS61291965A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH027421A (en) * | 1987-10-15 | 1990-01-11 | Solems Sa | Apparatus for manufacture of thin film by plasma deposition especially for electronic and/or optoelectronic technology device and its driving method |
JP2007146292A (en) * | 2002-04-01 | 2007-06-14 | Ans Inc | Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same |
US7948603B2 (en) | 2003-08-27 | 2011-05-24 | Nikon Corporation | Vacuum device, operation method for vacuum device, exposure system, and operation method for exposure system |
JP2005347582A (en) * | 2004-06-04 | 2005-12-15 | Nikon Corp | Vacuum container, exposure device, and inspection device |
JP4547997B2 (en) * | 2004-06-04 | 2010-09-22 | 株式会社ニコン | Vacuum container, exposure apparatus, and inspection apparatus |
KR100961007B1 (en) | 2007-01-31 | 2010-05-31 | 도쿄엘렉트론가부시키가이샤 | Substrate processing apparatus |
US8349085B2 (en) | 2007-01-31 | 2013-01-08 | Tokyo Electron Limited | Substrate processing apparatus |
KR101093667B1 (en) * | 2010-09-20 | 2011-12-15 | (주)에스엔텍 | Large vacuum chamber |
WO2025041583A1 (en) * | 2023-08-18 | 2025-02-27 | 東京エレクトロン株式会社 | Substrate processing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010186891A (en) | Plasma processing apparatus, and maintenance method and assembling method of the same | |
JPS61291965A (en) | Superhigh-vacuum chamber | |
JPH08139047A (en) | Heat treatment apparatus | |
CA2208162C (en) | Reactive pvd with neg pump | |
JPS61272367A (en) | Thin film forming device | |
JP2001234326A (en) | Vacuum processing equipment | |
JPH0345117Y2 (en) | ||
JP2628264B2 (en) | Heat treatment equipment | |
JP3070567B2 (en) | Vertical reduced pressure vapor phase growth apparatus and vapor phase growth method using the same | |
JPH069193B2 (en) | Reaction tube used in vacuum heat treatment equipment | |
JPH09320493A (en) | Vacuum air-tight container | |
JPH0680639B2 (en) | Semiconductor wafer processing method | |
JP2013035710A (en) | Film deposition apparatus and film deposition method | |
JP3388837B2 (en) | Plasma CVD equipment | |
JPH0521867Y2 (en) | ||
JP3933734B2 (en) | Deposition equipment | |
JPS62193099A (en) | vacuum chamber | |
JPH04184922A (en) | Heat-treating equipment | |
JPS63199070A (en) | Vacuum brazing device | |
JPH09190977A (en) | Chamber device for manufacture of semiconductor element | |
JPH0528943A (en) | Vacuum device | |
JPS59100536A (en) | microwave processing equipment | |
JPS6335711B2 (en) | ||
JPH0329290B2 (en) | ||
JPH05141598A (en) | Sealing method for large vacuum product |