[go: up one dir, main page]

JPS6042283A - Bonding method between oxide ceramics and active metals - Google Patents

Bonding method between oxide ceramics and active metals

Info

Publication number
JPS6042283A
JPS6042283A JP15067683A JP15067683A JPS6042283A JP S6042283 A JPS6042283 A JP S6042283A JP 15067683 A JP15067683 A JP 15067683A JP 15067683 A JP15067683 A JP 15067683A JP S6042283 A JPS6042283 A JP S6042283A
Authority
JP
Japan
Prior art keywords
ceramics
active metals
oxide
active
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15067683A
Other languages
Japanese (ja)
Inventor
邦彦 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanadevia Corp
Original Assignee
Hitachi Zosen Corp
Hitachi Shipbuilding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Hitachi Shipbuilding and Engineering Co Ltd filed Critical Hitachi Zosen Corp
Priority to JP15067683A priority Critical patent/JPS6042283A/en
Publication of JPS6042283A publication Critical patent/JPS6042283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は酸化物系セラミックスと活性金属との接合法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for bonding oxide ceramics and active metals.

最近、耐熱性、耐暦耗性、耐食性などの点で金属に比べ
て優れたセラミックスが工業用材料として注目されて来
ている。しかし、セラミックスは加工性が悪く複雑な形
状のものを製作でき人いうえに、非常に脆く使用中に脆
性破壊する可能性が高いという欠点がある。そのため、
セラミックスを工業用材料として広範囲に使用するには
、加工性に優れ靭性に冨む金属との接合が不可欠である
Recently, ceramics, which are superior to metals in terms of heat resistance, wear resistance, corrosion resistance, etc., have been attracting attention as industrial materials. However, ceramics have the disadvantage that they have poor processability, making it difficult to manufacture products with complex shapes, and are extremely brittle and have a high possibility of brittle fracture during use. Therefore,
For ceramics to be widely used as industrial materials, it is essential to bond them with metals that have excellent workability and toughness.

そこで、従来からセラミックスと金属の接合法が種々提
案されている。そのうち、セラミックスの中で多用され
る酸化物系セラミックスと活性金属との接合法の具体例
を接合強度とあわせて示すと表1のようになる。
Therefore, various methods of joining ceramics and metals have been proposed. Table 1 shows specific examples of bonding methods for oxide ceramics and active metals, which are often used in ceramics, along with bonding strengths.

表1 ここで酸化物ソルダー法は、Ca0−A/zoa−8i
OrMgO糸粉末ンルダーを、酸化物系セラミックスと
活性金属の接合部に挟んだ後、真空中で1500°Cに
加熱して5〜10分間保持するという方法である。しか
し、この方法によると、接合強度が比較的高い利点があ
るが、非常に高温に加熱しなければならないという問題
があった。
Table 1 Here, the oxide solder method is Ca0-A/zoa-8i
In this method, the OrMgO yarn powder is sandwiched between the joints of the oxide ceramic and the active metal, and then heated to 1500°C in vacuum and held for 5 to 10 minutes. However, although this method has the advantage of relatively high bonding strength, it has the problem of requiring heating to a very high temperature.

一方、活性金属ノルグー法は、活性金属であるTi、Z
rニオブなどとNi 、 Cu、 Agなどと合金にし
て例えばセラミックス−セラミックスあるいはセラミッ
クス−金属間に挟んだ後、これを真空中または不活性ガ
ス中で加熱して接合体とする方法である。しかし、この
方法によると、活性金属の酸素との反応性をうまく利用
できるが、接合のために例えば”l’1−Ni合金ソル
ダーの作成が不可欠であるという問題があった。。
On the other hand, the active metal Norgu method uses active metals such as Ti and Z.
This is a method in which niobium or the like is alloyed with Ni, Cu, Ag, etc., sandwiched between ceramics or ceramics, and then heated in vacuum or in an inert gas to form a bonded body. However, although this method makes good use of the active metal's reactivity with oxygen, there is a problem in that it is essential to create, for example, a l'1-Ni alloy solder for bonding.

本発明はこのような従来の問題を解決することを目的と
し、酸化物糸セラミックスとチタン、ジルコニツム、ニ
オブ等の活性金属を接合する際に、接合部に、延性に富
みかつ前記活性金属と共晶反后する金属箔を挟んだ後、
酸化物系セラミックスと活性金属を加熱、IfE接して
拡散接合する構成の酸化物系セラミックスと活性金属と
の接合方法を提供することによって、その目的を達成す
るものであり、これにより、比較的低温で接合すること
ができるとともに、Ti−Ni合金ソルダー等の作成を
不用とし、そのうえ非常に高い接合強度を得ることがで
きるものである。
The present invention aims to solve such conventional problems, and when bonding oxide thread ceramics and active metals such as titanium, zirconium, niobium, etc. After sandwiching the crystallized metal foil,
This objective is achieved by providing a method for bonding oxide ceramics and active metals in which the oxide ceramics and active metal are heated, brought into IfE contact, and diffusion bonded. In addition, it is possible to make a bond with a Ti--Ni alloy solder, etc., and to obtain a very high bonding strength.

以下本発明方法の一夾絶倒を図面に基づいて詳細に説明
する。
Hereinafter, the complete improvement of the method of the present invention will be explained in detail based on the drawings.

第1図は試験片(被接合体)を示す。図において、(1
)は酸化物系セラミックスの1つである直径20闘、厚
≧5朋の(焼結)アルミナセラミックス(AfzOa)
 、(2ンは活性金属の1つである直径15馴、長さ4
0酊の工業用純チタン(Ti)である。図面はアルミナ
セラミックス(1)の両面に工柴用純チタン(2)を接
合するところを示し、今、その接合部(3)に厚さ5μ
の銅箔(Cu箔)(4)が挟まれている。
FIG. 1 shows a test piece (object to be joined). In the figure, (1
) is a (sintered) alumina ceramic (AfzOa) with a diameter of 20mm and a thickness of 5mm or more, which is one of the oxide ceramics.
, (2mm is one of the active metals. Diameter 15mm, length 4mm)
It is industrially pure titanium (Ti) with zero alcohol content. The drawing shows the bonding of pure titanium for industrial use (2) to both sides of alumina ceramics (1).
A copper foil (Cu foil) (4) is sandwiched therebetween.

このような構成で、被接合体を(1) (2) (4)
 *空中で、この共晶点以上鋼の融点(約1080″C
)以下の温度で加熱、加圧する。そして、加熱後、その
温度で恒温保持する。そうすると、Cu、Tiの相互拡
散により銅箔(4)中のTi濃度は時間とともに増加す
る。
With this configuration, the objects to be joined are (1) (2) (4)
*In the air, the melting point of steel (approximately 1080″C) is higher than this eutectic point.
)Heat and pressurize at a temperature below. After heating, the temperature is maintained constant. Then, the Ti concentration in the copper foil (4) increases with time due to mutual diffusion of Cu and Ti.

ここで、Cu−Ti合金の状態を図に示すと第2図のよ
うになる。すなわち、Cu−Ti合金は、TIが約28
重量%で共晶組成となり、その融点は約:s7o jc
でおる。したがって、Ti濃度が約28重量%以下なら
ば、時間の経過とともに銅箔(Cu−Ti合金)の融点
は低下し、銅箔(Cu−Ti合金)は溶融することとな
る。七こで、このようにして恒温保持過程で、接合部(
3)にCu−Ti合金融液を一時的に生せしめる。
Here, the state of the Cu-Ti alloy is shown in FIG. 2. That is, the Cu-Ti alloy has a TI of about 28
% by weight, has a eutectic composition, and its melting point is approximately: s7o jc
I'll go. Therefore, if the Ti concentration is about 28% by weight or less, the melting point of the copper foil (Cu-Ti alloy) will decrease over time, and the copper foil (Cu-Ti alloy) will melt. In this way, during the constant temperature maintenance process, the joint (
3) Temporarily generate a Cu-Ti alloy liquid.

このCu−Ti合金融液中のTiが、活性金属ソルダー
法の場合と同じようにAI!20aと反応し、アルミナ
セラミックス(1)と工業用純チタン(2)の接合に寄
与することとなる。なお、チタン(2)の長さを短くシ
て厚さを薄くシ、アルミナセラミックス(,1)−銅箔
(4)−チタン(2)−金属の接合体を作成することも
できる。なお、係る場合の金属は、チタン(2)と約8
70°C〜1080°Cで拡散接合できる金属に限られ
る。
Ti in this Cu-Ti alloy liquid is AI! 20a, and contributes to the bonding of alumina ceramics (1) and industrially pure titanium (2). Note that it is also possible to shorten the length of titanium (2) and reduce its thickness to create a bonded body of alumina ceramics (1), copper foil (4), titanium (2), and metal. In addition, the metal in this case is titanium (2) and about 8
It is limited to metals that can be diffusion bonded at 70°C to 1080°C.

まだ、銅箔(4)に代えて延性に富むニッケル箔、銀箔
を使用してもよい。
However, ductile nickel foil or silver foil may be used in place of the copper foil (4).

ところで、本方法では、被接合体のアルミナセラミック
ス(1)、銅箔(4)、工業用純チタン(2)のそれぞ
れの間で原子が拡散する必要がある。そのため、これら
王者の間で原子が拡散できるように、間隙を消滅するよ
うな加圧を行う必要がある。しかし、銅は塑性変形しや
すいため、この加圧力は小さくてよく、例えば焼結アル
ミナセラミックスとの接合面が機械加工で表颯仕上げ(
Vvv程度)のしであるチタンの接合では2kgf/c
−程度でよい。
By the way, in this method, atoms need to diffuse between each of the alumina ceramics (1), copper foil (4), and industrially pure titanium (2) of the objects to be joined. Therefore, it is necessary to apply pressure to eliminate the gaps so that atoms can diffuse between these champions. However, since copper is easily plastically deformed, this pressing force only needs to be small; for example, the joint surface with sintered alumina ceramics can be machined to have a surface finish (
2kgf/c for titanium bonding, which is about Vvv
- degree is sufficient.

図1に示した形状のもので、真空中(4XIO’Tor
r)で接合部(3)を930℃、30分間保持して接合
した接合体に、接合面に対し垂直方向の引張実験を行っ
た結果を表2に示す。表1と比較すると明らかなように
、本方法によれは従来方法より高い接合強度が得られる
ことが分かる。なお、この接合時には、加圧力2tc9
f /cflと力るように接合面に垂直に加圧した。
The shape shown in Figure 1 was used in vacuum (4XIO'Tor).
Table 2 shows the results of a tensile test in the direction perpendicular to the bonded surface on the bonded body in which the bonded part (3) was held at 930° C. for 30 minutes. As is clear from a comparison with Table 1, it can be seen that this method provides higher bonding strength than the conventional method. In addition, at the time of this joining, a pressing force of 2tc9
Pressure was applied perpendicularly to the bonding surface so as to apply a force of f/cfl.

表2 以上本発明方法によれば次の効果を得ることができる。Table 2 According to the method of the present invention, the following effects can be obtained.

(1) 比較的低温で接合できる。(1) Can be joined at relatively low temperatures.

(2)金属箔を使用するので、活性金属ンルダーのよう
な活性金属と低融点化合物を形成するような金属(Cu
、 Nt、 Ag )の合金を作る必要がない。したが
って、容易にかつ安価に接合できZ (3)延性に冨んだ金属箔を使用するので、この金属箔
の塑性変形を利用して低加圧力で接合できる。
(2) Since metal foil is used, metals that form low melting point compounds with active metals such as active metals (Cu)
, Nt, Ag) is not required. Therefore, they can be joined easily and inexpensively. (3) Since a highly ductile metal foil is used, the plastic deformation of the metal foil can be used to join them with low pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の一実施例を示し、第1図fa)は試
験片の正面図、第1図(b)は同側面図、第2図はCu
−’I”i合金の状態図である。 (1)・・・アルミナセラミックス、(2)・・・工業
用純チタン、(3)・・・接合部、(4)・・・銅箔代
理人 森 本 義 弘
The drawings show an embodiment of the method of the present invention, in which Fig. 1fa) is a front view of a test piece, Fig. 1(b) is a side view of the same, and Fig. 2 is a specimen of a Cu specimen.
-'I"i alloy state diagram. (1)...Alumina ceramics, (2)...Industrial pure titanium, (3)...Joint part, (4)...Copper foil substitute. People Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、 酸化物系セラミックスとチタン、ジμコニクム、
ニオブ等の活性金属を接合する際に、接合部に、延性に
冨みかつ前記活性金属と共晶反応する金属箔を挟んだ後
、酸化物系セラミックスと活性金属を加熱、加圧して拡
散接合することを特徴とする酸化物糸セラミックスと活
性金属との接合法。
1. Oxide ceramics, titanium, diconicum,
When joining active metals such as niobium, a metal foil that is highly ductile and reacts eutectically with the active metal is sandwiched between the joints, and then the oxide ceramic and the active metal are heated and pressurized to perform diffusion bonding. A method for joining oxide thread ceramics and active metals.
JP15067683A 1983-08-17 1983-08-17 Bonding method between oxide ceramics and active metals Pending JPS6042283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15067683A JPS6042283A (en) 1983-08-17 1983-08-17 Bonding method between oxide ceramics and active metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15067683A JPS6042283A (en) 1983-08-17 1983-08-17 Bonding method between oxide ceramics and active metals

Publications (1)

Publication Number Publication Date
JPS6042283A true JPS6042283A (en) 1985-03-06

Family

ID=15502032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15067683A Pending JPS6042283A (en) 1983-08-17 1983-08-17 Bonding method between oxide ceramics and active metals

Country Status (1)

Country Link
JP (1) JPS6042283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077181A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic-metal bonded body
JPS61279651A (en) * 1985-06-04 1986-12-10 Daido Steel Co Ltd Joining material
JPS63270459A (en) * 1987-04-24 1988-11-08 Matsushita Electric Ind Co Ltd Bonding method for sputtering target
US4988034A (en) * 1987-12-25 1991-01-29 Ngk Spark Plug Co., Ltd. Mechanical part having ceramic and metal sections soldered together and method of producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084440A (en) * 1973-11-29 1975-07-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084440A (en) * 1973-11-29 1975-07-08

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077181A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic-metal bonded body
JPH0317793B2 (en) * 1983-09-30 1991-03-08 Tokyo Shibaura Electric Co
JPS61279651A (en) * 1985-06-04 1986-12-10 Daido Steel Co Ltd Joining material
JPS63270459A (en) * 1987-04-24 1988-11-08 Matsushita Electric Ind Co Ltd Bonding method for sputtering target
US4988034A (en) * 1987-12-25 1991-01-29 Ngk Spark Plug Co., Ltd. Mechanical part having ceramic and metal sections soldered together and method of producing same

Similar Documents

Publication Publication Date Title
JPS62192295A (en) Soft solder alloy for mutual bonding of ceramic part or bonding with part consisting of metal
JPH0217509B2 (en)
JPH03174370A (en) Method for joining ceramics and metal
JPH0367985B2 (en)
JP2783366B2 (en) Silver alloy brazing for bonding ceramic members to each other or directly to metal members
JPS6042283A (en) Bonding method between oxide ceramics and active metals
JPS6216896A (en) Brazing filler metal for ceramics
JPH02108493A (en) Ceramic bonding material
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPS6177676A (en) Silicon nitride bonded body and bonding method
CN105397339B (en) A kind of brazing material for TiC Ceramic brazings
JPS59174581A (en) Method of bonding aluminum to alumina
JPH0672779A (en) Method for joining carbon member
JPH0460946B2 (en)
JPS63203268A (en) Joining method for glass or ceramic and metal
JPH0543071Y2 (en)
JPS6077181A (en) Ceramic-metal bonded body
JPS61186271A (en) Method of joining ceramic and metal
JPH0469038B2 (en)
JPH0525932B2 (en)
JPH01299790A (en) Alloy for joining of ceramics and metal
JPS6182993A (en) Composite brazing filler metal
JPH0337166A (en) Adhesion between ceramics and metal
JPS60204678A (en) How to join ceramics and steel
JPS6016877A (en) Bonded body of ceramic sintered body and metal member and manufacture