JPS60263420A - Energy storing device - Google Patents
Energy storing deviceInfo
- Publication number
- JPS60263420A JPS60263420A JP59121153A JP12115384A JPS60263420A JP S60263420 A JPS60263420 A JP S60263420A JP 59121153 A JP59121153 A JP 59121153A JP 12115384 A JP12115384 A JP 12115384A JP S60263420 A JPS60263420 A JP S60263420A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- activated carbon
- energy storage
- storage device
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、一対の分極性電極と電解液または分極性電極
と非分極性電極とからなる電気二重層キ3 ・・−
ヤパシタ、電池などのエネルギー貯蔵装置に関するもの
である。[Detailed Description of the Invention] Industrial Field of Application The present invention is directed to an electric double layer consisting of a pair of polarizable electrodes and an electrolytic solution or a polarizable electrode and a non-polarizable electrode. The present invention relates to a storage device.
従来例の構成とその問題点
従来、一対の分極性電極と電解液とからなる電気二重層
キャパシタは、第1図に示す基本構成を有する。すなわ
ち、一対の分極性電極1,2と、この間に存在するセパ
レータ3と、それぞれの分極性電極1,2の集電層4,
6とから構成されるものであり、代表的な分極性電極と
しては、活性炭粉末、活性炭繊維などが用いられている
。Conventional Structure and its Problems Conventionally, an electric double layer capacitor consisting of a pair of polarizable electrodes and an electrolyte has the basic structure shown in FIG. That is, a pair of polarizable electrodes 1 and 2, a separator 3 existing between them, and a current collecting layer 4 of each polarizable electrode 1 and 2,
6, and activated carbon powder, activated carbon fiber, etc. are used as typical polarizable electrodes.
第2図は本発明者らが考案した電気二重層キャパシタの
具体例であり、活性炭繊維よりなる織布6.7と、この
活性炭繊維織布6,70片面にプラズマ溶射法により形
成されたアルミニウム集電層8,9と、セパレータ1o
と、正、負極を兼ねた金属ケース11.12と、絶縁ガ
スケット13からなる平板型キャパシタで、電解液とし
てプロ、 ピレンカーボネート、テトラエチルアンモニ
ウムバークロレートの混合液を用いている。Figure 2 shows a specific example of the electric double layer capacitor devised by the present inventors, which includes a woven fabric 6.7 made of activated carbon fibers and aluminum formed on one side of the activated carbon fiber woven fabric 6, 70 by plasma spraying. Current collecting layers 8, 9 and separator 1o
It is a flat capacitor consisting of a metal case 11, 12 which also serves as positive and negative electrodes, and an insulating gasket 13, and uses a mixed solution of pro, pyrene carbonate, and tetraethylammonium barchlorate as the electrolyte.
一方、分極性電極と、非分極性電極と、電解液とからな
るキャパシタや電池の従来の基本構成は、第3図に示す
ものである。すなわち、分極性電極2oと、その集電層
21と、セパレータ22と、非分極性電極23とから構
成され、この場合も代表的な分極性電極としては活性炭
や、炭素材料が、捷た非分極性電極としては、リチウム
などの金属やその酸化物、カルコゲン化物などが用いら
れる。On the other hand, the basic structure of a conventional capacitor or battery consisting of a polarizable electrode, a non-polarizable electrode, and an electrolytic solution is shown in FIG. That is, it is composed of a polarizable electrode 2o, its current collecting layer 21, a separator 22, and a non-polarizable electrode 23. In this case as well, a typical polarizable electrode is activated carbon or a twisted non-polarized electrode. As the polarizable electrode, metals such as lithium, their oxides, chalcogenides, etc. are used.
第4図はこのキャパシタの他の例であり、正極に活性炭
繊維織布30を、負極にリチウム金属ペレット31を用
い、セパレータ32とケース33゜34、ガスケットリ
ング35とから構成されている。電解液にはリチウムバ
ークロレートとプロピレンカーボネートの混合液を用い
ている。FIG. 4 shows another example of this capacitor, which uses an activated carbon fiber woven fabric 30 for the positive electrode, lithium metal pellets 31 for the negative electrode, and is composed of a separator 32, cases 33 and 34, and a gasket ring 35. The electrolyte used is a mixture of lithium chloride and propylene carbonate.
これらのキャパシタ、電池の使用耐電圧を考えると、以
下に述べるようにその最高使用電圧が決定される。Considering the withstand voltage of these capacitors and batteries, the maximum operating voltage is determined as described below.
まず第2図に述べた一対の活性炭繊維を分極性電極に用
いたキャパシタでは、充電時正負極それぞれの表面に(
式1)で示されるテトラエチルアンモニウムバークロレ
ートイオンの分極によるテ5 ・N
トラエチルアンモニウムイオン(+)トハークロレート
イオン(−)との電気二重層が形成される。First, in a capacitor using a pair of activated carbon fibers as polarizable electrodes as shown in Figure 2, the surfaces of the positive and negative electrodes (
Due to the polarization of the tetraethylammonium perchlorate ion represented by formula 1), an electric double layer is formed between the tetraethylammonium ion (+) and the tetraethylammonium chlorate ion (-).
(C2H6)4NCt04→(C2H6)4N++Ct
o4−(式1)
この反応を起こすために印加できる電圧は、正極。(C2H6)4NCt04→(C2H6)4N++Ct
o4- (Formula 1) The voltage that can be applied to cause this reaction is the positive electrode.
負極いずれも電解液の分解電圧により決められる。Both negative electrodes are determined by the decomposition voltage of the electrolyte.
第5図は、プロピレンカーボネート、テトラエチルアン
モニウムバークロレート系の電解液を用い、従来のセル
ロース系の活性炭を正負極に用いた時のアノード、カソ
ードの電圧電流曲線である。この図のように負極で−2
,5V、正極で+2.OV付近から電解液の分解がおこ
り、系全体として高々4.6vの使用耐電圧しか得るこ
とができない。FIG. 5 shows the voltage-current curves of the anode and cathode when a propylene carbonate and tetraethylammonium barchlorate-based electrolyte is used and conventional cellulose-based activated carbon is used for the positive and negative electrodes. -2 at the negative electrode as shown in this figure
, 5V, +2 at the positive electrode. Decomposition of the electrolyte begins near OV, and the system as a whole can only obtain a usable withstand voltage of 4.6V at most.
実用上は、集電に使用している金属や、ケース材料金属
などの陽極溶解、皮膜形成、溶解反応の電流などがから
んでさらに低い使用耐電圧に々るが、当該使用耐電圧を
支配する最大因子は電解液の分解電圧である。ところで
、電解液のアノード、カソード反応による分解反応は、
電極材料の性質と大きく関係し、特に活性炭を分極性電
極として用−〇ノ
6ヘ一一
いた時、その表面に存在する官能基が、分解電圧を大き
く左右する。従来用いられている活性炭電極は、正極、
負極いずれにも同じ性質のものを用いているため、耐電
圧が高々2〜2.5vであった。In practice, the working withstand voltage is even lower due to the metal used for current collection, the anodic dissolution of the case material metal, film formation, dissolution reaction current, etc., but this will control the working withstanding voltage. The biggest factor is the decomposition voltage of the electrolyte. By the way, the decomposition reaction due to the anode and cathode reactions of the electrolyte is as follows:
It is largely related to the properties of the electrode material, and in particular when activated carbon is used as a polarizable electrode, the functional groups present on its surface greatly influence the decomposition voltage. The conventionally used activated carbon electrode has a positive electrode,
Since the same properties were used for both negative electrodes, the withstand voltage was at most 2 to 2.5V.
次に分極性電極−非分極性電極系のキャパシタについて
述べる。この系のキャパシタでは、正極では上記キャパ
シタと同じ電解液の分極による電気二重層形成反応が起
こり、負極では例えばリチウムイオンの析出、溶解反応
が起きる。(式2)はこのキャパシタを充電する時の正
、負極反応である。Next, a capacitor with a polarizable electrode-non-polarizable electrode system will be described. In this type of capacitor, an electric double layer formation reaction occurs at the positive electrode due to the polarization of the electrolytic solution, which is the same as that in the above-mentioned capacitor, and at the negative electrode, for example, precipitation and dissolution reactions of lithium ions occur. (Formula 2) is the positive and negative electrode reactions when charging this capacitor.
正極 Cn十Cto4−→Cn+・ClO2−+e(式
2)%式%
この系における使用電圧は、負極はLi の溶解析出電
位によって決まり、正極は、前記キャパシタの場合と同
じく、電解液の分解電圧によって決まる。この場合も電
解液の分解電圧は、活性炭表面の官能基に支配され、よ
り責な電位を有する活性炭を用いることにより高いアノ
ード分解電圧が1=
7 I −1
得られる。従来、この系に用いられている活性炭では系
全体として高々3〜3.2■であった。Positive electrode Cn+Cto4-→Cn+・ClO2-+e (Formula 2) %Formula % The voltage used in this system is determined by the Li solution deposition potential for the negative electrode, and the decomposition voltage of the electrolytic solution for the positive electrode, as in the case of the capacitor. Determined by In this case as well, the decomposition voltage of the electrolyte is controlled by the functional groups on the surface of the activated carbon, and by using activated carbon having a more aggressive potential, a higher anodic decomposition voltage of 1=7 I −1 can be obtained. Conventionally, the activated carbon used in this system had a hardness of 3 to 3.2 cm for the entire system.
発明の目的
本発明は、使用耐電圧の高いキャパシタ、電池などのエ
ネルギー貯蔵装置を得ることを目的とし、さらに具体的
には、分極性電極として用いる活性炭の表面官能基を制
御することによって電解液の正、負極分解反応電圧をそ
れぞれよりアノ−ディックに、カソーディックにするこ
とにより高耐圧キャパシタ、電池を得ることを目的とす
るものである。Purpose of the Invention The purpose of the present invention is to obtain energy storage devices such as capacitors and batteries that have a high withstand voltage. The object of the present invention is to obtain high-voltage capacitors and batteries by making the positive and negative electrode decomposition reaction voltages more anodic and cathodic, respectively.
発明の構成
この目的を達成するために本発明は、一対の分極性電極
と電解液、または分極性電極と非分極性電極と電解液と
から基本的に構成され、かつ正極を高い酸化電位を有す
るものとし、負極をより低い酸化電位を有するものとし
だものである。Structure of the Invention To achieve this object, the present invention basically consists of a pair of polarizable electrodes and an electrolyte, or a polarizable electrode, a non-polarizable electrode, and an electrolyte, and the positive electrode is heated to a high oxidation potential. and the negative electrode has a lower oxidation potential.
ζ
本発明によれば、正極により電位の高い分極性基を多く
有する活性炭電極を用いたり、正極と、リチウム金属負
極とを用いるととにより、電解液の分解電圧の差(正、
負極分解電圧の差)が大きくなり、使用耐電圧の高いキ
ャパシタ、電池などのエネルギー貯蔵装置が得られる。ζ According to the present invention, the difference in the decomposition voltage of the electrolyte (positive,
This increases the difference in negative electrode decomposition voltage, making it possible to obtain energy storage devices such as capacitors and batteries that have a high usable withstand voltage.
実施例の説明
先の項で述べたように、同一の電解液を用いても、電解
液の分解電圧は活性炭分極性電極の性質によって異なる
。第6図は、活性炭表面の拡大模式図であるが、その表
面は、カーボン元素以外に、カルボキシル基40.フェ
ノール性水酸基41゜カルボニル基42.キノン基43
などの官能基が存在する。これらの官能基は、活性炭を
正負に分極した時、電解液の分解を促進したり阻止した
りする。すなわち、カルボキシル基、フェノール性水酸
基はアノード分極しだ時電解液分解電圧を高くする機能
を有し、カソード分極した時、自らも還元されて電解液
の分解を促すだめ、分解電圧をより貴にしてしまう。一
方、カルボニル基、キノン基などは、カソード分極しだ
時電解液の分解を9 /・−7
阻止するように作用し、アノード分極した時、自らも酸
化され電解液の酸化を促し、結果としてアノード分解電
圧がより卑なものとなる。Description of Examples As stated in the previous section, even if the same electrolyte is used, the decomposition voltage of the electrolyte differs depending on the nature of the activated carbon polarizable electrode. FIG. 6 is an enlarged schematic diagram of the surface of activated carbon, which shows that in addition to the carbon element, the surface also contains carboxyl groups 40. Phenolic hydroxyl group 41° carbonyl group 42. Quinone group 43
There are functional groups such as These functional groups promote or prevent decomposition of the electrolyte when activated carbon is polarized positively and negatively. In other words, carboxyl groups and phenolic hydroxyl groups have the function of increasing the electrolyte decomposition voltage during anode polarization, and when cathode polarization, they are themselves reduced and promote electrolyte decomposition, making the decomposition voltage more noble. I end up. On the other hand, carbonyl groups, quinone groups, etc. act to prevent decomposition of the electrolyte by 9/·-7 when the cathode is polarized, and when the anode is polarized, they are also oxidized and promote oxidation of the electrolyte, resulting in The anodic decomposition voltage becomes more base.
以上のことから、キャパシタ、電池の系全体の使用耐電
圧を向上させるためには、正極には酸性官能基(カルボ
キシル基、フェノール性水酸基)を多く有する活性炭を
、負極には中性もしくは塩基性官能基(カルボニル基、
キノン基)を多く有する活性炭を用いることが有効であ
ることがわかる。Based on the above, in order to improve the withstand voltage of the entire capacitor/battery system, activated carbon with many acidic functional groups (carboxyl groups, phenolic hydroxyl groups) should be used for the positive electrode, and neutral or basic carbon should be used for the negative electrode. Functional groups (carbonyl group,
It can be seen that it is effective to use activated carbon having a large number of quinone groups.
これらの官能基を有する活性炭を作るには次の2つの方
法が考えられる。すなわち、原材料の炭化、賦活の時、
その反応雰囲気を、酸化性まだは還元性雰囲気にする方
法と、一度、炭化、賦活された炭素材料や、活性炭材料
を、酸化性まだは還元性雰囲気で処理する方法である。The following two methods can be considered for producing activated carbon having these functional groups. In other words, at the time of carbonization and activation of raw materials,
There are two methods: a method in which the reaction atmosphere is an oxidizing but reducing atmosphere; and a method in which carbonized and activated carbon materials and activated carbon materials are treated in an oxidizing but reducing atmosphere.
酸化性雰囲気としては、o2.CO2,N2oなどの酸
化性ガス中で炭化、賦活、後処理する方法や、生成した
炭素、活性炭をHNO3のような酸化性酸によって処理
する方法である。As the oxidizing atmosphere, o2. These methods include carbonization, activation, and post-treatment in an oxidizing gas such as CO2 and N2O, and a method in which the generated carbon and activated carbon are treated with an oxidizing acid such as HNO3.
10べ一゛ また還元性雰囲気としては、N2.炭化水素、c。10 beds Further, as the reducing atmosphere, N2. Hydrocarbons, c.
などの還元性ガス中や、N2 、 Ar などの不活性
ガス中で炭化、賦活、後処理する方法や、生成した炭素
、活性炭をHClのような還元性酸N a OH。There are methods of carbonization, activation, and post-treatment in reducing gases such as N2, Ar, etc., and methods of carbonization, activation, and post-treatment in reducing gases such as N2, Ar, etc., and methods of carbonizing, activating, and post-treating the generated carbon and activated carbon in reducing acids such as HCl and NaOH.
KOHなどのアルカリによって処理する方法である。This method involves treatment with an alkali such as KOH.
第7図a、bは、正極として適した炭素電極第7図aお
よび負極として適した炭素電極第7図すの一例を示すも
のである。 。7a and 7b show an example of a carbon electrode in FIG. 7a suitable as a positive electrode and an example of a carbon electrode in FIG. 7 suitable as a negative electrode. .
なお、負極にLi などの非分極性電極を用いる場合も
、上述のように酸性官能基を多く有する活性炭がより高
い使用耐電圧を与える。Note that even when a non-polarizable electrode such as Li is used as the negative electrode, activated carbon having many acidic functional groups provides a higher working voltage as described above.
次に具体的な実施例について述べる。Next, a specific example will be described.
(実施例−1)
フェノール樹脂系繊維をN2−N20系ガス中、高温で
炭化賦活して得られた活性炭繊維を正極に、同じ原料繊
維を炭化水素ガス中、高温で炭化賦活して得られた活性
炭繊維を負極に用いてキャパシタを構成した。(Example-1) Activated carbon fibers obtained by carbonizing and activating phenolic resin fibers at high temperatures in N2-N20 gas were used as positive electrodes, and activated carbon fibers obtained by carbonizing and activating the same raw material fibers at high temperatures in hydrocarbon gas. A capacitor was constructed using activated carbon fibers as a negative electrode.
11 t、 、゛
フェノール系活性炭繊維を1m01e/lのHNO3中
に10時間浸漬処理、水洗、乾燥した活性炭繊維を正極
に、同上活性炭繊維を0.5mole/lのHCl 中
に6時間浸漬処理、水洗、乾燥した活性炭繊維を負極に
用いてキャパシタを構成した。11t, , ``Phenolic activated carbon fibers were immersed in 1 m01e/l of HNO3 for 10 hours, washed with water, dried activated carbon fibers were used as the positive electrode, and the same activated carbon fibers were immersed in 0.5 mole/l of HCl for 6 hours. A capacitor was constructed using the washed and dried activated carbon fiber as a negative electrode.
(実施例−3)
フェノール樹脂系繊維をN2−N20 ガス中、高温で
炭化、賦活して得られた活性炭繊維を正極に、金属リチ
ウムペレットを負極に用いてキャパシタを構成した。(Example 3) A capacitor was constructed using activated carbon fibers obtained by carbonizing and activating phenolic resin fibers in N2-N20 gas at high temperatures as a positive electrode and metal lithium pellets as a negative electrode.
(実施例−4)
フェノール系活性炭繊維をN2−CO2系ガス中、高温
で炭化賦活して得られた活性炭繊維を正極に、当該活性
炭繊維を高温下H2雰囲気で処理したものを負極に用い
てキャパシタを構成した。(Example 4) Activated carbon fiber obtained by carbonizing and activating phenolic activated carbon fiber in N2-CO2 gas at high temperature was used as the positive electrode, and the activated carbon fiber treated in H2 atmosphere at high temperature was used as the negative electrode. Constructed a capacitor.
(実施例−6)
実施例−4と同じ正極と、これを高温下真空(’ 10
’torr )中で処理したものを負極に用いてキャ
パシタを構成した。(Example-6) The same positive electrode as in Example-4 was used under vacuum at high temperature ('10
'torr) was used as a negative electrode to construct a capacitor.
それぞれの電極は直径12順に打ぬき、片面にアルミニ
ウムのプラズマ溶射膜が施しである。実施例−3は電解
液にL ICLO4を他はすべてテトラエチルアンモニ
ウムハークロレー) を!層液に用いた。キャパシタ構
成は第2図に示したものであり、第1表に従来例ととも
にキャパシタ特性を示す。Each electrode is punched in order of 12 diameters, and one side is coated with a plasma sprayed aluminum coating. In Example 3, the electrolyte was LICLO4 and all others were tetraethylammonium hachloride! Used for layer liquid. The structure of the capacitor is shown in FIG. 2, and Table 1 shows the capacitor characteristics along with the conventional example.
第 1 表
13 、・ ・
発明の効果
以上のように本発明によれば、酸化電位の高い電極を正
極に、酸化電位の低い電極を負極に用いることにより使
用電圧の高いキャパシタや電池を得ることができる。こ
れらの電極は、本文中に示すような種々の処理法、炭化
・賦活法により得られるものであり、得られた活性炭の
組合わせ方により、高耐圧のエネルギー貯蔵装置が得ら
れる。Table 1: Effects of the Invention As described above, according to the present invention, by using an electrode with a high oxidation potential as the positive electrode and an electrode with a low oxidation potential as the negative electrode, it is possible to obtain a capacitor or battery with a high working voltage. I can do it. These electrodes can be obtained by various processing methods, carbonization and activation methods as shown in the text, and depending on how the obtained activated carbons are combined, an energy storage device with high withstand voltage can be obtained.
14ぺ一7゛
第1図は一対の分極性電極からなるキャパシタの基本構
成図、第2図は第1図のキャパシタの具体的構成例を示
す断面図、第3図は分極性電極と非分極性電極とからな
るキャパシタの基本構成図、第4図は第3図のキャパシ
タの具体的構成例を示す断面図、第6図はテトラエチル
アンモニウムバークロレート、グロピレンカーボネート
混合液を電解液に用いた時の活性炭電極のアノード、カ
ソード分極曲線を示す図、第6図は活性炭表面の官能基
を示す構成模式図、第7図は本発明の正極。
負極に適したキャパシタ、または電池用の活性炭材料の
構造模式図である。
1.2.20・・・・・・分極性電極、6,7.30・
・・・・・活性炭繊維織布、23・・・・・・非分極性
電極、31・・・・・・リチウム金属ベレット。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図
、36 34 .97
第5図
第6図
第7図14 Page 7 ゛Figure 1 is a basic configuration diagram of a capacitor consisting of a pair of polarizable electrodes, Figure 2 is a sectional view showing a specific example of the configuration of the capacitor in Figure 1, and Figure 3 is a diagram showing the configuration of a polarizable electrode and a non-polarized electrode. A basic configuration diagram of a capacitor consisting of polarizable electrodes, Figure 4 is a sectional view showing a specific example of the configuration of the capacitor in Figure 3, and Figure 6 shows a mixture of tetraethylammonium verchlorate and glopyrene carbonate used as an electrolyte. FIG. 6 is a schematic diagram showing the functional groups on the activated carbon surface, and FIG. 7 is a positive electrode of the present invention. FIG. 2 is a schematic structural diagram of an activated carbon material for a capacitor or battery suitable for a negative electrode. 1.2.20...Polarizable electrode, 6,7.30.
...Activated carbon fiber woven fabric, 23...Non-polarizable electrode, 31...Lithium metal pellet. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3, 36 34. 97 Figure 5 Figure 6 Figure 7
Claims (6)
と非分極電極と電解液とから基本的に構成され、かつ正
極を高い酸化電位を有するものとし、負極をより低い酸
化電位を有するものとしたことを特徴とするエネルギー
貯蔵装置。(1) Basically composed of a pair of polarizable electrodes and an electrolyte, or a polarizable electrode, a non-polarized electrode, and an electrolyte, with the positive electrode having a high oxidation potential and the negative electrode having a lower oxidation potential. An energy storage device characterized by:
炭もしくは炭素材料であり、より低い酸化電位を有する
電極が、カルボニル基、キノン基などの中性官能基、塩
基性官能基を多く有する活性炭もしくは炭素材料である
ことを特徴とする特許請求の範囲第1項記載のエネルギ
ー貯蔵装置。(2) The electrode with a high oxidation potential is a carboxyl group. Activated carbon or carbon material has many acidic functional groups such as phenolic hydroxyl groups, and the electrode with a lower oxidation potential is activated carbon or carbon material that has many neutral functional groups such as carbonyl groups and quinone groups, and basic functional groups. The energy storage device according to claim 1, characterized in that it is a material.
ム、鉄、ニッケル、アルミニウム、チタン。 タンタルの金属もしくはこれら金属の酸化物、カルコゲ
ン化物であることを特徴とする特許請求の2f、 範囲第1項記載のエネルギー貯蔵装置。(3) The non-polarizable electrode is lithium, sodium, potassium, iron, nickel, aluminum, or titanium. The energy storage device according to claim 2f, wherein the energy storage device is tantalum metal or an oxide or chalcogenide of these metals.
維およびこれから構成される布2紙、フェルトであるこ
とを特徴とする特許請求の範囲第2項記載のエネルギー
貯蔵装置。(4) The energy storage device according to claim 2, wherein the activated carbon or the carbon material is activated carbon fibers, carbon fibers, cloth 2 paper, or felt made of the activated carbon fibers.
、セルロース系、ポリアク呻ントリル系。 ピッチ系のいずれがひとつ以上からなることを特徴とす
る特許請求の範囲第4項記載のエネルギー貯蔵装置。(5) Activated carbon fibers and carbon fibers are phenolic resin fibers, cellulose fibers, and polyacrylate fibers. 5. The energy storage device according to claim 4, wherein each of the pitch systems consists of one or more pitch systems.
塩素酸塩、BF −塩、 PF4−塩、テトラエチルア
ンモニウムバークロレット+a酸、KOHのいずれかひ
とつを少なくとも含むものであることを特徴とする特許
請求の範囲第1項記載のエネルギー貯蔵装置。(6) The electrolytic solution contains at least one of metal perchlorate, BF-salt, PF4-salt, tetraethylammonium barchloret+a acid, and KOH constituting the non-polarizable electrode. An energy storage device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59121153A JPH0666228B2 (en) | 1984-06-12 | 1984-06-12 | Energy storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59121153A JPH0666228B2 (en) | 1984-06-12 | 1984-06-12 | Energy storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60263420A true JPS60263420A (en) | 1985-12-26 |
JPH0666228B2 JPH0666228B2 (en) | 1994-08-24 |
Family
ID=14804158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59121153A Expired - Lifetime JPH0666228B2 (en) | 1984-06-12 | 1984-06-12 | Energy storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0666228B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614164A (en) * | 1984-06-18 | 1986-01-10 | Morinobu Endo | Lithium cell |
JPS6482514A (en) * | 1987-09-25 | 1989-03-28 | Toyo Boseki | Polarizable electrode material |
JPH1064759A (en) * | 1996-08-26 | 1998-03-06 | Toyota Motor Corp | Electric double layer capacitor |
JPH1079327A (en) * | 1996-09-04 | 1998-03-24 | Toyota Motor Corp | Electric double layer capacitor |
JPH11121285A (en) * | 1997-10-15 | 1999-04-30 | Mitsubishi Chemical Corp | Electric double-layer capacitor |
JP2000169129A (en) * | 1998-09-29 | 2000-06-20 | Kyocera Corp | Activated carbon and electric double layer capacitor using it |
US6686089B1 (en) | 1998-09-04 | 2004-02-03 | Nec Tokin Corporation | Battery electrode, secondary battery, and method of manufacturing same |
JP2006012939A (en) * | 2004-06-23 | 2006-01-12 | Mitsubishi Gas Chem Co Inc | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
JP2006012938A (en) * | 2004-06-23 | 2006-01-12 | Mitsubishi Gas Chem Co Inc | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
JP2006024826A (en) * | 2004-07-09 | 2006-01-26 | Mitsubishi Gas Chem Co Inc | Carbon material for electric double-layer capacitor electrode and its production method |
JP2008195559A (en) * | 2007-02-09 | 2008-08-28 | Mitsubishi Gas Chem Co Inc | Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon |
JP2008205487A (en) * | 1996-05-15 | 2008-09-04 | Hyperion Catalysis Internatl Inc | Graphitic nanofibers in electrochemical capacitors |
JP2017168832A (en) * | 2016-03-11 | 2017-09-21 | 東レ株式会社 | Electrode for electrochemical capacitor and electrochemical capacitor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144742A (en) * | 1974-10-16 | 1976-04-16 | Hitachi Ltd | |
JPS55146872A (en) * | 1979-05-01 | 1980-11-15 | Hitachi Maxell Ltd | Organic electrolyte battery |
JPS5628007A (en) * | 1979-08-14 | 1981-03-19 | Tokyu Car Corp | Locking apparatus for vehicle |
-
1984
- 1984-06-12 JP JP59121153A patent/JPH0666228B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144742A (en) * | 1974-10-16 | 1976-04-16 | Hitachi Ltd | |
JPS55146872A (en) * | 1979-05-01 | 1980-11-15 | Hitachi Maxell Ltd | Organic electrolyte battery |
JPS5628007A (en) * | 1979-08-14 | 1981-03-19 | Tokyu Car Corp | Locking apparatus for vehicle |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614164A (en) * | 1984-06-18 | 1986-01-10 | Morinobu Endo | Lithium cell |
JPS6482514A (en) * | 1987-09-25 | 1989-03-28 | Toyo Boseki | Polarizable electrode material |
JP2008205487A (en) * | 1996-05-15 | 2008-09-04 | Hyperion Catalysis Internatl Inc | Graphitic nanofibers in electrochemical capacitors |
JPH1064759A (en) * | 1996-08-26 | 1998-03-06 | Toyota Motor Corp | Electric double layer capacitor |
JPH1079327A (en) * | 1996-09-04 | 1998-03-24 | Toyota Motor Corp | Electric double layer capacitor |
JPH11121285A (en) * | 1997-10-15 | 1999-04-30 | Mitsubishi Chemical Corp | Electric double-layer capacitor |
US6686089B1 (en) | 1998-09-04 | 2004-02-03 | Nec Tokin Corporation | Battery electrode, secondary battery, and method of manufacturing same |
JP2000169129A (en) * | 1998-09-29 | 2000-06-20 | Kyocera Corp | Activated carbon and electric double layer capacitor using it |
JP2006012939A (en) * | 2004-06-23 | 2006-01-12 | Mitsubishi Gas Chem Co Inc | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
JP2006012938A (en) * | 2004-06-23 | 2006-01-12 | Mitsubishi Gas Chem Co Inc | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
JP2006024826A (en) * | 2004-07-09 | 2006-01-26 | Mitsubishi Gas Chem Co Inc | Carbon material for electric double-layer capacitor electrode and its production method |
JP2008195559A (en) * | 2007-02-09 | 2008-08-28 | Mitsubishi Gas Chem Co Inc | Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon |
JP2017168832A (en) * | 2016-03-11 | 2017-09-21 | 東レ株式会社 | Electrode for electrochemical capacitor and electrochemical capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH0666228B2 (en) | 1994-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60263420A (en) | Energy storing device | |
JP2014530502A (en) | High voltage electrochemical double layer capacitor | |
JPH11297578A (en) | Electric double-layer capacitor | |
WO2005038836A1 (en) | Electric double layer capacitor, activated carbon for electrode thereof and method for producing same | |
JPH0963905A (en) | Electric double-layer capacitor and manufacture thereof | |
TWI386960B (en) | Electrode material and method for manufacturing the same | |
JP5004501B2 (en) | Activated carbon and electric double layer capacitor using the same | |
CN107967997A (en) | A kind of three-dimensional high heat-conductivity conducting composite material, its preparation method and application | |
CN113327776B (en) | KOH intercalated MXene/CNFs composite electrode material and preparation method thereof | |
CN108615618B (en) | A kind of preparation method and application of high voltage composite material electrode | |
JP3812098B2 (en) | Electric double layer capacitor | |
JPH0770448B2 (en) | Method of manufacturing polarizable electrodes | |
JP2005347517A (en) | Method for producing activated carbon for electric double layer capacitor electrode | |
JPH1027733A (en) | Electric double-layer capacitor and manufacture thereof | |
JP3800810B2 (en) | Electric double layer capacitor | |
JP2723578B2 (en) | Organic electrolyte battery | |
JP2005093777A (en) | Electric double layer capacitor | |
JP2000299259A (en) | Electric double layer capacitor and manufacture thereof | |
JPS60263421A (en) | Electric double layer capacitor | |
JPH08222485A (en) | Electric double-layered capacitor | |
JPH0521274A (en) | Polarizable electrode and manufacturing method thereof | |
JP2005209703A (en) | Electrochemical capacitor and its manufacturing method | |
CN111584254B (en) | Nano porous electrode and preparation method thereof | |
JPH0656827B2 (en) | Polarizable electrode and manufacturing method thereof | |
RU2121727C1 (en) | High-value capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |