JP2006012939A - Carbon material for electric double-layer capacitor electrode and manufacturing method thereof - Google Patents
Carbon material for electric double-layer capacitor electrode and manufacturing method thereof Download PDFInfo
- Publication number
- JP2006012939A JP2006012939A JP2004184478A JP2004184478A JP2006012939A JP 2006012939 A JP2006012939 A JP 2006012939A JP 2004184478 A JP2004184478 A JP 2004184478A JP 2004184478 A JP2004184478 A JP 2004184478A JP 2006012939 A JP2006012939 A JP 2006012939A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- layer capacitor
- electric double
- coke
- double layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 35
- 239000003990 capacitor Substances 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000571 coke Substances 0.000 claims abstract description 34
- 239000012298 atmosphere Substances 0.000 claims abstract description 17
- -1 alcohol organic acid ester Chemical class 0.000 claims abstract description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000003213 activating effect Effects 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 34
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 230000004913 activation Effects 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 229910015900 BF3 Inorganic materials 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 4
- 230000000379 polymerizing effect Effects 0.000 claims description 4
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 3
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 claims description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 16
- 230000014759 maintenance of location Effects 0.000 abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 55
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 239000010410 layer Substances 0.000 description 22
- 238000001994 activation Methods 0.000 description 19
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 14
- 239000002994 raw material Substances 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 239000011295 pitch Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001354 calcination Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000011302 mesophase pitch Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000002006 petroleum coke Substances 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011318 synthetic pitch Substances 0.000 description 3
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N alpha-methyl-naphthalene Natural products C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011335 coal coke Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011331 needle coke Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000011310 petroleum-based needle coke Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- WKFBZNUBXWCCHG-UHFFFAOYSA-N phosphorus trifluoride Chemical compound FP(F)F WKFBZNUBXWCCHG-UHFFFAOYSA-N 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000013020 steam cleaning Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、長期の使用において静電容量密度の低下が少ない電気二重層キャパシタ電極用炭素材料およびその製造方法に関する。 The present invention relates to a carbon material for an electric double layer capacitor electrode and a method for producing the same, in which a decrease in capacitance density is small during long-term use.
近年、省資源や環境問題の意識の高まりとともに、蓄電システムの開発が急速に進んでいる。蓄電デバイスとしては種々の二次電池が挙げられる。その中で、電気二重層キャパシタは、急速充放電が可能で、出力密度が大きく、化学反応を伴わないため充放電による劣化が少なく長寿命であるなど、優れた特徴を有しおり、車載用電源、電子情報機器のメモリーバックアップ電源、夜間電力貯蔵、ソーラーシステム電力貯蔵、非常用電源、補助電源など、今後ますます、その用途開発が期待されている。 In recent years, with the growing awareness of resource saving and environmental issues, the development of power storage systems is progressing rapidly. Examples of the electricity storage device include various secondary batteries. Among them, the electric double layer capacitor has excellent features such as rapid charging / discharging, high output density, no chemical reaction, and long life with little deterioration due to charging / discharging. Development of applications such as memory backup power supply for electronic information devices, nighttime power storage, solar system power storage, emergency power supply, auxiliary power supply is expected in the future.
電気二重層キャパシタは分極性電極と電解質界面に生じる電気二重層を利用するものであるが、そのエネルギー密度等の基本的性能を決定する一つが、分極性電極である。この分極性電極は、電気的、化学的に安定であること、更に、多くの電気二重層を生じさせて高いエネルギー密度を得るためには、電解質を保持する適当な細孔の空隙が多いことが必要とされていた。このため、一般的に、分極性電極は高比表面積を有する活性炭を主材料とすることが多い。活性炭としては、その原料としてヤシ殻、フェノール樹脂、ピッチ等が挙げられる。特に近年、ピッチ等の原料からなる黒鉛類似の層状結晶構造を有する微結晶炭素を水酸化アルカリ金属で賦活処理を行い、得られた炭素材を分極性電極の主材料とする方法が多く報告されており、その炭化、賦活処理方法が開示されている(特許文献1〜8参照)。 The electric double layer capacitor uses an electric double layer generated at the interface between the polarizable electrode and the electrolyte, and one of the basic properties such as energy density is determined by the polarizable electrode. This polarizable electrode is electrically and chemically stable, and has many pores in the appropriate pores that hold the electrolyte in order to generate many electric double layers and to obtain a high energy density. Was needed. For this reason, in general, polarizable electrodes are often mainly composed of activated carbon having a high specific surface area. Examples of the activated carbon include coconut shell, phenol resin, pitch, and the like. In particular, many methods have recently been reported in which microcrystalline carbon having a layered crystal structure similar to graphite made of raw materials such as pitch is activated with an alkali metal hydroxide and the resulting carbon material is used as the main material of a polarizable electrode. The carbonization and activation treatment methods are disclosed (see Patent Documents 1 to 8).
これらのピッチ等の原料から得られる黒鉛類似の層状結晶構造を有する微結晶炭素(以下、易黒鉛化炭素原料炭という)の水酸化アルカリ賦活炭は、前述のヤシ殻原料、フェノール樹脂原料から得られる炭素の水蒸気活性炭よりも比表面積は小さいことが多いが、電気二重層キャパシタの分極性電極として用いた場合、より高い静電容量密度が得られることが知られている。 Alkali hydroxide activated charcoal of microcrystalline carbon (hereinafter referred to as graphitizable carbon raw material coal) having a layered crystal structure similar to graphite obtained from raw materials such as pitch is obtained from the aforementioned coconut shell raw material and phenol resin raw material. Although the specific surface area is often smaller than that of the water vapor activated carbon of carbon, it is known that a higher capacitance density can be obtained when used as a polarizable electrode of an electric double layer capacitor.
しかしながら、易黒鉛化炭素原料炭から得られる水酸化アルカリ金属賦活炭を用いた電気二重層キャパシタは、ヤシ殻原料、フェノール樹脂原料を用いた場合と比較して繰り返し使用時の静電容量密度の低下が大きいことが欠点であった。その低下の原因の一つとして、水酸化アルカリ金属賦活炭はCOOH、CHO、OH等の含ヘテロ元素官能基が多く、この官能基と電解質が化学的に反応し、この時に発生するガスや反応生成物が炭素材の空隙を塞ぐ等の種々の問題を引き起こし、結果的に、繰り返し使用時の静電容量密度を低下させるものと推測される(静電容量保持率の低下)。 However, the electric double layer capacitor using alkali metal hydroxide activated carbon obtained from graphitizable carbon raw material coal has a capacitance density at the time of repeated use as compared with the case using palm shell raw material and phenol resin raw material. It was a drawback that the decrease was large. As one of the causes of the decrease, alkali metal hydroxide activated charcoal has many hetero-functional functional groups such as COOH, CHO, OH, etc., and these functional groups and the electrolyte react chemically, and the gas and reaction generated at this time It is presumed that the product causes various problems such as blocking the voids of the carbon material, and as a result, the capacitance density during repeated use is lowered (decrease in capacitance retention).
水酸化アルカリ金属賦活炭の含ヘテロ元素官能基は、熱処理することによりCO2、H2O、CO等の形で脱離して、除去することは可能であり、既にその方法は開示されている(特許文献9および10参照)。特許文献9では、賦活処理後に、遷移金属触媒存在下のもと水素ガス、アンモニアガス気流下で熱処理することにより、含ヘテロ元素官能基を脱離させる方法が記載されている。しかし、この方法では、熱処理後、触媒を分離する煩雑な工程が必要であり、静電容量保持率を向上させる簡便な電気二重層キャパシタ用炭素材料の製造方法が望まれていた。
上記問題を克服し、静電容量保持率の低下が少ない電気二重層キャパシタ電極用炭素材料を簡便な方法で安価に提供する。 A carbon material for an electric double layer capacitor electrode that overcomes the above-described problems and causes little reduction in capacitance retention is provided by a simple method at a low cost.
本発明者らは鋭意検討を重ねた結果、コークスを特定の条件の下で賦活処理することにより、高い静電容量保持率を与える炭素材料が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have found that a carbon material giving a high capacitance retention can be obtained by activating the coke under specific conditions, and the present invention has been completed. It was.
すなわち本発明は、以下のとおりである。
(1)コークスを有機性ガスを含む雰囲気中で賦活処理することによって得られる電気二重層キャパシタ電極用炭素材料。
(2)コークスを有機性ガスを含む雰囲気中で賦活処理する電気二重層キャパシタ電極用炭素材料の製造方法。
(3)有機性ガスが、低級アルコールガスまたは低級アルコール有機酸エステルガスである上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(4)有機性ガスが、メタノール、エタノール、プロパノール、蟻酸メチル、蟻酸エチル、または酢酸メチルである上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(5)有機性ガスをニッケル、鉄またはコバルトを含む金属と接触させる上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(6)有機性ガスをニッケル、鉄またはコバルトを含む賦活処理用の容器または炉材に接触させる上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(7)コークスが、縮合多環炭化水素またはこれを含有する物質を弗化水素および三弗化硼素の存在下で重合させることによって合成されるピッチを熱処理して得られるものである上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
That is, the present invention is as follows.
(1) A carbon material for an electric double layer capacitor electrode obtained by activating coke in an atmosphere containing an organic gas.
(2) A method for producing a carbon material for an electric double layer capacitor electrode, wherein coke is activated in an atmosphere containing an organic gas.
(3) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein the organic gas is a lower alcohol gas or a lower alcohol organic acid ester gas.
(4) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein the organic gas is methanol, ethanol, propanol, methyl formate, ethyl formate, or methyl acetate.
(5) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein the organic gas is brought into contact with a metal containing nickel, iron or cobalt.
(6) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein the organic gas is brought into contact with an activation treatment vessel or furnace material containing nickel, iron or cobalt.
(7) The coke obtained by heat-treating a pitch synthesized by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride (2 The manufacturing method of the carbon material for electric double layer capacitor electrodes of description.
本発明の電気二重層キャパシタ電極用炭素材料は、高い静電容量保持率を与える。また、該炭素材料の製造方法は簡便であり、該炭素材料を安価に製造できるので、その工業的意義は極めて大きい。 The carbon material for electric double layer capacitor electrodes of the present invention provides a high capacitance retention. In addition, the method for producing the carbon material is simple and the carbon material can be produced at a low cost, so that its industrial significance is extremely great.
本発明に用いられるコークスとしては、石油系コークス、石炭系コークスが挙げられる。本発明に用いられるコークスは石油重質油や石炭系重質油から製造されるものであり、ニードルコークス、セミコークス、ピッチコークス、鋳物用コークス、溶鉱炉用コークス、ガス化用コークスなどが例示できる。これらをそのまま用いることもできるが、これらを550〜950℃の温度で0.5〜10時間の熱処理を行ってから用いてもよい。 Examples of the coke used in the present invention include petroleum coke and coal coke. The coke used in the present invention is produced from heavy petroleum oil or heavy coal oil, and examples include needle coke, semi-coke, pitch coke, foundry coke, blast furnace coke, and gasification coke. . These can be used as they are, but they may be used after heat treatment at a temperature of 550 to 950 ° C. for 0.5 to 10 hours.
また、本発明に用いられるコークスは、石油系ピッチ、石炭系ピッチまたは合成系ピッチを出発原料として、これらを熱処理することによってコークス化したものでもよい。この場合は、揮発成分を除去する工程と、これを更に高い温度で熱処理することにより微結晶構造を発達させる仮焼工程、および、これらの連続した工程から得られる。これらの工程は一般的には不活性ガス雰囲気下で行われる。揮発成分を除去する工程は、550℃以下で行うが、温度、時間は特に限定されない。仮焼工程は、550〜950℃で0.5〜10時間行うが、好ましくは、600〜850℃で1〜5時間行う。また、この二つの工程を連続して行うこともできる。これらの工程前の原料の形状は特に限定されない。 The coke used in the present invention may be one obtained by coking by using a petroleum-based pitch, a coal-based pitch, or a synthetic pitch as a starting material and heat-treating them. In this case, it is obtained from a step of removing volatile components, a calcining step of developing a microcrystalline structure by heat-treating it at a higher temperature, and a continuous step thereof. These steps are generally performed in an inert gas atmosphere. The step of removing volatile components is performed at 550 ° C. or lower, but the temperature and time are not particularly limited. The calcination step is performed at 550 to 950 ° C. for 0.5 to 10 hours, preferably at 600 to 850 ° C. for 1 to 5 hours. Moreover, these two processes can also be performed continuously. The shape of the raw material before these steps is not particularly limited.
上述のように本発明に用いられるコークスとしては、石油系コークス、石炭系コークス、または合成系コークスが挙げられ特に限定されないが、合成系ピッチを熱処理して得られる合成系コークスは、石油系コークスや石炭系コークスに比べて化学純度や品質安定性の点で優れているため好適に用いられる。 As described above, the coke used in the present invention includes petroleum coke, coal coke, or synthetic coke, and is not particularly limited, but synthetic coke obtained by heat treatment of synthetic pitch is petroleum coke. It is preferably used because it is superior in chemical purity and quality stability compared to coal-based coke.
また、合成系コークスの原料となる合成系ピッチとしては、弗化水素および三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させることによって得られるピッチが好適に用いられる。このような合成系ピッチは、特許第2931593号公報、特許第2621253号公報、または特許第2526585号公報に示されるように、ナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセン、フェナントレン、アセナフテン、ピレン等ならびにこれらの骨格を有する縮合多環炭化水素、およびこれらの混合物ないしこれらを含有する物質を重合させて得られるものである。 Further, as a synthetic pitch used as a raw material for synthetic coke, a pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride is preferably used. It is done. Such synthetic pitches include naphthalene, monomethylnaphthalene, dimethylnaphthalene, anthracene, phenanthrene, acenaphthene, pyrene, and the like, as shown in Japanese Patent Nos. It is obtained by polymerizing a condensed polycyclic hydrocarbon having a skeleton of the above, a mixture thereof or a substance containing these.
上記のコークスは、次の賦活工程において、電気二重層キャパシタ電極炭素材料としての性能が付与される。該コークスは、水酸化アルカリ金属で賦活することができる。この水酸化アルカリ金属による賦活処理は、アルカリ金属がコークス中の微結晶構造を侵食し、あるいは微結晶構造の層間に作用するものである。このようにして得られた賦活炭は、電解質を保持する適当な細孔の空隙を形成し、或いは、充放電時に電解質のインターカレーションで空隙を形成され易い形態となり、電気二重層キャパシタ電極炭素材料に好適な性能が付与される。 The above coke is given performance as an electric double layer capacitor electrode carbon material in the next activation step. The coke can be activated with an alkali metal hydroxide. In this activation treatment with an alkali metal hydroxide, the alkali metal erodes the microcrystalline structure in the coke or acts between layers of the microcrystalline structure. The activated charcoal obtained in this way forms voids with appropriate pores for holding the electrolyte, or forms voids easily by intercalation of the electrolyte during charging and discharging, and the electric double layer capacitor electrode carbon Appropriate performance is imparted to the material.
水酸化アルカリ金属として、ここでは水酸化カリウムを使うが、それ以外のアルカリ金属水酸化物やそれらの混合物でも良く、特に限定されない。また、賦活処理前のコークスの形状は微粉が好ましいが特に粒度の限定はしない。水酸化アルカリ金属とコークスの混合割合は水酸化カリウムの場合、コークス1重量部に対して、水酸化カリウムは1〜4重量部、好ましくは2重量部である。賦活処理は、550〜900℃の温度で0.5〜10時間行うが、好ましくは650〜750℃の温度で1〜3時間である。水酸化アルカリ金属が接触する材質は水酸化アルカリ金属に対して耐腐食性のあるニッケルが好適である。 Here, potassium hydroxide is used as the alkali metal hydroxide, but other alkali metal hydroxides and mixtures thereof may be used and are not particularly limited. The shape of the coke before the activation treatment is preferably fine powder, but the particle size is not particularly limited. In the case of potassium hydroxide, the mixing ratio of the alkali metal hydroxide and coke is 1 to 4 parts by weight, preferably 2 parts by weight with respect to 1 part by weight of coke. The activation treatment is performed at a temperature of 550 to 900 ° C. for 0.5 to 10 hours, and preferably at a temperature of 650 to 750 ° C. for 1 to 3 hours. The material in contact with the alkali metal hydroxide is preferably nickel which is corrosion resistant to the alkali metal hydroxide.
賦活処理の際の雰囲気ガスは、有機性ガスである。有機性ガスとしては、特に限定されないが、メタノール、エタノール、プロパノール、蟻酸メチル、蟻酸エチル、酢酸メチルなどが挙げられる。これらのガスは、アルゴンや窒素などの不活性ガスで希釈しても良い。該ガスの濃度は0.1〜100vol%であり、好ましくは20〜100vol%である。有機性ガスの流量(GHSV)は100〜100000hr−1であり、好ましくは、500〜5000hr−1である。 The atmosphere gas in the activation process is an organic gas. Examples of the organic gas include, but are not limited to, methanol, ethanol, propanol, methyl formate, ethyl formate, and methyl acetate. These gases may be diluted with an inert gas such as argon or nitrogen. The concentration of the gas is 0.1 to 100 vol%, preferably 20 to 100 vol%. The flow rate (GHSV) of the organic gas is 100 to 100,000 hr −1 , and preferably 500 to 5000 hr −1 .
また、有機性ガス雰囲気での賦活処理は、有機性ガスが賦活温度において、コークスとともに、ニッケル、鉄、またはコバルトを含む金属と接触することが好ましい。これは、有機性ガスがこれらの金属成分と接触して、分解により生じた炭素成分が有効に作用していることを鑑みたことによる。実際的には、賦活時にコークスと接触する炉の材質、またはコークスを入れる容器がこれらの金属を含んでいることが望ましい。 In the activation treatment in an organic gas atmosphere, the organic gas is preferably brought into contact with a metal containing nickel, iron, or cobalt together with coke at the activation temperature. This is because the organic gas is brought into contact with these metal components, and the carbon component generated by the decomposition is effectively acting. In practice, it is desirable that the furnace material that comes into contact with the coke during activation or the container containing the coke contain these metals.
得られた賦活炭は、洗浄を行って水酸化アルカリ金属成分を除去する。洗浄方法は特に限定されないが、一般的には、水洗浄、スチーム洗浄、希塩酸洗浄、或いは、これらの洗浄の組み合わせでできる。洗浄は、水酸化アルカリ金属成分や、洗浄に用いた酸分が溶出しなくなるまで、可能な限り洗浄しなければならない。これらの成分が残存すると、キャパシタの長期性能に悪影響を及ぼすとされている。得られた賦活炭は加熱乾燥するが、加熱時の酸化を抑えるため、不活性ガス中、或いは真空で乾燥することが好ましい。 The obtained activated charcoal is washed to remove the alkali metal hydroxide component. The cleaning method is not particularly limited, but in general, it can be performed by water cleaning, steam cleaning, dilute hydrochloric acid cleaning, or a combination of these cleanings. The cleaning must be performed as much as possible until the alkali metal hydroxide component and the acid used for the cleaning are not eluted. If these components remain, it is said that the long-term performance of the capacitor is adversely affected. The obtained activated charcoal is heat-dried, but is preferably dried in an inert gas or in vacuum in order to suppress oxidation during heating.
得られた賦活炭は、原料、仮焼温度、賦活温度、その処理時間に大きく作用され、その条件の違いで、比表面積は1〜1000m2/gの広い範囲を示す。概して、仮焼温度、賦活温度が高いと、或いは、その処理時間が長いと、焼き締まりによる黒鉛状微結晶の層間距離が縮小し、比表面積が小さくなる傾向を示す。また、上記洗浄後、残存するカリウムの濃度は、仮焼温度、賦活温度が高いほど高い。この濃度が高いと、キャパシタの長期性能に悪影響を及ぼすとされている。ここでは、賦活炭の比表面積は特に限定するものではないが、好ましくは、比表面積は50〜800m2/gである。 The obtained activated charcoal is greatly affected by the raw material, the calcining temperature, the activation temperature, and the treatment time, and the specific surface area shows a wide range of 1 to 1000 m 2 / g depending on the conditions. In general, when the calcination temperature and the activation temperature are high, or when the treatment time is long, the interlayer distance of the graphite-like microcrystals due to the tightening tends to decrease, and the specific surface area tends to decrease. Further, the concentration of the remaining potassium after the washing is higher as the calcining temperature and the activation temperature are higher. A high concentration is said to adversely affect the long-term performance of the capacitor. Here, the specific surface area of the activated carbon is not particularly limited, but the specific surface area is preferably 50 to 800 m 2 / g.
このように得られた賦活炭を用いて分極性電極を作製するが、その方法は、特に限定されない。例えば賦活炭の粉末とカーボンブラック等の導電剤及びテフロン(登録商標)等のバインダーを配合して成形する方法、活性炭と導電剤を樹脂やピッチ等で成形した後焼成して高密度の分極性電極を製造する方法などが採用できる。また、体積あたりの静電容量を大きくするため、加圧プレス等により充填密度を上げることもできる。 A polarizable electrode is produced using the activated charcoal thus obtained, but the method is not particularly limited. For example, a method of blending activated charcoal powder with a conductive agent such as carbon black and a binder such as Teflon (registered trademark) and molding, activated carbon and conductive agent are molded with resin, pitch, etc., and then fired to obtain high-density polarizability A method of manufacturing an electrode can be employed. Further, in order to increase the capacitance per volume, the packing density can be increased by a pressure press or the like.
電解質は、非水溶媒に溶解して使用できる(以下、この液を電解液という)。
電解液は、特に限定されないが、電解質であるテトラアルキルアンモニウム、テトラアルキルホスホニウム、イミダゾリウム等の四級アンモニウムの硼弗化物、リン弗化物、トリフルオロメタンスルホニルイミド化物等を非水電解液であるプロピレンカーボネート、アセトニトリル、スルホラン等に溶解させて使用することができる。
The electrolyte can be used by dissolving in a non-aqueous solvent (hereinafter, this solution is referred to as an electrolytic solution).
Electrolyte is not particularly limited, but electrolytes such as tetraalkylammonium, tetraalkylphosphonium, imidazolium quaternary ammonium borofluoride, phosphorous fluoride, trifluoromethanesulfonylimide, etc., which are non-aqueous electrolytes It can be used by dissolving in carbonate, acetonitrile, sulfolane and the like.
以下、実施例にて本発明を詳細に説明する。なお、本発明は下記実施例に限定されるものではない。
実施例における分極性電極の製造方法と静電容量密度の測定方法は、以下の方法で行った。
(I)分極性電極の製造方法
賦活炭粉末100重量部、カーボンブラック10重量部,ポリテトラフルオロエチレン10重量部からなる混合物を混練した後、加圧シート化した。得られたシートを円盤状に打ち抜いて分極性電極(直径16mm、厚さ0.55mm)とし、220℃、12時間、真空乾燥して電極とした。
(II)静電容量密度の測定方法
この電極を、ポリエチレン製セパレーターを介して互いに対向させ、ステンレス製ケース内に収納した。その後、減圧下で上記電解液を含浸させ封じ込め電気ニ重層キャパシタセルとした。電解液は1.8mol/lのトリエチルメチルアンモニウムフルオロボレートのプロピレンカーボネート溶液を用いた。
この電気二重層キャパシタセルを60℃の恒温槽内に置き、5mAの定電流で電圧3.5Vまで印加して5時間充電した後、5mAの定電流で0Vまで放電した。このサイクルを20サイクル繰り返し、1サイクル目と20サイクル目の電極体積あたりの静電容量密度(F/cc)と、1サイクル目の静電容量密度を100%として、20サイクル目の静電容量保持率(%)を求めた。なお、電極体積あたりの静電容量密度は、静電容量C(F)=2×U×3600/(V1×V1)の式で求めた静電容量C(F)に電極体積(cc)を除して求めた。ここでU(Wh)は、放電開始時から放電終了時までの放電電圧(V)と放電電流(A)の積を積算して得られた値であり、また、V1は充電電圧(V)である。
Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following Example.
The manufacturing method of the polarizable electrode and the measuring method of capacitance density in the examples were performed by the following methods.
(I) Method for producing polarizable electrode After kneading a mixture consisting of 100 parts by weight of activated charcoal powder, 10 parts by weight of carbon black and 10 parts by weight of polytetrafluoroethylene, a pressure sheet was formed. The obtained sheet was punched into a disk shape to obtain a polarizable electrode (diameter 16 mm, thickness 0.55 mm), and vacuum dried at 220 ° C. for 12 hours to obtain an electrode.
(II) Method for Measuring Capacitance Density The electrodes were placed opposite each other via a polyethylene separator and housed in a stainless steel case. Thereafter, the electrolytic solution was impregnated under reduced pressure to obtain a sealed electric double layer capacitor cell. As the electrolyte, a 1.8 mol / l triethylmethylammonium fluoroborate propylene carbonate solution was used.
This electric double layer capacitor cell was placed in a constant temperature bath at 60 ° C., charged to a voltage of 3.5 V at a constant current of 5 mA and charged for 5 hours, and then discharged to 0 V at a constant current of 5 mA. This cycle is repeated 20 cycles, and the electrostatic capacity density per electrode volume (F / cc) in the first cycle and the 20th cycle and the electrostatic capacity density in the first cycle are taken as 100%. Retention rate (%) was determined. The capacitance density per electrode volume is the capacitance C (F) obtained by the formula of capacitance C (F) = 2 × U × 3600 / (V1 × V1). It was calculated by dividing. Here, U (Wh) is a value obtained by integrating the product of the discharge voltage (V) and the discharge current (A) from the start of discharge to the end of discharge, and V1 is the charge voltage (V). It is.
実施例1
弗化水素・三弗化硼素の共存下、ナフタレンを触媒重合させて得られたメソフェーズピッチ(高架式フローテスター法による軟化点:235℃、H/C原子比:0.65、光学的異方性含有率:100%)を窒素気流下、550℃で2時間保持して、揮発分を除去しコークス化した。室温まで冷却した後、ボールミルで平均粒度30μm以下に粉砕した。更に、窒素気流下750℃で4時間保持して熱処理を行った。室温まで冷却して賦活用のコークス粉末50gを得た。該コークス粉末10gに対して、水酸化カリウム(試薬特級)20gをニッケル容器内で均一に混合し、メタノール/窒素(各50vol%)混合ガス雰囲気下(GHSV:2000hr−1)、700℃で2時間保持して賦活処理した。100℃まで冷却後、スチームを流して、賦活物を充分に湿潤させた後、室温に冷却して取り出した。この賦活物を100重量部の水で超音波水洗(10分)と吸引ろ過を繰り返した。これを、100℃で2時間乾燥し、更に、220℃で5時間、真空乾燥して分極性電極用炭素材料を得た。
Example 1
Mesophase pitch obtained by catalytic polymerization of naphthalene in the presence of hydrogen fluoride and boron trifluoride (softening point by elevated flow tester method: 235 ° C., H / C atomic ratio: 0.65, optically anisotropic Volatile content was kept at 550 ° C. for 2 hours under a nitrogen stream to remove volatile components and coke. After cooling to room temperature, it was pulverized to a mean particle size of 30 μm or less by a ball mill. Furthermore, heat treatment was performed by holding at 750 ° C. for 4 hours under a nitrogen stream. After cooling to room temperature, 50 g of coke powder to be used was obtained. To 10 g of the coke powder, 20 g of potassium hydroxide (special grade reagent) is uniformly mixed in a nickel container, and mixed at 700 ° C. in a methanol / nitrogen (50 vol% each) mixed gas atmosphere (GHSV: 2000 hr −1 ). The activation treatment was carried out by holding for a time. After cooling to 100 ° C., steam was flowed to sufficiently wet the activated material, and then cooled to room temperature and taken out. This activated product was repeatedly subjected to ultrasonic water washing (10 minutes) and suction filtration with 100 parts by weight of water. This was dried at 100 ° C. for 2 hours, and further vacuum dried at 220 ° C. for 5 hours to obtain a carbon material for a polarizable electrode.
実施例2
賦活工程の雰囲気ガスを蟻酸メチル/窒素(各50vol%)混合ガスに変えた以外は、実施例1と同様にして分極性電極用炭素材料を得た。
Example 2
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the atmosphere gas in the activation process was changed to a mixed gas of methyl formate / nitrogen (50 vol% each).
実施例3
原料を石油系ニードルコークス(興亜石油社製、H/C原子比:0.38)とし、これを窒素気流下550℃で2時間保持したのち、以降実施例1と同様の操作を行って分極性電極用炭素材料を得た。
Example 3
The raw material was petroleum-based needle coke (manufactured by Koa Oil Co., Ltd., H / C atomic ratio: 0.38), which was held at 550 ° C. for 2 hours under a nitrogen stream, and thereafter the same operation as in Example 1 was performed. A carbon material for a polar electrode was obtained.
実施例4
賦活工程の容器をニッケル製からセラミックス製に変えた以外は、実施例1と同様にして分極性電極用炭素材料を得た。
Example 4
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the container in the activation process was changed from nickel to ceramic.
比較例1
賦活工程の雰囲気ガスを窒素ガスに変えた以外は、実施例1と同様にして分極性電極用炭素材料を得た。
Comparative Example 1
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the atmosphere gas in the activation process was changed to nitrogen gas.
比較例2
原料を石油系ニードルコークス(興亜石油社製、H/C原子比:0.38)とし、これを窒素気流下550℃で2時間保持したのち、賦活工程の雰囲気ガスを窒素ガスに変えて、以降実施例1と同様の操作を行い、分極性電極用炭素材料を得た。
Comparative Example 2
The raw material is petroleum-based needle coke (manufactured by Koa Oil Co., Ltd., H / C atomic ratio: 0.38), and after holding this at 550 ° C. for 2 hours under a nitrogen stream, the atmosphere gas in the activation process is changed to nitrogen gas, Thereafter, the same operation as in Example 1 was performed to obtain a carbon material for a polarizable electrode.
結果を表1に示す。
(実施例1)
合成系メソフェーズピッチ由来のコークスをメタノール/窒素混合ガス雰囲気中で処理して得られた賦活炭は、静電容量保持率が100.7%で劣化が認められなかった。これに対し、比較例1の窒素雰囲気中で処理して得られた賦活炭は、静電容量保持率が42.5%で劣化が認められた。
(実施例2)
合成系メソフェーズピッチ由来のコークスを蟻酸メチル/窒素混合ガス雰囲気中で処理して得られた賦活炭は、静電容量保持率が100.0%で劣化が認められなかった。これに対し、比較例1の窒素雰囲気中で処理して得られた賦活炭は、静電容量保持率が42.5%で劣化が認められた。
(実施例3)
石油系ニードルコークスをメタノール/窒素混合ガス雰囲気中で処理して得られた賦活炭は、静電容量保持率が100.0%で劣化が認められなかった。これに対し、比較例2の窒素雰囲気中で処理して得られた賦活炭は静電容量保持率が39.7%で劣化が認められた
(実施例4)
合成系メソフェーズピッチ由来のコークスをメタノール/窒素混合ガス雰囲気中セラミックス容器に入れて処理した賦活炭は、静電容量保持率は82.0%であった。比較例1と比べて向上したが、ニッケル容器に入れて賦活処理を行った実施例1と比較すると低下した。
The results are shown in Table 1.
Example 1
The activated charcoal obtained by treating coke derived from synthetic mesophase pitch in a methanol / nitrogen mixed gas atmosphere had a capacitance retention of 100.7% and no deterioration was observed. On the other hand, the activated charcoal obtained by processing in the nitrogen atmosphere of Comparative Example 1 was found to be deteriorated with a capacitance retention of 42.5%.
(Example 2)
The activated charcoal obtained by treating coke derived from synthetic mesophase pitch in a methyl formate / nitrogen mixed gas atmosphere had a capacitance retention of 100.0% and no deterioration was observed. On the other hand, the activated charcoal obtained by processing in the nitrogen atmosphere of Comparative Example 1 was found to be deteriorated with a capacitance retention of 42.5%.
Example 3
The activated carbon obtained by treating petroleum needle coke in a methanol / nitrogen mixed gas atmosphere had a capacitance retention of 100.0% and no deterioration was observed. On the other hand, the activated carbon obtained by processing in the nitrogen atmosphere of Comparative Example 2 was found to be deteriorated with a capacitance retention of 39.7% (Example 4).
The activated charcoal obtained by processing coke derived from synthetic mesophase pitch in a ceramic container in a methanol / nitrogen mixed gas atmosphere had a capacitance retention of 82.0%. Although it improved compared with the comparative example 1, it fell compared with Example 1 which put into the nickel container and performed the activation process.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184478A JP2006012939A (en) | 2004-06-23 | 2004-06-23 | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184478A JP2006012939A (en) | 2004-06-23 | 2004-06-23 | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006012939A true JP2006012939A (en) | 2006-01-12 |
Family
ID=35779842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004184478A Pending JP2006012939A (en) | 2004-06-23 | 2004-06-23 | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006012939A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60263420A (en) * | 1984-06-12 | 1985-12-26 | 松下電器産業株式会社 | Energy storing device |
JPH11322322A (en) * | 1998-05-11 | 1999-11-24 | Mitsubishi Chemical Corp | Carbonaceous material, method for producing the same, and electric double layer capacitor using the same |
JP2002522616A (en) * | 1998-08-13 | 2002-07-23 | ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク | Blend membranes based on sulfonated poly (phenylene oxide) for improved polymer electrochemical cells |
JP2002249307A (en) * | 2001-02-22 | 2002-09-06 | Casio Comput Co Ltd | Method for reforming activated carbon and method for manufacturing electric double layer capacitor |
JP2002362912A (en) * | 2001-06-06 | 2002-12-18 | Jeol Ltd | Method of removing residual active hydrogen oxide |
JP2003212529A (en) * | 2002-01-17 | 2003-07-30 | Mitsubishi Gas Chem Co Inc | Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material |
-
2004
- 2004-06-23 JP JP2004184478A patent/JP2006012939A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60263420A (en) * | 1984-06-12 | 1985-12-26 | 松下電器産業株式会社 | Energy storing device |
JPH11322322A (en) * | 1998-05-11 | 1999-11-24 | Mitsubishi Chemical Corp | Carbonaceous material, method for producing the same, and electric double layer capacitor using the same |
JP2002522616A (en) * | 1998-08-13 | 2002-07-23 | ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク | Blend membranes based on sulfonated poly (phenylene oxide) for improved polymer electrochemical cells |
JP2002249307A (en) * | 2001-02-22 | 2002-09-06 | Casio Comput Co Ltd | Method for reforming activated carbon and method for manufacturing electric double layer capacitor |
JP2002362912A (en) * | 2001-06-06 | 2002-12-18 | Jeol Ltd | Method of removing residual active hydrogen oxide |
JP2003212529A (en) * | 2002-01-17 | 2003-07-30 | Mitsubishi Gas Chem Co Inc | Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Su et al. | Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins | |
US7691782B2 (en) | Active carbon, production method thereof and polarizable electrode | |
WO2018099173A1 (en) | Method for preparing nitrogen-doped porous carbon material by using coal as raw material | |
JP5931326B2 (en) | Activated carbon for electric double layer capacitors | |
JP4054746B2 (en) | Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof | |
KR20080022105A (en) | Activated Carbon and Its Manufacturing Method | |
JP2002104817A (en) | Activated carbon, its manufacturing method, polarizable electrode and electric double layer capacitor | |
JP4420381B2 (en) | Activated carbon, manufacturing method thereof and polarizable electrode | |
JP4576374B2 (en) | Activated carbon, its production method and its use | |
JP4117056B2 (en) | Method for producing carbon material for electric double layer capacitor electrode | |
JP2006024747A (en) | Carbon material for electric double-layer capacitor electrode, and its production method | |
JPH11297577A (en) | Electric double layer capacitor and carbonaceous material used for it | |
JP2000138141A (en) | Method for producing carbon porous body for electric double layer capacitor polarizable electrode | |
JP2006012938A (en) | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof | |
CN110808177A (en) | Preparation method and application of silkworm cocoon derived carbon/carbon nanotube/copper sulfide composite material | |
JP2006012939A (en) | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof | |
JP2008308360A (en) | Manufacturing method of carbon material for electric double layer capacitor electrode | |
JP2005001968A (en) | Method for producing porous carbon | |
JP2006024826A (en) | Carbon material for electric double-layer capacitor electrode and its production method | |
JP5030611B2 (en) | Electrode material for electric double layer capacitor and electric double layer capacitor using the same | |
JP5001791B2 (en) | Carbon material for electric double layer capacitor electrode | |
JP4096653B2 (en) | Method for producing activated carbon, polarizable electrode and electric double layer capacitor | |
JP2006278588A (en) | Electric double layer capacitor and manufacturing method thereof | |
JP4484046B2 (en) | Activated carbon for electric double layer capacitor electrode and manufacturing method thereof | |
JP2009260112A (en) | Producing method of positive-electrode active material for electrochemical capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100526 |