JP2006012938A - Carbon material for electric double-layer capacitor electrode and manufacturing method thereof - Google Patents
Carbon material for electric double-layer capacitor electrode and manufacturing method thereof Download PDFInfo
- Publication number
- JP2006012938A JP2006012938A JP2004184477A JP2004184477A JP2006012938A JP 2006012938 A JP2006012938 A JP 2006012938A JP 2004184477 A JP2004184477 A JP 2004184477A JP 2004184477 A JP2004184477 A JP 2004184477A JP 2006012938 A JP2006012938 A JP 2006012938A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- electric double
- layer capacitor
- gas
- coke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 34
- 239000003990 capacitor Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000571 coke Substances 0.000 claims abstract description 30
- 230000004913 activation Effects 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 10
- -1 organic acid ester Chemical class 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 3
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 claims description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 59
- 239000007789 gas Substances 0.000 description 28
- 239000010410 layer Substances 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- 239000003610 charcoal Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N alpha-methyl-naphthalene Natural products C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011302 mesophase pitch Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011331 needle coke Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011310 petroleum-based needle coke Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000011318 synthetic pitch Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011335 coal coke Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- WKFBZNUBXWCCHG-UHFFFAOYSA-N phosphorus trifluoride Chemical compound FP(F)F WKFBZNUBXWCCHG-UHFFFAOYSA-N 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、高い静電容量密度を有する電気二重層キャパシタ電極用炭素材料およびその製造方法に関する。 The present invention relates to a carbon material for an electric double layer capacitor electrode having a high capacitance density and a method for producing the same.
近年、省資源や環境問題の意識の高まりとともに、蓄電システムの開発が急速に進んでいる。蓄電デバイスとしては種々の二次電池があげられる。その中で、電気二重層キャパシタは、急速充放電が可能で、出力密度が大きく、化学反応を伴わないため充放電による劣化が少なく長寿命であるなど、優れた特徴を有しており、車載用電源、電子情報機器のメモリーバックアップ電源、夜間電力貯蔵、ソーラーシステム電力貯蔵、非常用電源、補助電源など、今後ますます、その用途開発が期待されている。 In recent years, with the growing awareness of resource saving and environmental issues, the development of power storage systems is progressing rapidly. Examples of the electricity storage device include various secondary batteries. Among them, the electric double layer capacitor has excellent features such as rapid charging / discharging, high output density, no chemical reaction, and long life with little deterioration due to charging / discharging. Development of applications such as power supplies for electric power, memory backup power supplies for electronic information devices, nighttime power storage, solar system power storage, emergency power supplies, and auxiliary power supplies is expected.
電気二重層キャパシタは分極性電極と電解質界面に生じる電気二重層を利用するものであるが、そのエネルギー密度等の基本的性能を決定するのが、分極性電極である。この分極性電極は、電気的、化学的に安定でなければならない。また、多くの電気二重層を生じさせて高いエネルギー密度を得るためには、電解質を保持する適当な細孔の空隙が多いことが必要である。このため、一般的に、分極性電極は高比表面積を有する活性炭を主材料とすることが多い。活性炭としては、その原料としてヤシ殻、フェノール樹脂、コークス等があげられる。 The electric double layer capacitor uses an electric double layer generated at the interface between the polarizable electrode and the electrolyte, and it is the polarizable electrode that determines basic performance such as energy density. This polarizable electrode must be electrically and chemically stable. Moreover, in order to obtain many electric double layers and to obtain a high energy density, it is necessary that there are many voids of appropriate pores for holding the electrolyte. For this reason, in general, polarizable electrodes are often mainly composed of activated carbon having a high specific surface area. Examples of the activated carbon include coconut shell, phenol resin, coke and the like.
特に近年、コークス等の原料からなる黒鉛類似の層状結晶構造を有する微結晶炭素を水酸化アルカリ金属で賦活処理を行い、得られた炭素材を分極性電極の主材料とする方法が多く報告されており、これに関連した炭化、賦活処理方法が開示されている(例えば、特許文献1〜8参照)。 In particular, in recent years, many methods have been reported in which microcrystalline carbon having a layered crystal structure similar to graphite made of raw materials such as coke is activated with an alkali metal hydroxide, and the resulting carbon material is used as the main material of a polarizable electrode. And carbonization and activation treatment methods related to this are disclosed (for example, see Patent Documents 1 to 8).
これらのコークス等の原料に由来する黒鉛類似の層状結晶構造を有する微結晶炭素(以下、易黒鉛化炭素原料炭という)の水酸化アルカリ賦活炭は、前述のヤシ殻原料、フェノール樹脂原料の炭素材からなる活性炭よりも比表面積は小さいことが多いが、電気二重層キャパシタの分極性電極として用いた場合、より高い静電容量密度が得られることが知られている。 Alkali hydroxide activated charcoal of microcrystalline carbon (hereinafter referred to as graphitizable carbon raw material carbon) having a layered crystal structure similar to graphite derived from raw materials such as coke is the above-mentioned coconut shell raw material and phenol resin raw material carbon. Although the specific surface area is often smaller than activated carbon made of a material, it is known that a higher capacitance density can be obtained when used as a polarizable electrode of an electric double layer capacitor.
易黒鉛化炭素原料炭の水酸化アルカリ金属賦活炭は、ヤシ殻原料、フェノール樹脂原料の炭素材から得られる活性炭と異なり、比表面積が高い方が、必ずしも高い静電容量密度を示すものではなく、比表面積が小さくても、電解質が黒鉛状の層間に十分にインターカレートできる電圧履歴があれば、高い静電容量密度を発現する。しかしながら、水酸化アルカリ金属賦活炭を用いた電気二重層キャパシタは繰り返し使用時の静電容量密度の低下が大きいことが欠点であった。 Unlike the activated carbon obtained from the carbon material of the coconut shell raw material and the phenol resin raw material, the alkali metal hydroxide activated charcoal of the graphitizable carbon raw material coal does not necessarily exhibit a high capacitance density, unlike the activated carbon obtained from the carbon material of the phenolic resin raw material. Even if the specific surface area is small, if there is a voltage history in which the electrolyte can be sufficiently intercalated between the graphite layers, a high capacitance density is exhibited. However, the electric double layer capacitor using the alkali metal hydroxide activated carbon has a drawback in that the capacitance density is greatly reduced during repeated use.
水酸化アルカリ金属賦活炭は、熱処理することにより静電容量密度の低下を抑えることは可能であり、既にその方法は開示されている(例えば、特許文献6および9参照)。特許文献8では、賦活炭を遷移金属触媒存在下のもと、還元性ガス雰囲気中200〜850℃で熱処理する方法を記載しているが、この方法では静電容量密度の低下を抑えることは可能であるが、静電容量密度の向上に繋がらないという問題があった。
上記問題を克服し、静電容量密度を高めてエネルギー密度を向上させる電気二重層キャパシタ電極用炭素材料を提供する。 The present invention provides a carbon material for an electric double layer capacitor electrode that overcomes the above problems and increases the energy density by increasing the capacitance density.
本発明者らは鋭意検討を重ねた結果、賦活処理の前にコークスを特定の条件下で熱処理することにより、高いエネルギー密度を与える電気二重層キャパシタ電極用炭素材料が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that a carbon material for an electric double layer capacitor electrode giving a high energy density can be obtained by heat-treating coke under specific conditions before the activation treatment. The invention has been completed.
すなわち本発明は以下のとおりである。
(1)コークスを有機性ガスまたはアンモニアガスを含む雰囲気中550〜1000℃の温度で熱処理したのち賦活処理することによって得られる電気二重層キャパシタ電極用炭素材料。
(2)コークスを有機性ガスまたはアンモニアガスを含む雰囲気中550〜1000℃の温度で熱処理したのち賦活処理する電気二重層キャパシタ電極用炭素材料の製造方法。
(3)有機性ガスが、低級アルコールガス、または低級アルコールの有機酸エステルガスである上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(4)有機性ガスが、メタノール、エタノール、プロパノール、蟻酸メチル、蟻酸エチルまたは酢酸メチルである上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(5)有機性ガスをニッケル、鉄またはコバルトを含む金属と接触させる上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(6)熱処理用の容器または炉材に、ニッケル、鉄、またはコバルトを含む金属を用いる上記(2)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
That is, the present invention is as follows.
(1) A carbon material for an electric double layer capacitor electrode obtained by subjecting coke to heat treatment in an atmosphere containing organic gas or ammonia gas at a temperature of 550 to 1000 ° C. and then activation treatment.
(2) A method for producing a carbon material for an electric double layer capacitor electrode, wherein coke is heat-treated at a temperature of 550 to 1000 ° C. in an atmosphere containing an organic gas or ammonia gas, and then activated.
(3) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein the organic gas is a lower alcohol gas or an organic acid ester gas of a lower alcohol.
(4) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein the organic gas is methanol, ethanol, propanol, methyl formate, ethyl formate, or methyl acetate.
(5) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein the organic gas is brought into contact with a metal containing nickel, iron or cobalt.
(6) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (2), wherein a metal containing nickel, iron, or cobalt is used for a heat treatment vessel or furnace material.
本発明の電気二重層キャパシタ電極用炭素材料は、高い静電容量密度を与えエネルギー密度を向上させることができる。また、本発明の電気二重層キャパシタ電極用炭素材料の製造は簡便であり、該炭素材料を安価に製造することができる。よって、その工業的意義は極めて大きい。 The carbon material for an electric double layer capacitor electrode of the present invention can provide a high capacitance density and improve the energy density. Moreover, the production of the carbon material for an electric double layer capacitor electrode of the present invention is simple, and the carbon material can be produced at a low cost. Therefore, its industrial significance is extremely great.
原料コークスとしては、石油系コークス、石炭系コークスが用いられる。本発明に用いられるコークスは石油重質油や石炭系重質油から製造されるものであり、ニードルコークス、セミコークス、ピッチコークス、鋳物用コークス、溶鉱炉用コークス、ガス化用コークスなどが例示できる。これらをそのまま用いることもできるが、これらを550〜950℃の温度で0.5〜10時間の熱処理を行ってから用いてもよい。 As the raw material coke, petroleum coke and coal coke are used. The coke used in the present invention is produced from heavy petroleum oil or heavy coal oil, and examples include needle coke, semi-coke, pitch coke, foundry coke, blast furnace coke, and gasification coke. . These can be used as they are, but they may be used after heat treatment at a temperature of 550 to 950 ° C. for 0.5 to 10 hours.
また、本発明において賦活に供されるコークスは、石油系ピッチ、石炭系ピッチ、合成系ピッチを出発原料とし、これらを熱処理することによってコークス化したものを用いてもよい。この場合は、揮発成分を除去する工程と、これを更に高い温度で熱処理することにより微結晶構造を発達させる仮焼工程、および、これらの連続した工程から得られる。これらの工程は一般的には、不活性ガス雰囲気下で行われる。揮発成分を除去する工程は、550℃以下で行うが、温度、時間は特に限定しない。仮焼工程は、550〜950℃で0.5〜10時間行うが、好ましくは、600〜850℃で1〜5時間行う。また、この二つの工程を連続して行うこともできる。これらの工程前の、原料の形状は特に限定されない。 In addition, the coke used for activation in the present invention may be a coke obtained by heat treatment of petroleum pitch, coal pitch, and synthetic pitch as starting materials. In this case, it is obtained from a step of removing volatile components, a calcining step of developing a microcrystalline structure by heat-treating it at a higher temperature, and a continuous step thereof. These steps are generally performed in an inert gas atmosphere. The step of removing volatile components is performed at 550 ° C. or lower, but the temperature and time are not particularly limited. The calcination step is performed at 550 to 950 ° C. for 0.5 to 10 hours, preferably at 600 to 850 ° C. for 1 to 5 hours. Moreover, these two processes can also be performed continuously. The shape of the raw material before these steps is not particularly limited.
上述のように本発明に用いられるコークスとしては、石油系コークス、石炭系コークス、または合成系コークスがあり特に限定されないが、合成系ピッチを熱処理して得られる合成系コークスは、石油系コークスや石炭系コークスに比べて化学純度や品質安定性の点で優れているため好適に用いられる。また、合成系ピッチとしては、弗化水素および三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させることによって得られるものが好適に用いられる。このような合成系ピッチは、特許第2931593号公報、特許第2621253号公報、または特許第2526585号公報に示されるように、ナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセン、フェナントレン、アセナフテン、ピレン等ならびにこれらの骨格を有する縮合多環炭化水素、およびこれらの混合物ないしこれらを含有する物質を重合させて得られるものである。 As described above, the coke used in the present invention includes petroleum-based coke, coal-based coke, or synthetic-type coke, and is not particularly limited. Since it is excellent in chemical purity and quality stability as compared with coal-based coke, it is preferably used. As the synthetic pitch, those obtained by polymerizing condensed polycyclic hydrocarbons or substances containing them in the presence of hydrogen fluoride and boron trifluoride are preferably used. Such synthetic pitches include naphthalene, monomethylnaphthalene, dimethylnaphthalene, anthracene, phenanthrene, acenaphthene, pyrene, and the like, as shown in Japanese Patent Nos. It is obtained by polymerizing a condensed polycyclic hydrocarbon having a skeleton of the above, a mixture thereof or a substance containing these.
有機性ガスまたはアンモニアガスを含む雰囲気下での熱処理は、550〜1000℃の温度で0.5〜10時間行う。好ましくは600〜850℃の温度で1〜5時間行う。熱処理温度が550℃より低い場合は、次の工程の水酸化アルカリ金属による賦活において、アルカリ金属が作用する微結晶構造の発達が不十分である。一方、熱処理温度が1000℃を超えると微結晶構造の発達によって黒鉛化が進み、逆にアルカリ金属が作用し難くなり、賦活が進み難くなる。 Heat treatment in an atmosphere containing an organic gas or ammonia gas is performed at a temperature of 550 to 1000 ° C. for 0.5 to 10 hours. Preferably, it is performed at a temperature of 600 to 850 ° C. for 1 to 5 hours. When the heat treatment temperature is lower than 550 ° C., the microcrystalline structure on which the alkali metal acts is insufficiently developed in the activation with the alkali metal hydroxide in the next step. On the other hand, when the heat treatment temperature exceeds 1000 ° C., graphitization progresses due to the development of the microcrystalline structure, and on the contrary, the alkali metal becomes difficult to act and activation becomes difficult.
有機性ガスは、特に限定されないが、低級アルコール、低級アルコールの有機酸エステルが挙げられる。また低級アルコールとしては、メタノール、エタノール、プロパノール等が挙げられる。低級アルコールの有機酸エステルとしては、蟻酸メチル、蟻酸エチル,酢酸メチル等が挙げられる。該有機性ガスは、これらを組み合わせてもよいし、アルゴンや窒素などの不活性ガスで希釈しても良い。該ガスの濃度は0.1〜100vol%であり、好ましくは20〜100vol%である。有機性ガスの流量(GHSV)は100〜100000hr−1であり、好ましくは、500〜5000hr−1である。 The organic gas is not particularly limited, and examples thereof include lower alcohols and organic acid esters of lower alcohols. Examples of the lower alcohol include methanol, ethanol, propanol and the like. Examples of organic acid esters of lower alcohols include methyl formate, ethyl formate, and methyl acetate. These organic gases may be combined, or may be diluted with an inert gas such as argon or nitrogen. The concentration of the gas is 0.1 to 100 vol%, preferably 20 to 100 vol%. The flow rate (GHSV) of the organic gas is 100 to 100,000 hr −1 , and preferably 500 to 5000 hr −1 .
アンモニアガスは、アルゴンや窒素などの不活性ガスで希釈しても良い。該ガスの濃度は0.1〜100vol%であり、好ましくは20〜100vol%である。アンモニアガスの流量(GHSV)は100〜100000hr−1であり、好ましくは、500〜5000hr−1である。 The ammonia gas may be diluted with an inert gas such as argon or nitrogen. The concentration of the gas is 0.1 to 100 vol%, preferably 20 to 100 vol%. Ammonia gas flow rate (GHSV) is 100~100000Hr -1, preferably from 500~5000hr -1.
また、有機性ガスが熱処理においてコークスとともに、ニッケル、鉄またはコバルトを含む金属と接触させて行うことができる。これは金属成分の触媒作用により有機性ガスがこれらの金属と接触して分解を促進し、反応性の高い分解ガスがコークスと反応し、或いはその分解過程の中で生じた炭素成分がコークス表面に成長していることを鑑みたことによる。実質的には、熱処理時にコークスと接触する炉の材質、またはコークスを入れる容器がこれらの金属を含んでいることが望ましい。 Moreover, it can carry out by making organic gas contact with the metal containing nickel, iron, or cobalt with coke in heat processing. This is because the catalytic action of the metal component causes the organic gas to come into contact with these metals to promote decomposition, the highly reactive cracked gas reacts with the coke, or the carbon component generated during the decomposition process is the coke surface. This is due to the fact that it has grown rapidly. In practice, it is desirable that the furnace material that comes into contact with the coke during heat treatment, or the container in which the coke is contained, contain these metals.
このようにして得られた熱処理コークス(以下、仮焼炭と称することがある)は、次の賦活処理工程において電気二重層キャパシタ電極用炭素材料としての性能が付与される。仮焼炭は、水酸化アルカリ金属を用いて賦活することができる。この水酸化アルカリ金属による賦活は、アルカリ金属が仮焼炭中の微結晶構造を侵食し、あるいは微結晶構造の層間に作用するものである。このようにして得られた賦活炭は、電解質を保持する適当な細孔の空隙を形成し、或いは、充放電時に電解質のインターカレーションで空隙を形成され易い形態となり、電気二重層キャパシタ電極炭素材料に好適な性能が付与される。 The heat-treated coke thus obtained (hereinafter sometimes referred to as calcined charcoal) is given performance as a carbon material for an electric double layer capacitor electrode in the next activation treatment step. The calcined charcoal can be activated using an alkali metal hydroxide. The activation with the alkali metal hydroxide is one in which the alkali metal erodes the microcrystalline structure in the calcined coal or acts between layers of the microcrystalline structure. The activated charcoal obtained in this way forms voids with appropriate pores for holding the electrolyte, or forms voids easily by intercalation of the electrolyte during charging and discharging, and the electric double layer capacitor electrode carbon Appropriate performance is imparted to the material.
水酸化アルカリ金属による賦活処理は、水酸化アルカリ金属を仮焼炭と混合し、不活性ガス中で加熱して行う。水酸化アルカリ金属として、ここでは水酸化カリウムが使うが、それ以外のアルカリ金属の水酸化物やそれらの混合物でも良い。また、賦活処理前の仮焼炭の形状は微粉が好ましいが特に粒度の限定はしない。 The activation treatment with the alkali metal hydroxide is performed by mixing the alkali metal hydroxide with calcined charcoal and heating it in an inert gas. Here, potassium hydroxide is used as the alkali metal hydroxide, but other alkali metal hydroxides or mixtures thereof may be used. Moreover, although the shape of the calcined charcoal before activation treatment is preferably fine powder, the particle size is not particularly limited.
水酸化アルカリ金属と仮焼炭の混合割合は水酸化カリウムの場合、仮焼炭1重量部に対して、水酸化カリウムは1〜4重量部、好ましくは2重量部である。賦活処理は、550〜900℃の温度で0.5〜10時間行うが、好ましくは650〜750℃の温度で1〜3時間である。 In the case of potassium hydroxide, the mixing ratio of the alkali metal hydroxide and calcined charcoal is 1 to 4 parts by weight, preferably 2 parts by weight with respect to 1 part by weight of calcined charcoal. The activation treatment is performed at a temperature of 550 to 900 ° C. for 0.5 to 10 hours, and preferably at a temperature of 650 to 750 ° C. for 1 to 3 hours.
得られた賦活炭は、洗浄を行って水酸化アルカリ金属成分を除去する。洗浄方法は特に限定されないが、一般的には、水洗浄、スチーム洗浄、希塩酸洗浄、またはこれらの洗浄の組み合わせでできる。洗浄は、水酸化アルカリ金属成分や、洗浄に用いた酸分が溶出しなくなるまで、可能な限り洗浄しなければならない。これらの成分が残存すると、キャパシタの長期性能に悪影響を及ぼすとされている。得られた賦活炭は加熱乾燥するが、加熱時の酸化を抑えるため、不活性ガス中で乾燥するか、または真空乾燥することが好ましい。 The obtained activated charcoal is washed to remove the alkali metal hydroxide component. The washing method is not particularly limited, but in general, water washing, steam washing, dilute hydrochloric acid washing, or a combination of these washings can be used. The cleaning must be performed as much as possible until the alkali metal hydroxide component and the acid used for the cleaning are not eluted. If these components remain, it is said that the long-term performance of the capacitor is adversely affected. The obtained activated charcoal is heat-dried, but is preferably dried in an inert gas or vacuum-dried in order to suppress oxidation during heating.
得られた賦活炭は、原料、仮焼温度、賦活温度、その処理時間に大きく作用され、その条件の違いで、比表面積は凡そ数10〜1000m2/gの広い範囲を示す。概して、仮焼温度、賦活温度が高いと、或いは、その処理時間が長いと、焼き締まりによる黒鉛状微結晶の層間距離が縮小し、比表面積が小さくなる傾向を示す。また、上記洗浄後、0.01〜5wt%程度カリウムが残存する。熱処理温度、賦活温度が高いほど、カリウム残存濃度が高く、このカリウム残存濃度が高いと、キャパシタの長期性能に悪影響を及ぼすとされている。ここでは、賦活炭の比表面積、カリウム濃度について、限定するものではないが、好ましくは、比表面積は300〜800m2/gであり、カリウム濃度は0.05wt%以下である。 The obtained activated charcoal is greatly affected by the raw material, the calcining temperature, the activation temperature, and the treatment time thereof, and the specific surface area shows a wide range of about several tens to 1000 m <2> / g depending on the conditions. In general, when the calcination temperature and the activation temperature are high, or when the treatment time is long, the interlayer distance of the graphite-like microcrystals due to the tightening tends to decrease, and the specific surface area tends to decrease. Moreover, about 0.01-5 wt% potassium remains after the said washing | cleaning. It is said that the higher the heat treatment temperature and the activation temperature, the higher the residual potassium concentration. When this residual potassium concentration is high, the long-term performance of the capacitor is adversely affected. Here, although it does not limit about the specific surface area and potassium concentration of activated carbon, Preferably, a specific surface area is 300-800 m <2> / g, and potassium concentration is 0.05 wt% or less.
このように得られた賦活炭を用いて分極性電極を作製するが、その方法は、特に限定されない。例えば、賦活炭の粉末とカーボンブラック等の導電剤及びテフロン(登録商標)等のバインダーを配合して成形する方法、活性炭と導電剤を樹脂やピッチ等で成形した後焼成して高密度の分極性電極を製造する方法などが採用できる。また、体積あたりの静電容量を大きくするため、加圧プレス等により充填密度を上げることもできる。 A polarizable electrode is produced using the activated charcoal thus obtained, but the method is not particularly limited. For example, a method in which activated charcoal powder, a conductive agent such as carbon black, and a binder such as Teflon (registered trademark) are mixed and molded, and activated carbon and a conductive agent are molded with resin, pitch, etc. and then fired to obtain a high density component. A method of manufacturing a polar electrode can be employed. Further, in order to increase the capacitance per volume, the packing density can be increased by a pressure press or the like.
電解質は、非水溶媒に溶解して使用できる(以下、この液を電解液という)。
電解液は、特に限定しないが、電解質であるテトラアルキルアンモニウム、テトラアルキルホスホニウム、イミダゾリウム等の四級アンモニウムの硼弗化物、リン弗化物、トリフルオロメタンスルホニルイミド化物等を非水電解液であるプロピレンカーボネート、アセトニトリル、スルホラン等に溶解させて使用することができる。
The electrolyte can be used by dissolving in a non-aqueous solvent (hereinafter, this solution is referred to as an electrolytic solution).
Electrolyte solution is not particularly limited, but electrolytes such as tetraalkylammonium, tetraalkylphosphonium, imidazolium quaternary ammonium borofluoride, phosphorous fluoride, trifluoromethanesulfonylimide and the like are non-aqueous electrolyte propylene. It can be used by dissolving in carbonate, acetonitrile, sulfolane and the like.
以下、実施例にて本発明を詳細に説明する。なお、本発明は下記実施例に限定されるものではない。
実施例における分極性電極の製造方法と静電容量密度の測定方法は、以下の方法で行った。
(I)分極性電極の製造方法
賦活炭粉末100重量部、カーボンブラック10重量部,ポリテトラフルオロエチレン10重量部からなる混合物を混練した後、加圧シート化した。得られたシートを円盤状に打ち抜いて分極性電極(直径16mm、厚さ0.55mm)とし、220℃、12時間、真空乾燥して電極とした。
(II)静電容量密度の測定方法
この電極を、ポリエチレン製セパレーターを介して互いに対向させ、ステンレス製ケース内に収納した。その後、減圧下で電解液を含浸させ封じ込め、電気二重層キャパシタセルとした。電解液は1.8mol/lのトリエチルメチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液を用いた。
得られた電気二重層キャパシタセルに25℃で、5mAの定電流で電圧を2.7Vまで印加して100分充電した後、5mAの定電流で0Vまで放電して10サイクル充放電を行い、次に印加電圧を3.5Vにして30サイクル充放電を繰り返した。放電時のエネルギーから、静電容量密度(F/cc)を求めた。
すなわち、静電容量密度(F/cc)は、静電容量C(F)=2×U×3600/(V1×V1)の式で求めた静電容量C(F)に電極体積(cc)を除して求めた。ここで、U(Wh)は放電開始時から放電終了時までの放電電圧(V)と放電電流(A)の積を積算して得られた値であり、また、V1は充電電圧(V)である。
Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following Example.
The manufacturing method of the polarizable electrode and the measuring method of capacitance density in the examples were performed by the following methods.
(I) Method for producing polarizable electrode After kneading a mixture consisting of 100 parts by weight of activated charcoal powder, 10 parts by weight of carbon black and 10 parts by weight of polytetrafluoroethylene, a pressure sheet was formed. The obtained sheet was punched into a disk shape to obtain a polarizable electrode (diameter 16 mm, thickness 0.55 mm), and vacuum dried at 220 ° C. for 12 hours to obtain an electrode.
(II) Method for Measuring Capacitance Density The electrodes were placed opposite each other via a polyethylene separator and housed in a stainless steel case. Then, the electrolytic solution was impregnated and contained under reduced pressure to obtain an electric double layer capacitor cell. As the electrolytic solution, a 1.8 mol / l triethylmethylammonium tetrafluoroborate propylene carbonate solution was used.
The obtained electric double layer capacitor cell was charged at 25 ° C. with a constant current of 5 mA up to 2.7 V and charged for 100 minutes, then discharged to 0 V with a constant current of 5 mA and charged and discharged for 10 cycles, Next, charge and discharge were repeated for 30 cycles with an applied voltage of 3.5V. The capacitance density (F / cc) was determined from the energy during discharge.
That is, the capacitance density (F / cc) is obtained by adding the capacitance C (F) to the capacitance C (F) obtained by the equation of capacitance C (F) = 2 × U × 3600 / (V1 × V1). Was calculated by dividing. Here, U (Wh) is a value obtained by integrating the product of the discharge voltage (V) and the discharge current (A) from the start of discharge to the end of discharge, and V1 is the charge voltage (V). It is.
実施例1
弗化水素・三弗化硼素の共存下、ナフタレンを触媒重合させて得られた合成系メソフェーズピッチ(高架式フローテスター法による軟化点:235℃、H/C原子比:0.65、光学的異方性含有率:100%)を窒素気流下、550℃で2時間保持して、コークス化した。室温まで冷却した後、ボールミルで平均粒度30μm以下に粉砕した。更に、これをニッケルボート中でアンモニア/窒素(各50vol%)混合ガス雰囲気下(GHSV:2000hr−1)、750℃で4時間保持することによって熱処理した。その後、室温まで冷却して仮焼炭50gを得た。この仮焼炭10gに対して水酸化カリウム(試薬特級)20gをセラミックス容器内で均一に混合し、窒素気流下700℃で2時間保持して賦活処理した。100℃まで冷却後、スチームを流して賦活物を充分に湿潤させた後、室温に冷却して取り出した。この賦活物を100重量部の水で超音波水洗(10分)と吸引ろ過を繰り返した。これを100℃で2時間乾燥し、更に220℃で5時間真空乾燥して分極性電極用炭素材料を得た。
Example 1
Synthetic mesophase pitch obtained by catalytic polymerization of naphthalene in the presence of hydrogen fluoride and boron trifluoride (softening point by elevated flow tester method: 235 ° C., H / C atomic ratio: 0.65, optical Anisotropy content: 100%) was kept at 550 ° C. for 2 hours under a nitrogen stream to be coked. After cooling to room temperature, it was pulverized to a mean particle size of 30 μm or less by a ball mill. Furthermore, this was heat-treated in a nickel boat under a mixed gas atmosphere of ammonia / nitrogen (50 vol% each) (GHSV: 2000 hr −1 ) at 750 ° C. for 4 hours. Then, it cooled to room temperature and obtained calcined charcoal 50g. 20 g of potassium hydroxide (special grade reagent) was uniformly mixed in 10 g of this calcined charcoal in a ceramic container, and activated at 700 ° C. for 2 hours under a nitrogen stream. After cooling to 100 ° C., the activated material was sufficiently wetted by flowing steam, and then cooled to room temperature and taken out. This activated product was repeatedly subjected to ultrasonic water washing (10 minutes) and suction filtration with 100 parts by weight of water. This was dried at 100 ° C. for 2 hours and further vacuum dried at 220 ° C. for 5 hours to obtain a carbon material for a polarizable electrode.
実施例2
熱処理工程の雰囲気ガスをメタノール/窒素(各50vol%)混合ガスに変えた以外は、実施例1と同様にして分極性電極用炭素材料を得た。
Example 2
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the atmosphere gas in the heat treatment step was changed to a methanol / nitrogen (50 vol% each) mixed gas.
実施例3
熱処理工程の雰囲気ガスを蟻酸メチル/窒素(各50vol%)混合ガスに変えた以外は、実施例1と同様にして分極性電極用炭素材料を得た。
Example 3
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the atmosphere gas in the heat treatment step was changed to a mixed gas of methyl formate / nitrogen (50 vol% each).
実施例4
原料を石油系ニードルコークス(興亜石油社製、H/C原子比:0.38)とし、これを窒素気流下550℃で2時間保持したのち、以降実施例1と同様の操作を行って分極性電極用炭素材料を得た。
Example 4
The raw material was petroleum-based needle coke (manufactured by Koa Oil Co., Ltd., H / C atomic ratio: 0.38). A carbon material for a polar electrode was obtained.
実施例5
熱処理工程の容器をニッケル容器からセラミックス容器に変えた以外は、実施例2と同様にして分極性電極用炭素材料を得た。
Example 5
A carbon material for a polarizable electrode was obtained in the same manner as in Example 2 except that the container for the heat treatment step was changed from a nickel container to a ceramic container.
比較例1
熱処理工程の雰囲気ガスを窒素ガスに変えた以外は、実施例1と同様にして分極性電極用炭素材料を得た。
Comparative Example 1
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the atmosphere gas in the heat treatment step was changed to nitrogen gas.
比較例2
原料を石油系ニードルコークス(興亜石油社製、H/C原子比:0.38)とし、これを窒素気流下550℃で2時間保持したのち、雰囲気ガスを窒素ガスに変えて、以降実施例1と同様の操作を行い、分極性電極用炭素材料を得た。
Comparative Example 2
The raw material was petroleum needle coke (manufactured by Koa Oil Co., Ltd., H / C atomic ratio: 0.38), which was held at 550 ° C. for 2 hours under a nitrogen stream, and then the atmospheric gas was changed to nitrogen gas. The same operation as 1 was performed to obtain a carbon material for a polarizable electrode.
結果を表1に示す。
(実施例1〜3)
合成系メソフェーズピッチ由来コークスをアンモニアガス雰囲気中、またはメタノールガス、蟻酸メチルガスの有機性ガス雰囲気中で熱処理することによって得られた仮焼炭の水酸化カリウム賦活炭は、比較例1の窒素ガス雰囲気中で熱処理した場合の賦活炭と比較して、何れも高い静電容量密度を示した。
(実施例4)
石油系ニードルコークスをアンモニアガス雰囲気中で熱処理することによって得られた仮焼炭の水酸化カリウム賦活炭は、比較例2の窒素ガス雰囲気中で熱処理した場合の賦活炭と比較して高い静電容量密度を示した。
(実施例5)
メタノールガス雰囲気中での熱処理をセラミックス容器で行って得られた仮焼炭の水酸化アルカリ金属賦活炭は、比較例1の窒素ガス雰囲気中での熱処理を経て得られた賦活炭と比較して高い静電容量密度を示したが、ニッケル容器で行った同条件の実施例2と比較して低い値を示した。
The results are shown in Table 1.
(Examples 1-3)
The potassium hydroxide activated charcoal of calcined charcoal obtained by heat treating synthetic mesophase pitch-derived coke in an ammonia gas atmosphere or an organic gas atmosphere of methanol gas or methyl formate gas is the nitrogen gas atmosphere of Comparative Example 1. Compared with activated charcoal when heat-treated in the medium, all showed high capacitance density.
Example 4
The calcined charcoal potassium hydroxide activated charcoal obtained by heat treating petroleum-based needle coke in an ammonia gas atmosphere has a higher electrostatic capacity than the activated charcoal when heat treated in the nitrogen gas atmosphere of Comparative Example 2. The capacity density is shown.
(Example 5)
The alkali metal hydroxide activated carbon of calcined charcoal obtained by performing heat treatment in a methanol gas atmosphere in a ceramic container is compared with the activated charcoal obtained through heat treatment in a nitrogen gas atmosphere of Comparative Example 1. Although it showed a high capacitance density, it showed a low value as compared with Example 2 under the same conditions carried out in a nickel container.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184477A JP2006012938A (en) | 2004-06-23 | 2004-06-23 | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184477A JP2006012938A (en) | 2004-06-23 | 2004-06-23 | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006012938A true JP2006012938A (en) | 2006-01-12 |
Family
ID=35779841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004184477A Pending JP2006012938A (en) | 2004-06-23 | 2004-06-23 | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006012938A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008195559A (en) * | 2007-02-09 | 2008-08-28 | Mitsubishi Gas Chem Co Inc | Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon |
CN113130218A (en) * | 2021-04-22 | 2021-07-16 | 榆林学院 | Preparation method of semi-coke-based porous carbon material and electrode material application device |
CN115818617A (en) * | 2022-11-28 | 2023-03-21 | 湖南宸宇富基新能源科技有限公司 | A negative electrode active material for sodium-ion batteries prepared from high-sulfur coke and its preparation method and application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60263420A (en) * | 1984-06-12 | 1985-12-26 | 松下電器産業株式会社 | Energy storing device |
JP2002522616A (en) * | 1998-08-13 | 2002-07-23 | ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク | Blend membranes based on sulfonated poly (phenylene oxide) for improved polymer electrochemical cells |
JP2002540331A (en) * | 1999-01-23 | 2002-11-26 | アクセンタス パブリック リミテッド カンパニー | Reactor for plasma assisted gas processing |
JP2002362912A (en) * | 2001-06-06 | 2002-12-18 | Jeol Ltd | Method of removing residual active hydrogen oxide |
JP2004031889A (en) * | 2002-05-07 | 2004-01-29 | Asahi Kasei Chemicals Corp | Porous carbon for electric double layer capacitor electrode and method for producing the same |
JP2004124203A (en) * | 2002-10-04 | 2004-04-22 | Konica Minolta Holdings Inc | Thin film forming process |
WO2004050570A1 (en) * | 2002-11-29 | 2004-06-17 | Shin-Etsu Quartz Products Co., Ltd. | Method for producing synthetic quartz glass and synthetic quartz glass article |
-
2004
- 2004-06-23 JP JP2004184477A patent/JP2006012938A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60263420A (en) * | 1984-06-12 | 1985-12-26 | 松下電器産業株式会社 | Energy storing device |
JP2002522616A (en) * | 1998-08-13 | 2002-07-23 | ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク | Blend membranes based on sulfonated poly (phenylene oxide) for improved polymer electrochemical cells |
JP2002540331A (en) * | 1999-01-23 | 2002-11-26 | アクセンタス パブリック リミテッド カンパニー | Reactor for plasma assisted gas processing |
JP2002362912A (en) * | 2001-06-06 | 2002-12-18 | Jeol Ltd | Method of removing residual active hydrogen oxide |
JP2004031889A (en) * | 2002-05-07 | 2004-01-29 | Asahi Kasei Chemicals Corp | Porous carbon for electric double layer capacitor electrode and method for producing the same |
JP2004124203A (en) * | 2002-10-04 | 2004-04-22 | Konica Minolta Holdings Inc | Thin film forming process |
WO2004050570A1 (en) * | 2002-11-29 | 2004-06-17 | Shin-Etsu Quartz Products Co., Ltd. | Method for producing synthetic quartz glass and synthetic quartz glass article |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008195559A (en) * | 2007-02-09 | 2008-08-28 | Mitsubishi Gas Chem Co Inc | Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon |
CN113130218A (en) * | 2021-04-22 | 2021-07-16 | 榆林学院 | Preparation method of semi-coke-based porous carbon material and electrode material application device |
CN115818617A (en) * | 2022-11-28 | 2023-03-21 | 湖南宸宇富基新能源科技有限公司 | A negative electrode active material for sodium-ion batteries prepared from high-sulfur coke and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691782B2 (en) | Active carbon, production method thereof and polarizable electrode | |
JP4618929B2 (en) | Activated carbon for electric double layer capacitors | |
US20050047061A1 (en) | Activated carbon, process for producing the same, polarizable electrode, and electric double layer capacitor | |
JP5931326B2 (en) | Activated carbon for electric double layer capacitors | |
JP4054746B2 (en) | Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof | |
WO2011081086A1 (en) | Activated carbon for electric double-layer capacitor electrode and method for producing the same | |
Fu et al. | One-pot synthesis of N-doped hierarchical porous carbon for high-performance aqueous capacitors in a wide pH range | |
JP4420381B2 (en) | Activated carbon, manufacturing method thereof and polarizable electrode | |
JP2002104817A (en) | Activated carbon, its manufacturing method, polarizable electrode and electric double layer capacitor | |
WO2005038836A1 (en) | Electric double layer capacitor, activated carbon for electrode thereof and method for producing same | |
JP4576374B2 (en) | Activated carbon, its production method and its use | |
JP4117056B2 (en) | Method for producing carbon material for electric double layer capacitor electrode | |
JP2006024747A (en) | Carbon material for electric double-layer capacitor electrode, and its production method | |
JP4081125B2 (en) | Positive electrode for electric double layer capacitor and electric double layer capacitor | |
JP2007243042A (en) | Electric double-layer capacitor and positive electrode for the same | |
JP4762424B2 (en) | Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon | |
JP2006295144A (en) | Porous carbon material for electric double layer capacitor polarizable electrode. | |
JP2006012938A (en) | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof | |
JP2008021833A (en) | Porous carbon material for electric double layer capacitor, method for producing the same, and non-aqueous electric double layer capacitor | |
JP2000138141A (en) | Method for producing carbon porous body for electric double layer capacitor polarizable electrode | |
JP4503134B2 (en) | Activated carbon for electric double layer capacitors | |
JP2005001968A (en) | Method for producing porous carbon | |
JP2006024826A (en) | Carbon material for electric double-layer capacitor electrode and its production method | |
JP2006012939A (en) | Carbon material for electric double-layer capacitor electrode and manufacturing method thereof | |
JP5030611B2 (en) | Electrode material for electric double layer capacitor and electric double layer capacitor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100707 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101215 |