JPS602610A - Operating method of blast furnace - Google Patents
Operating method of blast furnaceInfo
- Publication number
- JPS602610A JPS602610A JP10942483A JP10942483A JPS602610A JP S602610 A JPS602610 A JP S602610A JP 10942483 A JP10942483 A JP 10942483A JP 10942483 A JP10942483 A JP 10942483A JP S602610 A JPS602610 A JP S602610A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- distribution
- charge
- blast furnace
- swiveling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/008—Composition or distribution of the charge
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
本兜明は・ベルレス旋回シュートを有する高炉において
、装入物分布制御を行なうことによって炉内ガス流れ分
布を制御する高炉操業方法に関するO
一般に炉頂装入装置としてベルレス旋回シュートを有す
る高炉では、炉内への装入物装入時に旋回シュートの傾
斜角度を任意に変更することで装入物分布制御を行なう
。即ち、例えば高炉操業において、炉内ガス流ワ怖が著
しく乱れて、炉内に装入した鉱石の還元反応が不安定化
し、炉の安定した操業が維持できないと判断された場合
には、旋回シュートの傾斜角度を変化させることによっ
て装入物の堆積位置を変えて、炉径方向の鉱石およびコ
ークスの比率を変化させて、適正なガス流れ分布に回復
し保持させるべく分布制御を行なっている。かかる装入
物分布制御法においては、装入物分布を円周方向で同一
に変化させることに特徴がある。したがって、装入物分
布の変化に応じたガス流れ分布の変化も円周方向で同様
に変化することが前提となる。Detailed Description of the Invention This article relates to a blast furnace operating method for controlling the gas flow distribution in the furnace by controlling the burden distribution in a blast furnace having a bellless rotating chute. In a blast furnace having a rotating chute, charge distribution is controlled by arbitrarily changing the inclination angle of the rotating chute when charging the charge into the furnace. For example, in blast furnace operation, if the gas flow in the furnace is significantly disturbed, the reduction reaction of the ore charged in the furnace becomes unstable, and it is determined that stable operation of the furnace cannot be maintained, the rotation By changing the angle of inclination of the chute, the deposition position of the charge is changed, and the ratio of ore and coke in the radial direction of the furnace is changed, thereby controlling the distribution in order to recover and maintain an appropriate gas flow distribution. . Such a charge distribution control method is characterized in that the charge distribution is changed uniformly in the circumferential direction. Therefore, it is assumed that the change in the gas flow distribution in response to the change in the charge distribution also changes in the circumferential direction.
しかるに、実際の尚炉操業においては、ガス流れ分布が
装入物分布の変化だけでなく炉壁侵食状況の差や炉下部
における送風条件の差等によって特定の方向で著しく乱
れることが多く円周方向でのバランスが不安定になるこ
とがしばしば起る。However, in actual furnace operation, the gas flow distribution is often significantly disturbed in a specific direction not only due to changes in the charge distribution but also due to differences in furnace wall erosion conditions and differences in air blowing conditions in the lower part of the furnace. Unstable directional balance often occurs.
したがって従来のよう々円周方向で同一に変化きせる装
入物分布制御法では、円周方向バランスが崩れた場合、
的確に炉内ガス流れを制御することが困難である。Therefore, in the conventional method of controlling the charge distribution, which changes uniformly in the circumferential direction, if the balance in the circumferential direction is lost,
It is difficult to accurately control the gas flow in the furnace.
本発明は、このような特定方向のガス流れ分布が著しく
乱れた場合にガス流れ分布を制御できる装入物分布制御
法である。The present invention is a charge distribution control method that can control gas flow distribution when such gas flow distribution in a specific direction is significantly disturbed.
本発明のポイントは次の点にある。すなわち、一般にS
’JPにおける装入物分布制御は、装入物の堆積形状が
V字型(すり林状)をベースとしてコークス、鉱石等の
装入位置を調節することで行々っている。この場合、装
入物分布形状7字型の最凹部は通常炉の中心部と一致さ
セる。したがって炉内ガス流れ分布は炉の中心からはソ
同心円状に同一温度、同一濃度ラインを形成する分布を
示す。The key points of the present invention are as follows. That is, in general S
'Charge distribution control in JP is carried out by adjusting the charging position of coke, ore, etc. based on the V-shaped (striped forest) piled shape of the burden. In this case, the most concave part of the figure 7-shaped charge distribution shape usually coincides with the center of the furnace. Therefore, the gas flow distribution in the furnace shows a distribution in which lines of the same temperature and concentration are formed concentrically from the center of the furnace.
ところが、特定方向の装入物装入量(鉱石士コークス)
が多くなると、その方向のガス流速が抑制されて同心円
状のガス流れ分布が装入量の変化に応じて歪みを起す。However, the amount of charge in a specific direction (orer coke)
When the amount increases, the gas flow velocity in that direction is suppressed and the concentric gas flow distribution becomes distorted in response to changes in the charging amount.
したがって、炉壁侵蝕状況等の変化によってガス流れ分
布が乱れた場合には装入物装入量を円周方向で変化させ
ることでガス流れ分布を同心円状に回復させ、安定操業
を保持することが可能と々る。Therefore, if the gas flow distribution is disturbed due to changes in the furnace wall erosion, etc., the gas flow distribution can be restored to a concentric pattern by changing the charge amount in the circumferential direction, and stable operation can be maintained. is possible.
一方、炉内ガス流れ分布の乱れを検知する手段としては
、一般に検出端を炉内に直接挿入して炉内ガスの温度、
成分等を測定する方法がとられているが、この方法で円
周方向ガス分布の乱れを測定するには検出端を多方向に
設置しなければならず、設備上程々の制約があって十分
な測定体制は取られていない。このため簡易手段として
炉壁部に温度計を多方向rC埋込み、この温度変化を炉
内ガス流れの乱れに伴なう炉壁への熱負荷量の変化とし
て把える方法がよく利用される。On the other hand, as a means of detecting disturbances in the gas flow distribution in the furnace, the detection end is generally inserted directly into the furnace to detect the temperature of the gas in the furnace.
A method is used to measure components, etc., but in order to measure disturbances in the circumferential gas distribution using this method, detection ends must be installed in multiple directions, and there are moderate restrictions on the equipment, so it is not sufficient. There is no proper measurement system in place. Therefore, as a simple means, a method is often used in which a multidirectional RC thermometer is embedded in the furnace wall and the temperature change is understood as a change in the amount of heat load on the furnace wall due to the disturbance of the gas flow in the furnace.
本発明はこのよう々炉内ガス流れの変化に対比、した熱
負荷量を、炉壁部の円周方向の温度計から 3一
温度差として把握し、この温度差が所定の管理幅を趨え
て大巾に変動した場合に装入物分布制御装置により装入
物堆積形状のV字型分布の最凹部が変移するように装入
物分布を制御することにある。According to the present invention, the amount of heat load that corresponds to the change in gas flow in the furnace is grasped as a temperature difference from the thermometer in the circumferential direction of the furnace wall, and this temperature difference is determined as a trend within a predetermined control range. The object of the present invention is to control the charge distribution so that the most concave part of the V-shaped distribution of the charge pile shape changes using the charge distribution control device when the charge distribution varies widely.
以下本発明を図面に基いて説明する。第1図は本発明の
実施例におけるベルレス旋回シュートをもつ高炉の制御
系統図を示す。The present invention will be explained below based on the drawings. FIG. 1 shows a control system diagram of a blast furnace having a bellless rotating chute in an embodiment of the present invention.
lは高炉本体、2は装入物の堆積形状を示す装入面、3
,3Aは装入物の堆積形状を十字状に測定するプロフィ
ルメーター、4.4Aはプロフィルメーターで測定した
装入物の堆積形状を示す表示器、5は装入物堆積形状を
等高純として示す表示器、6及び6Aは旋回シュートお
よびその駆動装置、7は筒炉シャフト都の炉壁に設置し
た温度計、8は円周方向における温度の偏差を示す表示
器、9は旋回シュート6の旋回方式を調節するための制
御器である。1 is the blast furnace main body, 2 is the charging surface showing the shape of the charge piled up, 3
, 3A is a profilometer that measures the piled shape of the charge in a cross shape, 4.4A is an indicator that shows the piled shape of the charge measured by the profilometer, and 5 is a meter that measures the piled shape of the charge as a uniform height. 6 and 6A are the rotating chutes and their driving devices; 7 is a thermometer installed on the wall of the furnace shaft; 8 is an indicator showing the temperature deviation in the circumferential direction; 9 is the rotating chute 6; This is a controller for adjusting the turning method.
本発明に基〈装入物分布制御は・表示器8でシー 4=
ヤフト部の炉壁温度が円周方向の特定方向で管理幅を越
えて炉壁への熱負荷がこの方向で変化したことを確認し
た場合、制御器9により駆動装置6Aを駆動させ、旋回
シュート6の旋回角速度を熱負荷の低い側で犬きく、高
い側で小さくなるように連続的に変化させる。こうする
ことによって旋回シュート6の角速度が小さい側では、
装入物量が相対的に多くなり、反対に大きい側では装入
物量が少なくなるため装入物堆積形状が変化し7字型の
最凹部が装入物の少なく装入された側に移動する。この
結果炉内ガスは装入物量の少ない方向、即ち7字型の最
凹部が移動した方向で多く流れるようになり、その方向
の熱負荷が漸次増加する。Based on the present invention, the charge distribution control is performed by displaying the indicator 8. 4 = The furnace wall temperature in the shaft section exceeds the control range in a specific direction in the circumferential direction, and the heat load on the furnace wall changes in this direction. When this is confirmed, the controller 9 drives the drive device 6A to continuously change the swing angular velocity of the swing chute 6 such that it increases on the side with a low heat load and decreases on the side with a high heat load. By doing this, on the side where the angular velocity of the rotating chute 6 is small,
The amount of charge becomes relatively large, and on the other hand, the amount of charge decreases on the larger side, so the shape of the charge pile changes and the most concave part of the figure 7 moves to the side where less charge is charged. . As a result, more gas in the furnace flows in the direction where the amount of charge is smaller, that is, in the direction in which the most concave portion of the figure 7 shape has moved, and the heat load in that direction gradually increases.
逆に最凹部が移動した方向の反対側ではガス流れが抑制
されて熱負荷は減少する方向に変化する。On the other hand, on the opposite side to the direction in which the most concave portion has moved, the gas flow is suppressed and the heat load changes in the direction of decreasing.
なお装入物分布制御に当っては、装入物分布のV字型最
凹部の動きを常に十字形に配置したプロフィルメーター
等によって監視することが肝要である。伺んと力れば装
入物堆積形状1は・炉内のガス流れ分布、装入物降下速
度の相速−等てより影響を受け旋回シュートの角速度調
節方向と最凹部のズレの方向が常に一致するとは限らな
いためである。In controlling the charge distribution, it is important to constantly monitor the movement of the V-shaped recessed portion of the charge distribution using a profile meter or the like arranged in a cross shape. In other words, the charge deposition shape 1 is affected by the gas flow distribution in the furnace, the phase velocity of the charge descending speed, etc., and the direction of the angular velocity adjustment of the rotating chute and the direction of the deviation at the most concave part are This is because they do not always match.
炉内ガス流れ分布の偏位方向は、装入物堆積形状をv字
型近似のパターンを狙った装入方式を採用している範囲
では、最凹部ISで最もガス流速が大きいので常に最凹
部の移動方向に合致して変化する。The direction of deviation of the gas flow distribution in the furnace is always the same as that in the most concave part IS, because the gas flow velocity is highest at the most concave part IS, in the range where a charging method aiming at a V-shaped approximation of the charge deposition shape is adopted. changes in accordance with the direction of movement.
本発明を適用した操業結果例全第2図、第3図に示す。Examples of operational results to which the present invention is applied are shown in FIGS. 2 and 3.
第2図(イ)は、ベルレス旋回シュート型装入装置VC
おけるシュートの旋回角速度の変化割合と装入物分布の
最凹部の移動距離(L)との関係を示したものである。Figure 2 (a) shows the bellless rotating chute type charging device VC.
This figure shows the relationship between the rate of change in the swing angular velocity of the chute and the moving distance (L) of the most concave portion of the charge distribution.
(第2図(ロ)は最凹’tflsの移動距離の方向全示
す図)シュート旋回角速度の変化割合は、装入物堆積形
状の最凹部を移動しようとする方向の角速1fVmax
と、この方向の軸対称側の角速度■minの比として表
示している。図から明かなようにこことVこよって最凹
部は30cmだけ移動する。つ1す、軸心部にある最凹
部f ■tnaxを0°側にとることにより最凹部は0
°側に30cmだけ移動する。(Figure 2 (B) is a diagram showing all the directions of the moving distance of the most concave 'tfls) The rate of change in the chute rotation angular velocity is the angular velocity 1fVmax in the direction of moving the most concave part of the charge deposition shape.
and the angular velocity min on the axially symmetric side in this direction. As is clear from the figure, the most concave portion moves by 30 cm due to this and V. 1st, the most concave part f at the axis center By setting tnax to the 0° side, the most concave part is 0
Move 30cm to the ° side.
この例は炉内容積1200???!の高炉で装入物装入
量が1チャージ当りコークス80t、鉱石2 +7.2
tの場合であるが、y mt / V min 、!:
Lとの関係は高炉の犬@烙、装入物量等によって異々
るのであらかじめオフラインモデル又は実炉で把握して
おくことが望ましい。In this example, the furnace internal volume is 1200? ? ? ! In the blast furnace, the charge amount is 80 tons of coke per charge and 2 ores +7.2
In the case of t, y mt / V min ,! :
Since the relationship with L varies depending on the temperature of the blast furnace, the amount of charge, etc., it is desirable to understand it in advance using an offline model or an actual furnace.
第3図は、実施結果の説明図で、第3図(イ)は円周方
向O0および1800方向での高炉シャフト上段部にお
ける炉壁温度の推移を示し、第3図(ロ)は、本発明に
もとづいて旋回シュートの旋回角速度を制御して装入物
堆積形状の最凹部を移動させた場合の凹部移動量を示す
。第3図(イ)では、炉壁温度が180°側で徐々に上
昇し、一方O0側で下降する傾向が見られた。との温度
変化から、炉内ガス流 7 −
れ分布が炉内条件の変化に伴々いo0側で少なく、18
00側で多くなるように円周バランスが崩れ出したこと
が予想された。そこで本発明によシ、旋回シュートの角
速度を変えるアクションを取り最凹部を00佃にずらす
装入物分布制御アクションを取った。この結果、炉壁温
度の円周バランスが回復方向に向かい操業状況の大巾な
悪化を回避できた。Figure 3 is an explanatory diagram of the implementation results. Figure 3 (a) shows the transition of furnace wall temperature in the upper part of the blast furnace shaft in the circumferential direction O0 and 1800 directions, and Figure 3 (b) shows the change in the furnace wall temperature in the circumferential direction O0 and 1800 directions. The amount of movement of the concave portion when the most concave portion of the charge deposition shape is moved by controlling the angular velocity of the rotating chute based on the invention is shown. In FIG. 3(a), there was a tendency for the furnace wall temperature to gradually increase on the 180° side, while decreasing on the O0 side. Due to the temperature change between
It was predicted that the circumference balance would be disrupted so that the number would increase on the 00 side. Therefore, according to the present invention, an action was taken to change the angular velocity of the rotating chute, and a charge distribution control action was taken to shift the recessed part to 00 Tsukuda. As a result, the circumferential balance of the furnace wall temperature was in the direction of recovery, and a drastic deterioration of the operating conditions could be avoided.
以上のように本発明にも七ついて炉壁温度等の変化から
炉内ガス流れ分布の円周方向バランスの乱しを検知し、
この変化に対応ゴせてベルレス旋回シュートの角速度を
制御し、装入物堆積形状の最凹部を移動させることによ
り炉内ガス流れ分布の乱れを抑制し炉況を回復式せるこ
とか可能となる。なお、本発明の実施例では、炉内ガス
流れ分布の円周方向バランスの乱れを炉壁温度の変化と
して把えた例を示したが、本発明の構成から明らかなよ
うに、炉内ガス流れ分布の円周方向バラン 8−
スの変化を測定できるならば、例えば熱負荷計。As described above, the present invention also detects disturbances in the circumferential balance of the gas flow distribution in the furnace from changes in the furnace wall temperature, etc.
In response to this change, by controlling the angular velocity of the bellless rotating chute and moving the most concave part of the charge deposition shape, it is possible to suppress disturbances in the gas flow distribution in the furnace and restore the furnace condition. . In the embodiment of the present invention, an example was shown in which the disturbance in the circumferential balance of the gas flow distribution in the furnace is understood as a change in the furnace wall temperature, but as is clear from the configuration of the present invention, the gas flow in the furnace If changes in the circumferential balance of distribution can be measured, for example, a heat load meter can be used.
ステーブ温度、壁際ガス温度計等の情報を使用するこ七
も可能である。It is also possible to use information such as stave temperature and wall gas thermometer.
第1図は本発明の実施例を示す制御系統図、第2図(イ
)は本発明に係る旋回シュートの角速度と最凹部の移動
距離との関係を示す図、第2図(ロ)は最凹部移動距離
の方向を示す図、第3図げ)は炉壁温度の推移図、第3
図(ロ)は本発明の実施例で最凹部の位置の推移を示す
図である。
]4・・・・・・尚炉本体
2・・・・・ ・装入面
3.3A ・・・・プロフィルメーター4.4A ・・
・・プロフィルの表示器5・・・・ ・・凹部の表示器
6・・ ・ ・・・旋回シュート
6A・・・・ 駆動装置
7・・・・・・温度計
9・・・・・・制御器
出 願 人 新日本製鐵株式会社
11−
第1図
第2図
(イ) (ロン
TMAV面;H
第3國
(イン
一1騎唱
(ロ)
−一ウリFIG. 1 is a control system diagram showing an embodiment of the present invention, FIG. 2 (A) is a diagram showing the relationship between the angular velocity of the swinging chute and the moving distance of the recessed part according to the present invention, and FIG. A diagram showing the direction of the travel distance of the most concave part, Figure 3) is a diagram of the change in furnace wall temperature, Figure 3
Figure (b) is a diagram showing the transition of the position of the most concave portion in the embodiment of the present invention. ]4...Furnace body 2...Charging surface 3.3A...Profile meter 4.4A...
... Profile display 5 ... ... Concave section display 6 ... ... Rotating chute 6A ... Drive device 7 ... Thermometer 9 ... Control Applicant Nippon Steel Corporation 11- Figure 1 Figure 2 (A) (Ron TMAV side;
Claims (1)
フト部の円周方向の温度分布又は熱負荷分布を測定し、
特定の方向で著しく偏差が生じた場合、旋回シュートの
旋回角速度を円周方向で変化させて装入物堆積形状の最
凹部を変化させることによって炉内ガス流れ分布を制御
し円周バランスの安定を図ることを特徴とする高炉操業
方法。In a blast furnace having a bellless rotating chute, measuring the temperature distribution or heat load distribution in the circumferential direction of the blast furnace shaft,
If a significant deviation occurs in a particular direction, the angular velocity of the rotating chute is changed in the circumferential direction to change the concavity of the burden deposition shape, thereby controlling the gas flow distribution in the furnace and stabilizing the circumferential balance. A method of operating a blast furnace characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10942483A JPS602610A (en) | 1983-06-20 | 1983-06-20 | Operating method of blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10942483A JPS602610A (en) | 1983-06-20 | 1983-06-20 | Operating method of blast furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS602610A true JPS602610A (en) | 1985-01-08 |
JPS6232242B2 JPS6232242B2 (en) | 1987-07-14 |
Family
ID=14509889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10942483A Granted JPS602610A (en) | 1983-06-20 | 1983-06-20 | Operating method of blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602610A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10064786B2 (en) | 2012-10-31 | 2018-09-04 | Daikyo Seiko, Ltd. | Container-holding tray |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5117110A (en) * | 1974-08-03 | 1976-02-10 | Sumitomo Metal Ind | Korosonyubutsuno sonyuhoho |
-
1983
- 1983-06-20 JP JP10942483A patent/JPS602610A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5117110A (en) * | 1974-08-03 | 1976-02-10 | Sumitomo Metal Ind | Korosonyubutsuno sonyuhoho |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10064786B2 (en) | 2012-10-31 | 2018-09-04 | Daikyo Seiko, Ltd. | Container-holding tray |
Also Published As
Publication number | Publication date |
---|---|
JPS6232242B2 (en) | 1987-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115896372B (en) | A method for identifying blast furnace collapse conditions based on thermal image of material surface | |
JPS602610A (en) | Operating method of blast furnace | |
CA1203308A (en) | Method and apparatus for controlling the movement of an oscillating spout | |
JP2730751B2 (en) | Blast furnace operation method | |
Lukyanov et al. | Strand withdrawal rate stabilization: via the electric drive of the secondary cooling zone of a continuous casting machine | |
JPH01162707A (en) | Method for operating blast furnace | |
JP3750148B2 (en) | Raw material charging method and apparatus for blast furnace | |
JPH0254706A (en) | Method for operating blast furnace | |
JP2001049312A (en) | Method for charging raw material in bell-less blast furnace | |
JPS61201711A (en) | Blast furnace operation method | |
JPH07179916A (en) | Bell-less type furnace top charging device for vertical furnace | |
KR100376518B1 (en) | Charge control method having function for compensating level variation of charge in blast furnace | |
JP2725529B2 (en) | Charge distribution control method in blast furnace | |
KR20030052746A (en) | Circumferential burden distribution control method in blast furnace | |
JPS60243207A (en) | Method for operating blast furnace | |
JPH0953106A (en) | Method for controlling distribution of charged material in blast furnace | |
JPH021882B2 (en) | ||
JPH0711311A (en) | Method for charging raw material in bell-less blast furnace | |
SU894313A1 (en) | Method of automatic control of calcining process in fluidised-bed furnaces | |
JPS60224708A (en) | Method for charging starting material into blast furnace | |
JPS6314808A (en) | Raw material charging method for bell-less type blast furnace | |
JPH1192808A (en) | Method of forming horizontal terrace of blast furnace top charge | |
JPS6115905A (en) | Method for operating blast furnace | |
JPS6333527A (en) | Method for controlling surface ignition of sintering ore raw material | |
JPH0978111A (en) | Blast furnace operation method |