[go: up one dir, main page]

JPH01162707A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH01162707A
JPH01162707A JP32231387A JP32231387A JPH01162707A JP H01162707 A JPH01162707 A JP H01162707A JP 32231387 A JP32231387 A JP 32231387A JP 32231387 A JP32231387 A JP 32231387A JP H01162707 A JPH01162707 A JP H01162707A
Authority
JP
Japan
Prior art keywords
blast furnace
deviation
furnace
tuyere
circular direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32231387A
Other languages
Japanese (ja)
Other versions
JPH0610289B2 (en
Inventor
Takashi Takebe
竹部 隆
Tomonori Kato
友則 加藤
Sumiyuki Kishimoto
岸本 純幸
Hirohisa Hotta
堀田 裕久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32231387A priority Critical patent/JPH0610289B2/en
Publication of JPH01162707A publication Critical patent/JPH01162707A/en
Publication of JPH0610289B2 publication Critical patent/JPH0610289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce bias of distribution of heat flowing ratio to circular direction and to uniformize Si content in molten iron to the circular direction in the furnace by measuring the distribution of the heat flowing ratio to the circular direction in the furnace at the time of operating a blast furnace and controlling hot blast flowing rate with a hot blast control valve arranged to tuyere based on the above measured valve. CONSTITUTION:At the time of operating the blast furnace, temp. and pressure is each zone 11-14 equally dividing the cross sectional plane in the blast furnace into four are detected with detectors 20, and the data are transmitted into a calculator 15 from a measuring instruction 7 and at there, the heat flowing ratio at each zone 11-14 is calculated. This calculated value is inputted into a controlling device 16 and opening degree of flow rate control valve for hot blast arranging to the tuyere group 21-24 at the four zones corresponding to the zones 11-14 in accordance with the deviation is adjusted, so that the above deviation becomes the min. When the deviation of the heat flowing ratio reduces by adjusting hot blast flowing rate from each tuyere group 21-24 at four ranges, the deviation in the temp. of the molten iron to the circular direction in the blast furnace is eliminated, and the deviation of Si content in the molten iron tapped below each tuyere group 21-24 is made to extremely little.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は高炉の出銑口による溶銑成分、特にSiの偏
りを解消するための高炉操業法である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a blast furnace operating method for eliminating imbalance in hot metal components, particularly Si, due to the taphole of a blast furnace.

U従来の技術ユ 近年、高炉の大型化にともなって炉内における装入物、
または温度の円周方向の分布が不均一になりやすく、こ
のため炉内の溶融レベルの偏りが生じて高炉操業が不安
定となり、また出銑口によって出銑される溶銑の温度ま
たは成分が変わるという問題がクローズアップされるよ
うになってきた。
U Conventional technology In recent years, with the increase in the size of blast furnaces, the burden inside the furnace,
Or the temperature distribution tends to be uneven in the circumferential direction, which causes unevenness in the molten level in the furnace, making blast furnace operation unstable, and also changes the temperature or composition of the hot metal tapped by the tap hole. This issue has begun to receive close attention.

こうした問題に対処するため、高炉に装入される焼結鉱
、コークス等の原料の炉内分布を均一にすることが行わ
れている。高炉の原料は焼結鉱または鉄鉱石とコークス
を交互に層状になるように装入されるが、ストックライ
ン付近において、アーマ−プレートを駆動して前記原料
の層の厚さを均一にしようとするものである。これによ
って羽口から吹き込まれた熱風が原料の層を通過すると
きの通気抵抗が一様になり、還元、溶融反応が均一に進
むことが期待されている。
In order to deal with these problems, attempts have been made to make the distribution of raw materials such as sintered ore and coke charged into the blast furnace uniform within the furnace. The raw materials for the blast furnace are sintered ore or iron ore and coke that are charged in alternating layers, and an attempt is made to make the thickness of the layers of the raw materials uniform by driving an armor plate near the stock line. It is something to do. It is expected that this will equalize the ventilation resistance when the hot air blown from the tuyere passes through the raw material layer, and that the reduction and melting reactions will proceed uniformly.

[発明が解決しようとする問題点コ しかしながら、原料層の厚さと溶融レベルの偏りの関係
は必ずしも直接的なものではなく、予知出来ない外乱に
よって前記偏りが生じた場合、従来の方法ではこの偏り
を解消もしくは低減させることは困難である。
[Problems to be Solved by the Invention] However, the relationship between the thickness of the raw material layer and the deviation in the melting level is not necessarily a direct one, and when the deviation occurs due to unforeseen disturbances, the conventional method It is difficult to eliminate or reduce this.

本発明はかかる事情に鑑みてなされたもので、炉内円周
方向の溶銑成分とくにSiの偏りを低減させる高炉操業
法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a blast furnace operating method that reduces the deviation of hot metal components, particularly Si, in the circumferential direction within the furnace.

[問題点を解決するための手段とその作用]本発明によ
る高炉操業法は、熱流比の炉内円周方向の分布を測定し
、これにもとづいて羽口に設けられた熱風制御弁により
羽口の熱風流量を制御して、前記熱流比の円周方向の分
布の偏りを低減させることを特徴とする。
[Means for solving the problems and their effects] The blast furnace operating method according to the present invention measures the distribution of the heat flow ratio in the circumferential direction inside the furnace, and based on this, the hot air control valve installed in the tuyere controls the tuyeres. It is characterized in that the flow rate of hot air at the mouth is controlled to reduce the bias in the distribution of the heat flow ratio in the circumferential direction.

前記熱流比は高炉内で溶融された液体のない所で定義さ
れるもので、固体とガスの熱容量比であって位置と時間
の関数である。また、熱流比は高炉の上部から装入され
て順次降下される固体原料と、羽口から吹き込まれて上
昇される熱風との熱交換の良否を示す指標となるもので
、とくに高炉内の炉内において、装入原料が固体から液
体に状態変化するいわゆる融着帯の位置、形状はガス流
分布、温度分布などの炉況の変動を集約的に示すもので
ある。前記融着帯の位置、形状を直接計測することは既
にこの出願の発明者によって行われているが、常時測定
することはコストの点から困難である。高炉操業のなか
で制御用に常時測定出来るものとして、同一出願人が特
開昭61−41581で示したように熱流比の測定法を
開発した。
The heat flow ratio is defined in the blast furnace without molten liquid, and is the heat capacity ratio of solid and gas, and is a function of position and time. In addition, the heat flow ratio is an indicator of the quality of the heat exchange between the solid raw materials that are charged from the top of the blast furnace and are lowered one after another, and the hot air that is blown in from the tuyere and ascends. The position and shape of the so-called cohesive zone, where the charging material changes state from solid to liquid, collectively indicate changes in furnace conditions such as gas flow distribution and temperature distribution. Direct measurement of the position and shape of the cohesive zone has already been carried out by the inventor of this application, but it is difficult to constantly measure it due to cost. The same applicant has developed a method for measuring the heat flow ratio as shown in Japanese Patent Application Laid-open No. 41581/1983, which can be constantly measured for control purposes during blast furnace operation.

この熱流比を常時計測して、この計測値に円周方向の偏
りが生じた場合には、熱流比の小さい方向に対応する羽
口からの熱風流量を増加させ、熱流比の変化をみながら
これが円周方向で均一になるように羽口流量を調整する
This heat flow ratio is constantly measured, and if there is a deviation in the measured value in the circumferential direction, increase the flow rate of hot air from the tuyere corresponding to the direction where the heat flow ratio is small, and monitor the change in the heat flow ratio. Adjust the tuyere flow rate so that this becomes uniform in the circumferential direction.

[実施例コ 添付の図面に基づいて、本発明の実施例について説明す
る。第1図は高炉の縦断面図で、1は高炉のシャフト部
、2は環状管、3は羽口である。
[Embodiments] Examples of the present invention will be described based on the attached drawings. FIG. 1 is a longitudinal cross-sectional view of a blast furnace, in which 1 is a shaft portion of the blast furnace, 2 is an annular tube, and 3 is a tuyere.

7は融着帯レベル8を測定する測定器で、この測定器7
から電気的パルスを発信し、これがケーブル9によって
融着帯レベルに達し、ここで反射されて戻るまでの時間
から前記ケーブルの長さが解るので、溶融帯迄の深さを
知ることができる。
7 is a measuring device for measuring the cohesive zone level 8, and this measuring device 7
The length of the cable can be determined from the time it takes for the electric pulse to reach the cohesive zone level and be reflected back from the cable 9, so the depth to the weld zone can be determined.

10は高炉からの排出ガスを分析するガスクロマトグラ
フで、前記測定器7と同様、この図では簡明のため、そ
れぞれ1個だけ示されているが、後述する第2図のV−
■断面5で示される4つの領域に対応してそれぞれ4個
設けられである。
Reference numeral 10 indicates a gas chromatograph for analyzing the exhaust gas from the blast furnace.Similar to the measuring device 7, only one of each is shown in this figure for the sake of clarity;
(2) Four portions are provided corresponding to the four regions shown in cross section 5.

第2図は高炉操業制御ブロック図で、5は第1図のV−
Vレベルの断面を表し、これを4等分した4つの領域1
1,12,13.14と、それぞれを代表して1箇所づ
つ熱流比を測定する検出器20の位置を示すものである
。6は第1図の■−■の羽口レベルの断面を表し、前記
4等分の領域に対応した羽口群21,22,23.24
を示している。大型高炉の羽口は全体で約40個程度あ
るが、ここでは前記4等分の領域に対応してそれぞれ3
つで代表させである。熱流比は高炉内で、特定の場所と
時間に対して固体とガスの熱容量の比として定義される
ものである。この測定法は一定の間隔をおいて炉内のガ
スの温度と圧力の測定値から差分式に計算してもとめら
れるもので、前述のように同一出願人によって見出され
たものである。
Figure 2 is a blast furnace operation control block diagram, and 5 is V- in Figure 1.
Represents the cross section of the V level and divides it into four equal areas 1
1, 12, 13, and 14, which represent the positions of the detectors 20 that measure the heat flow ratio one by one. 6 represents a cross section at the tuyere level indicated by ■-■ in Fig. 1, and tuyere groups 21, 22, 23, 24 corresponding to the four equally divided areas are shown.
It shows. There are about 40 tuyeres in total in a large blast furnace, but here we have three tuyeres each corresponding to the four equal areas.
Let me represent you. The heat flow ratio is defined as the ratio of the heat capacity of the solid to the gas for a specific location and time in the blast furnace. This measurement method is determined by differential calculation from the measured values of the temperature and pressure of the gas in the furnace at regular intervals, and was discovered by the same applicant as mentioned above.

次に以上のように構成された高炉の作用について説明す
る。第2図の■−V断面5に示した4箇所の領域を代表
して、それぞれ垂直方向に複数箇所の温度と圧力のデー
タが測定器7から計算機15に送られ、ここで熱流比が
計算される。計算された4箇所の熱流比は羽口からの熱
風流量を制御する制御器16に入力され、上記4箇所の
熱流比の偏差に応じて領域11乃至14に対応する4箇
所の羽口群21乃至24の羽口にそれぞれ取り付けられ
た流量制御弁の開度を調節する。この調整は前記偏差が
最小になるまで続けられる。
Next, the operation of the blast furnace configured as above will be explained. Data on temperature and pressure at multiple locations in the vertical direction representing the four regions shown in the ■-V cross section 5 in Figure 2 are sent from the measuring device 7 to the computer 15, where the heat flow ratio is calculated. be done. The calculated heat flow ratios at the four locations are input to a controller 16 that controls the flow rate of hot air from the tuyeres, and the tuyere groups 21 at the four locations corresponding to regions 11 to 14 are inputted to the controller 16 that controls the flow rate of hot air from the tuyeres. The opening degree of the flow control valves attached to each of the 24 tuyeres is adjusted. This adjustment continues until the deviation is minimized.

第1図に示される測定器7とガスクロマトグラフ10の
作用は次の通りである。熱流比の大小は上記のように熱
風と装入原料との熱交換の良否に対応するもので、熱流
比の大きいところは熱交換が遅れ、融着帯レベルが他の
領域に比較して相対的に低い。また、ガスクロマトグラ
フ7から得られる排ガス中のCo2/Coが相対的に大
きいときは炉内酸化鉄の還元反応が活発おこなわれ、鉱
石が固体のまま降下する距離が長く、したがって融着帯
レベルは低い。これは熱流比が大きいことに対応する。
The functions of the measuring device 7 and gas chromatograph 10 shown in FIG. 1 are as follows. As mentioned above, the size of the heat flow ratio corresponds to the quality of heat exchange between the hot air and the charged raw material.In areas where the heat flow ratio is large, heat exchange is delayed and the cohesive zone level is relatively low compared to other areas. very low. In addition, when Co2/Co in the exhaust gas obtained from the gas chromatograph 7 is relatively large, the reduction reaction of iron oxide in the furnace is active, and the distance that the ore falls as a solid is long, so the cohesive zone level is low. This corresponds to a large heat flow ratio.

こうした観点から測定器7またはガスクロマトグラフ1
0で測定された測定値は計算機15に入力され、常時測
定されている熱流比と比較されて、これをチエツクする
ために使われる。
From this point of view, the measuring device 7 or the gas chromatograph 1
The measured value measured at 0 is input into the computer 15, compared with the constantly measured heat flow ratio, and used for checking this.

以上のようにして熱流比の偏差が低減されると、出銑の
温度についても円周方向の偏差少なくなり、出銑口によ
る溶銑中のSiの偏差も低減される。これを具体的な数
値で示すと、出銑口による溶銑中Si[%]出銑口によ
る最大、最小の差は、従来例では0.1%であったが、
本実施例では0.02%となった。
When the deviation of the heat flow ratio is reduced as described above, the deviation of the tap iron temperature in the circumferential direction is also reduced, and the deviation of Si in the hot metal due to the tap hole is also reduced. To express this in concrete numerical values, the difference between the maximum and minimum Si [%] in hot metal depending on the taphole was 0.1% in the conventional example, but
In this example, it was 0.02%.

[発明の効果] 本発明によれば熱流比の炉内円周方向の分布を測定し、
これに基づいて羽口に設けられた熱風制御弁により羽口
の熱風流量を制御するので、溶鉄中のSiの円周方向の
偏りを低減させる。
[Effect of the invention] According to the present invention, the distribution of the heat flow ratio in the circumferential direction inside the furnace is measured,
Based on this, the hot air flow rate of the tuyere is controlled by the hot air control valve provided in the tuyere, thereby reducing the deviation of Si in the molten iron in the circumferential direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例にかかわる高炉の縦断面図、第
2図は高炉操業制御ブロック図である。 1・・・高炉、2・・・環状管、3・・・羽口、7・・
・測定器、8・・・融着帯レベル、9・・・ケーブル、
10・・・ガスクロマトグラフ、 11乃至14・・・領域、15・・・計算機、16・・
・制御器、20・・・熱流比の検出器、21乃至24・
・・羽口群。
FIG. 1 is a longitudinal sectional view of a blast furnace according to an embodiment of the present invention, and FIG. 2 is a block diagram of blast furnace operation control. 1... Blast furnace, 2... Annular tube, 3... Tuyere, 7...
・Measuring device, 8... Cohesive zone level, 9... Cable,
10... Gas chromatograph, 11 to 14... Region, 15... Computer, 16...
・Controller, 20... Heat flow ratio detector, 21 to 24・
...tuyere group.

Claims (1)

【特許請求の範囲】[Claims] 高炉操業法において、熱流比の炉内円周方向の分布を測
定し、これにもとづいて羽口に設けられた熱風制御弁に
より羽口の熱風流量を制御して、前記熱流比の円周分布
の偏りを低減させることを特徴とする高炉操業法。
In the blast furnace operation method, the distribution of the heat flow ratio in the circumferential direction inside the furnace is measured, and based on this, the hot air flow rate of the tuyere is controlled by the hot air control valve provided in the tuyere, and the circumferential distribution of the heat flow ratio is A blast furnace operating method characterized by reducing the bias of.
JP32231387A 1987-12-18 1987-12-18 Blast furnace operation method Expired - Fee Related JPH0610289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32231387A JPH0610289B2 (en) 1987-12-18 1987-12-18 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32231387A JPH0610289B2 (en) 1987-12-18 1987-12-18 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH01162707A true JPH01162707A (en) 1989-06-27
JPH0610289B2 JPH0610289B2 (en) 1994-02-09

Family

ID=18142233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32231387A Expired - Fee Related JPH0610289B2 (en) 1987-12-18 1987-12-18 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPH0610289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298206A (en) * 1989-05-10 1990-12-10 Nkk Corp Method for operating blast furnace
JP2013067834A (en) * 2011-09-22 2013-04-18 Jfe Steel Corp Method for operating blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298206A (en) * 1989-05-10 1990-12-10 Nkk Corp Method for operating blast furnace
JP2013067834A (en) * 2011-09-22 2013-04-18 Jfe Steel Corp Method for operating blast furnace

Also Published As

Publication number Publication date
JPH0610289B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
EP3190194B1 (en) Method for detecting air flow distribution in blast furnace
CN102735050B (en) Method of setting temperature of continuous heating furnace and method of controlling furnace temperature
EP3989013A1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for manufacturing molten iron, and device for controlling process
JPH01162707A (en) Method for operating blast furnace
US3690632A (en) Blast furnace control based on measurement of pressures at spaced points along the height of the furnace
JP5547799B2 (en) Hot gas feed method to shaft furnace
Parshakov et al. Control and optimization of melting zone parameters by means of a two-dimensional model in the blast furnace automated process control system
JPH0254706A (en) Method for operating blast furnace
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JPH0129843B2 (en)
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace
JPH0563522B2 (en)
JPH10140218A (en) Blast furnace bottom management method
JPH01108306A (en) Blast furnace operational method
JPS62243702A (en) Controlling method for fusion zone of blast furnace
Polovchenko et al. GAS FLOW AND DISTRIBUTION OF MATERIALS IN THE BLAST FURNACE
JP2725529B2 (en) Charge distribution control method in blast furnace
JPH01142008A (en) Operation of blast furnace
JP2897363B2 (en) Hot metal production method
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
JPH10245604A (en) Operation of blast furnace
JPS61295310A (en) Method for operating blast furnace
JPS61238904A (en) Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation
RU2335548C2 (en) Method of estimation of optimal radial gas distriution in blast furnace
JPS602610A (en) Operating method of blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees