JPS6024478A - Synthetic-aperture radar - Google Patents
Synthetic-aperture radarInfo
- Publication number
- JPS6024478A JPS6024478A JP58132205A JP13220583A JPS6024478A JP S6024478 A JPS6024478 A JP S6024478A JP 58132205 A JP58132205 A JP 58132205A JP 13220583 A JP13220583 A JP 13220583A JP S6024478 A JPS6024478 A JP S6024478A
- Authority
- JP
- Japan
- Prior art keywords
- spectrum
- synthetic aperture
- phase
- output
- spectra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
- G01S13/9011—SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は航空機、あるいは飛しよう体に搭載され地上
をマツピングする合成開口レーダに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synthetic aperture radar that is mounted on an aircraft or a flying object and maps the ground.
まず、第1図に示す従来のこの種の合成開口レーダの構
成について説明する。First, the configuration of a conventional synthetic aperture radar of this type shown in FIG. 1 will be described.
さて、第1図において、コヒーレント信号発生器(1)
より出力されたIP(工ntermediate Fr
e−quency)帯のaW倍信号パルス伸長装置(2
)に入力され時間と共に周波数が変化するチャーブ信号
(チャーブ帯域幅=B)となる。Now, in Fig. 1, the coherent signal generator (1)
The IP output from
e-quency) band aW signal pulse expansion device (2
) and becomes a chirb signal (chirb bandwidth = B) whose frequency changes over time.
このとき、上記チャーブ信号はトリガ信号発生器α場か
らのトリガ信号に同期して発生されるものとする。パル
ス伸長装置1(2)の出力はミキサ(3)で安゛定化局
部発振器(4)からのRF (Radio Frequ
ency)信号と混合され高出力増幅器(5)で高出力
化された後、送受切換器(6)、アンテナ(7)を経て
電波となって空間に放射される。目標で反射された電波
は再びアンテナ(7)、送受切換器(6)を経てミキサ
(3)に入力され、ここで安定化局部発振器(4)から
OR?信号と混合されて工F帯の信号となる。At this time, it is assumed that the chirb signal is generated in synchronization with the trigger signal from the trigger signal generator α field. The output of the pulse stretcher 1 (2) is converted to an RF (Radio Frequency) signal from a stabilized local oscillator (4) by a mixer (3).
After being mixed with a high-power amplifier (5) and increasing the output to a high output signal, the received signal passes through a transmitter/receiver switcher (6) and an antenna (7), and is radiated into space as a radio wave. The radio waves reflected by the target are inputted again to the mixer (3) via the antenna (7) and the transmitter/receiver switch (6), where the OR? It is mixed with the signal and becomes the signal of the engineering F band.
上記IF帯の信号はIP増幅器(8)で増幅された後パ
ルス圧縮装置(9)でレンジ方向には#Y1/E に圧
縮される。上記、圧縮された信号は位相検波器(10・
a)でコヒーレント信号発生器0)からの信号で位相検
波される。同時にコヒーレント信号発生器(1)からの
信号は90°移相器αυを経て位相検波器(10・b)
に入力される。位相検波器(10・b)に入力された上
記圧縮された信号は90° 移相器からの出力により位
相検波される。位相検波器(10・a)及び(10・b
)の出力は各々ゲート回路(12・a)、(12・b)
に入力されてゲーティングされた後これらの出力(16
・a)、(1t5・b)はアジマス圧縮装置員に入力さ
れる。アジマス圧縮装置では種々のアジマス方向に存在
する目標からのレーダエコーのドツプラー周波数が異な
ることを利用して目標をアジマス方向で分離してアジマ
ス分解能を向上させる。このようにして得られた信号o
n’+表示装置a4に入力してレンジ方向及びアジマス
方向共に高い分解能の画像を得る。このとき得られた画
像を更に高いアジマス分解能で観察しようとすれば再び
同一の目標に対し電波を放射し前回よりも長い合成開口
時間で目標f!:観測する必要がおる。The IF band signal is amplified by an IP amplifier (8) and then compressed by a pulse compression device (9) to #Y1/E in the range direction. The above compressed signal is passed through a phase detector (10.
In a), phase detection is performed using the signal from the coherent signal generator 0). At the same time, the signal from the coherent signal generator (1) passes through a 90° phase shifter αυ to a phase detector (10・b).
is input. The compressed signal inputted to the phase detector (10.b) is phase-detected by the output from the 90° phase shifter. Phase detector (10・a) and (10・b
) outputs are gate circuits (12・a) and (12・b), respectively.
These outputs (16
・a) and (1t5・b) are input to the azimuth compression device member. The azimuth compression device uses the fact that the Doppler frequencies of radar echoes from targets existing in various azimuth directions are different to separate targets in the azimuth direction and improve azimuth resolution. The signal obtained in this way
n'+ is input to the display device a4 to obtain images with high resolution in both the range direction and the azimuth direction. If you try to observe the image obtained at this time with even higher azimuth resolution, you will emit radio waves to the same target again and use a longer synthetic aperture time than the previous time to reach the target f! : It is necessary to observe.
送信波長λ、レーダ装置の移動速度■、速度Vの方向と
、レーダ装置と目it結ぶ方向とのなす角即ちスクィン
ト角をθ2合成開口時間をTとするとき一般にアジマス
分解能δθはほぼλ
θ−2VT Si。θ (1)
で与えられる。パルス伸長装置(2)のパルス繰返し周
期をτ、アジマス圧縮装置03で用いられるスペクトル
解析手段例えばFFTのポイント数をNとすれば合成開
口時間Tは
T=Nτ (2)
で与えられることから式(11は
δθ= +3)
2VNT Sinθ
となる。従って送信波長λ、移動速度V、スクイント角
θ、及びパルス繰返し周期τが一定で、FFTのポイン
ト数Nが固定されているならばγジマス分解能δθは一
定となる。故に、同一目標に対しアジマス分解能を可変
にして観察することができなかった。The angle between the transmission wavelength λ, the moving speed of the radar device, the direction of the speed V, and the direction connecting the radar device to the eye, that is, the squint angle, is θ2.When the synthetic aperture time is T, the azimuth resolution δθ is generally approximately λ θ− 2VT Si. It is given by θ (1). If the pulse repetition period of the pulse stretcher (2) is τ, and the number of points of the spectrum analysis means, such as FFT, used in the azimuth compression device 03 is N, then the synthetic aperture time T is given by T=Nτ (2). (11 is δθ=+3) 2VNT Sinθ. Therefore, if the transmission wavelength λ, moving speed V, squint angle θ, and pulse repetition period τ are constant, and the number N of FFT points is fixed, the γ-dimensional resolution δθ is constant. Therefore, it was not possible to observe the same target with variable azimuth resolution.
この発明はこれらの欠点を解決するため合成開口長を分
割し所要アジマス分解能に応じて分割された合成開口時
間々で信号処理した結果を必要な数だけ合成してズーミ
ング機能を持たせたもので以下図面について詳細に説明
する。In order to solve these drawbacks, this invention has a zooming function by dividing the synthetic aperture length and synthesizing the results of signal processing for each divided synthetic aperture time according to the required azimuth resolution. The drawings will be explained in detail below.
第2図はこの発明の実施例であって第1図に示したゲー
ト回路(12a) 、 (12b)の%々の出力(IS
&)、(16b)がレーダ装置から目標までの距4πr
Mlrに対し位相がθx p (j−7−)だけ位相補
償装置1 (Inで補償される。(注;出力(16a)
、(16b)は実信号として記しているが記述を簡単に
するため以後複素信号として扱うが特に−膜性は失われ
ない)。ここにλは送信波長、jは、tであり上記位相
補償は送信パルス毎に行うものとする。αBの出刃はレ
ンジウオーク補償装ff1(IIによりレーダ装置の移
動にかかわらず同一目標からの受信エコーが同一レンジ
ビンに来るようにレンジビンの移動が行われる。α鋳の
出力は同一レンジビン毎にスペクトル解析手段1(例え
ばFFT )[でまず合成開口長を分割化した各小区間
に対してスペクトルがめられる。例えば第3図に示すよ
うに合成開口長LfN分割したN個の小区間tそれぞれ
においてスペクトル解析手段101によりN組のスペク
トルを計算する。成るいは例えば第4図に示すように上
記小区間t1に重複させて2N−1個の小区間に分割し
各々の小区間で得られた目標からのエコーに対しスペク
トル解析手段1[により2N−1組のスペクトルを計算
する。FIG. 2 shows an embodiment of the present invention, in which the outputs (IS) of the gate circuits (12a) and (12b) shown in FIG.
&), (16b) is compensated by the phase compensation device 1 (In) by θx p (j-7-) for the distance 4πr Mlr from the radar device to the target. (Note: Output (16a)
, (16b) are written as real signals, but to simplify the description, they will be treated as complex signals from now on, but in particular, the membrane properties will not be lost). Here, λ is the transmission wavelength, j is t, and the above phase compensation is performed for each transmission pulse. The edge of αB is determined by the range walk compensation system ff1 (II), which moves the range bin so that the received echo from the same target comes to the same range bin regardless of the movement of the radar device.The output of αB is subjected to spectral analysis for each range bin. First, by means 1 (for example, FFT), a spectrum is obtained for each subsection into which the synthetic aperture length is divided.For example, as shown in FIG. The means 101 calculates N sets of spectra. Alternatively, as shown in FIG. The spectrum analysis means 1 calculates 2N-1 sets of spectra for the echoes.
次に第3図においてはN組、第4図においては(2N−
1)組のスペクトル解析手段1で計算されたスペクトル
がメモリ装置Qυに記憶される。Next, in Figure 3, there are N groups, and in Figure 4, (2N-
1) The spectrum calculated by the set of spectrum analysis means 1 is stored in the memory device Qυ.
−万、予め、所要アジマス分解能δR/ll(財)が定
数演算器(ハ)に入力されて第3図に対しては第4図に
対しては
で与えられるMが定数演算器(ハ)で計算されているも
のとする。ここに[]はガウス記号である。このIAは
定数演算器(ハ)の出力としてメモリ装置c2I)に入
力されメモリ装置Q珍からM組のスペクトルが取り出さ
れる。これらのスペクトルの同一の周波数成分に対1−
で、第3図の場合ではeX p (−j 2πf’n
) 。- 10,000, the required azimuth resolution δR/ll is input into the constant calculator (c) in advance, and for Figure 3, the M given by is for Figure 4 is the constant calculator (c). Assume that it is calculated by Here [] is a Gauss symbol. This IA is input to the memory device c2I) as the output of the constant calculator (c), and M sets of spectra are taken out from the memory device Qchin. 1- for the same frequency components of these spectra
In the case of Fig. 3, eX p (-j 2πf'n
).
■
第4図の場合ではeXI)(−j2πf 2 、 n
)で表わされる信号が位相補償装置2勾で定数演算器(
ハ)による演算出力Mにもとすいて乗算される。ここに
n=1.2.・・・9M である。このように位相補償
されたスペクトルに対して再びスペクトル解析手段2(
例えばFFT)’fiにおいて定数演算器(ハ)による
演算出力MにもとすいてMポイントのスペクトルがめら
れる。■ In the case of Figure 4, eXI) (-j2πf 2 , n
) is passed through the constant calculator (
The calculation output M obtained by c) is also multiplied by . Here n=1.2. ...9M. The spectrum analysis means 2 (
For example, in FFT)'fi, a spectrum of M points can be seen in the calculation output M of the constant calculation unit (c).
スペクトル解析手段2(ハ)の出力はQηとなって第1
図に示した表示装置に表示され外部から与えた所要アジ
マス分解能(2)に厄じて同一目標に対してズーミング
効果を持たせた画像を得ることができるO
以上のようにこの発明に係る合成開口レーダでは合成開
口長を小区間に区切り、各小区間に対しスペクトルをめ
これらのスペクトルを所要数だけ組合せることにより任
意のアジマス分解能を得ることができズーミングの効果
を有する。The output of the spectrum analysis means 2 (c) becomes Qη and the first
As described above, it is possible to obtain an image with a zooming effect on the same target, despite the required azimuth resolution (2) given from the outside, which is displayed on the display device shown in the figure. In aperture radar, an arbitrary azimuth resolution can be obtained by dividing the synthetic aperture length into small sections, taking a spectrum for each small section, and combining a required number of these spectra, which has a zooming effect.
第1図は従来の合成開口レーダの構成図、第2図は本発
明によるアジマス圧縮装置の構成図、第3図、第4図は
本発明において用いられる分割化された合成開口長を表
わす図である。図中(1)はコヒーレント信号発生器、
(2)はパルス伸長装置、(3)はミキサ、(4)は安
定化局部発振器、(5)は高出力増幅器、(6)は送受
切換器、(7)はアンテナ、(8)はIP増幅器、(9
)はパルス圧縮装置、顛は位相検波器。
aυは90’移相器、Q冬はゲート回路、0階はアジマ
ス圧縮装置、 04は表示装置、α埼はトリガ信号発生
器。
σeはゲート回路03の出力、aηはアジマス圧縮装置
01の出力、08は位相補償装置t1.Onはレンジウ
オーク補償装置、(ホ)はスペクトル解析手段1,0υ
はメモリ装置、(2)は位相補償装置2.(ハ)はスペ
クトル解析手段2.Q4は所要アジマス分解能を命令す
る入力、c!!9は定数演算器である。なお、1図中同
一あるいは相当部分には同一符号を付して示しであるn
代理人大岩増雄
第3図
第4図Fig. 1 is a block diagram of a conventional synthetic aperture radar, Fig. 2 is a block diagram of an azimuth compression device according to the present invention, and Figs. 3 and 4 are diagrams showing divided synthetic aperture lengths used in the present invention. It is. In the figure (1) is a coherent signal generator,
(2) is a pulse stretcher, (3) is a mixer, (4) is a stabilizing local oscillator, (5) is a high output amplifier, (6) is a transmitter/receiver switch, (7) is an antenna, and (8) is an IP Amplifier, (9
) is a pulse compression device, and the other is a phase detector. aυ is a 90' phase shifter, Q winter is a gate circuit, 0th floor is an azimuth compression device, 04 is a display device, and α is a trigger signal generator. σe is the output of the gate circuit 03, aη is the output of the azimuth compression device 01, and 08 is the output of the phase compensator t1. On is range walk compensation device, (E) is spectrum analysis means 1,0υ
(2) is a memory device, and (2) is a phase compensation device 2. (c) is spectrum analysis means 2. Q4 is an input that commands the required azimuthal resolution, c! ! 9 is a constant arithmetic unit. In addition, the same or corresponding parts in Figure 1 are indicated by the same reference numerals.
Claims (1)
て、ある目標からの複数個のエコー信号に対し同相にす
るための位相補償手段1と、上記位相補償手段1に接続
されたレンジウオーク補償手段と、上記レンジウオーク
補償手段に接続されて、N個の分割された合成開口長そ
れぞれにおける信号に対しスペクトルをめることのでき
る手段1と、上記スペクトルをめることのできる手段1
に接続されて、上記N組のスペクトルを記憶することの
できる手段と、上記N組のスペクトルを記憶することの
できる手段に接続されて、上記N個の分割された合成開
口長の各々の遅れ時間に相当する位相を補償することの
できる位相補償手段2と、上記位相補償手段2に接続さ
れて、上記位相補償手段2で得られた出力に対しスペク
トルをめることのできる手段2とを備え、スペクトルを
めることのできる手段2において、外部から与えられた
任意の整数例えばM(M≦N)に対しMポイントのスペ
クトルをめることができることf%徴とする合成開口レ
ーダ。In a radar device mounted on an aircraft or a flying object, a phase compensation means 1 for making a plurality of echo signals from a certain target have the same phase, and a range walk compensation connected to the phase compensation means 1. means 1 connected to the range walk compensation means and capable of determining a spectrum for a signal at each of the N divided synthetic aperture lengths; and means 1 capable of determining the spectrum.
means connected to and capable of storing the N sets of spectra; and means connected to the means capable of storing the N sets of spectra to delay each of the N divided synthetic aperture lengths. A phase compensating means 2 capable of compensating a phase corresponding to time, and a means 2 connected to the phase compensating means 2 and capable of calculating a spectrum with respect to the output obtained by the phase compensating means 2. A synthetic aperture radar comprising means 2 for determining a spectrum, in which the f% sign is that the spectrum at M points can be determined for any externally given integer, for example, M (M≦N).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58132205A JPS6024478A (en) | 1983-07-20 | 1983-07-20 | Synthetic-aperture radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58132205A JPS6024478A (en) | 1983-07-20 | 1983-07-20 | Synthetic-aperture radar |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6024478A true JPS6024478A (en) | 1985-02-07 |
JPH0231834B2 JPH0231834B2 (en) | 1990-07-17 |
Family
ID=15075846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58132205A Granted JPS6024478A (en) | 1983-07-20 | 1983-07-20 | Synthetic-aperture radar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6024478A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241683A (en) * | 1985-04-19 | 1986-10-27 | Mitsubishi Electric Corp | Synthetic aperture radar equipment |
JP2011247597A (en) * | 2010-05-21 | 2011-12-08 | Mitsubishi Electric Corp | Radar signal processor |
-
1983
- 1983-07-20 JP JP58132205A patent/JPS6024478A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241683A (en) * | 1985-04-19 | 1986-10-27 | Mitsubishi Electric Corp | Synthetic aperture radar equipment |
JP2011247597A (en) * | 2010-05-21 | 2011-12-08 | Mitsubishi Electric Corp | Radar signal processor |
Also Published As
Publication number | Publication date |
---|---|
JPH0231834B2 (en) | 1990-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110596646B (en) | Layout and method for improving radar angular resolution based on MIMO system | |
US3603992A (en) | Dual harmonic frequency synthetic aperture radar | |
JP2014029284A (en) | Detection image generation device, radar device, detection image generation method, and detection image generation program | |
GB869808A (en) | Improvements in or relating to radar systems | |
JP2957090B2 (en) | Radar equipment | |
JP6573748B2 (en) | Radar equipment | |
JP2004125591A (en) | On-vehicle pulse radar device | |
JPS6024478A (en) | Synthetic-aperture radar | |
US4338603A (en) | Self adaptive correlation radar | |
US3500407A (en) | Apparatus for simulating clutter in testing amti radar systems | |
Nguyen et al. | Comparing non-adaptive with adaptive windowing using multi-dimensional spatially variant apodization for automotive radar | |
JPS61284685A (en) | Radar equipment | |
US3239837A (en) | Frequency modulated range and velocity measuring instrument | |
Li et al. | Frequency reference error analysis for bistatic sar | |
JPH04301584A (en) | Pulse doppler radar equipment | |
Pasternak et al. | Continuous wave ground penetrating radars: state of the art | |
JP6989663B1 (en) | Radar device | |
Bączyk et al. | Wideband multistatic passive radar demonstrator for ISAR imaging using COTS components | |
WO2019159231A1 (en) | Radar device | |
JP2003194926A (en) | Equipment and method for processing radar signal | |
JP3252514B2 (en) | Airborne radar equipment | |
Rukaj | Implementation of a complete radar system on the NI USRP-2944R software defined radio platform | |
JPS61140883A (en) | High resolving power radar for tracking target | |
JP2001133541A (en) | Pulse compression radar device | |
Jylhä et al. | Synthetic Aperture Radar Imaging using COTS Components |