[go: up one dir, main page]

JPH04301584A - Pulse doppler radar equipment - Google Patents

Pulse doppler radar equipment

Info

Publication number
JPH04301584A
JPH04301584A JP3066485A JP6648591A JPH04301584A JP H04301584 A JPH04301584 A JP H04301584A JP 3066485 A JP3066485 A JP 3066485A JP 6648591 A JP6648591 A JP 6648591A JP H04301584 A JPH04301584 A JP H04301584A
Authority
JP
Japan
Prior art keywords
phase
signal
fft
pulse
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3066485A
Other languages
Japanese (ja)
Other versions
JP2737434B2 (en
Inventor
Shigeo Inatsune
茂穂 稲常
Takahiko Fujisaka
貴彦 藤坂
Yoshimasa Ohashi
大橋 由昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3066485A priority Critical patent/JP2737434B2/en
Publication of JPH04301584A publication Critical patent/JPH04301584A/en
Application granted granted Critical
Publication of JP2737434B2 publication Critical patent/JP2737434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To obtain a pulse Doppler radar equipment enabling attainment of an effect of improvement in a signal-to-noise power ratio(SNR) by coherent integration even when a target being observed is in accelerated movement in the radial direction. CONSTITUTION:A reception signal from a target of observation is converted into a digital complex video signal and stored for each range bin number and pulse hit number in a two-dimensional memory 14. Data trains obtained by dividing data of the two-dimensional memory are subjected to fast Fourier transform in the direction of pulse hit by FFTs 22 respectively. An output signal of each FFT having a phase gradient which is most approximate to the phase gradient of a partial straight line obtained by linear approximation in each partial section of a phase curve of the reception signal from the target of observation being in the accelerated movement supposed beforehand is selected from separate output signals of the FFTs, while such phase compensation as enabling connection of partial straight lines having different phase gradients at a joint of the partial sections is called out of a reference memory, and each of them is subjected to computation of the product and the sum so as to execute coherent integration.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は信号対雑音電力比(以
下、SNRと呼ぶ)の改善効果を高めるコヒ−レント積
分を適用したパルスドップラ−レ−ダ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse Doppler radar device that uses coherent integration to improve the signal-to-noise ratio (hereinafter referred to as SNR).

【0002】0002

【従来の技術】従来、この種のパルスドップラ−レ−ダ
装置として、例えば、文献、G.V.Morris:“
Airborne Pulsed Doppler R
adar■,Artech House,Inc.(1
988)に示されているものがある。図7は従来のパル
スドップラ−レ−ダ装置の要部構成図である。図中、1
はアンテナ、2は送信手段、3は送受切換器、17は受
信手段、18はコヒ−レント積分手段である。次に動作
概要を説明する。送信手段2で発生されたパルス状の送
信電波は送受切換器3、アンテナ1を経て、観測目標に
向け放射され、目標で反射された電波はアンテナ1で受
信され、送受切換器3を経て受信手段17内のミキサ−
5に入力され、局部発信器4の出力との積がとられ、中
間周波信号に変換される。ミキサ−5の出力はIF(中
間周波)アンプ6で増幅された後、2分配され、夫々位
相検波器7a,7bへ入力され、位相検波器7a,7b
においてコヒ−レント発振器8の出力信号との積、及び
コヒ−レント発振器8の出力信号の位相を90°移相器
9にて90゜遅らせた信号との積がとられ夫々位相検波
される。夫々の位相検波器出力は受信複素ビデオ信号の
実部(I)及び虚部(Q)として、サンプルホ−ルダ1
0a,10bによって保持された後、A/D変換器11
a,11bによりディジタル複素ビデオ信号に変換され
る。上記ディジタル複素ビデオ信号はコヒ−レント積分
手段18内のバッファメモリ14に記憶される。記憶手
段14から同一レンジビン番号のディジタル複素ビデオ
デ−タをコヒ−レント積分数N相当分抽出し、FFT1
5でN点FFTを行うことによりコヒ−レント積分を行
っている。 上記FFT15の出力をもとに振幅検出器16にて振幅
値を計算し、スレッショルド検出器(図示していない)
へ送る。スレッショルド検出器は振幅検出器16出力信
号が所定のスレッショルドレベルを越えたとき目標と判
断し、検出信号を表示器(図示していない)へ送る。表
示器は検出信号を受けて目標を表示する。
2. Description of the Related Art Conventionally, pulse Doppler radar devices of this type have been known, for example, in the literature, G. V. Morris: “
Airborne Pulsed Doppler R
adar ■, Artech House, Inc. (1
988). FIG. 7 is a block diagram of the main parts of a conventional pulse Doppler radar device. In the figure, 1
2 is an antenna, 2 is a transmitting means, 3 is a transmitting/receiving switch, 17 is a receiving means, and 18 is a coherent integrating means. Next, an overview of the operation will be explained. The pulse-shaped transmission radio waves generated by the transmitting means 2 pass through the transmitter/receiver switch 3 and the antenna 1, and are radiated toward the observation target, and the radio waves reflected by the target are received by the antenna 1, and then through the transmitter/receiver switcher 3. Mixer within means 17
5, multiplied by the output of the local oscillator 4, and converted into an intermediate frequency signal. The output of the mixer 5 is amplified by an IF (intermediate frequency) amplifier 6, then divided into two parts and input to phase detectors 7a and 7b, respectively.
Then, the product with the output signal of the coherent oscillator 8 and the product with a signal obtained by delaying the phase of the output signal of the coherent oscillator 8 by 90 degrees by a 90 degree phase shifter 9 are calculated, and the respective phases are detected. The respective phase detector outputs are input to the sample holder 1 as the real part (I) and imaginary part (Q) of the received complex video signal.
After being held by 0a and 10b, the A/D converter 11
a and 11b into a digital complex video signal. The digital complex video signal is stored in a buffer memory 14 within the coherent integration means 18. The digital complex video data of the same range bin number is extracted from the storage means 14 in an amount corresponding to the coherent integral number N, and is subjected to FFT1.
Coherent integration is performed by performing N-point FFT in step 5. An amplitude value is calculated by an amplitude detector 16 based on the output of the FFT 15, and a threshold detector (not shown)
send to The threshold detector determines a target when the amplitude detector 16 output signal exceeds a predetermined threshold level and sends a detection signal to a display (not shown). The display receives the detection signal and displays the target.

【0003】今、送信パルスの繰返し周期をΔt,送信
波長をλとすると、FFTにより、その中心周波数fn
が次式で表せるN個のフィルタ−が形成され、夫々のド
ップラ−フィルタ−の帯域幅は、約1/NΔtで与えら
れる。     fn=n/NΔt,            
                         
     (1)ここで、n=−N/2,・・,0,・
・,(N/2)−1FFTは、観測目標のラジアル速度
をVnとして次式のN種を仮定し、これによって生ずる
受信信号の位相の時間変動を補償して積分を行う、即ち
、コヒ−レント積分と等価である。     Vn=λfn/2,            
                         
     (2)ここで、n=−N/2,・・,0,・
・,(N/2)−1
Now, if the repetition period of the transmission pulse is Δt and the transmission wavelength is λ, then the center frequency fn is determined by FFT.
N filters are formed, and the bandwidth of each Doppler filter is given by approximately 1/NΔt. fn=n/NΔt,

(1) Here, n=-N/2,...,0,...
, (N/2)-1 FFT assumes the radial velocity of the observation target to be Vn and the N types of the following equation, and performs integration by compensating for the time fluctuation of the phase of the received signal caused by this, that is, the coherence It is equivalent to the rent integral. Vn=λfn/2,

(2) Here, n=-N/2,...,0,...
・,(N/2)−1

【0004】0004

【発明が解決しようとする課題】以上のように構成され
る従来のパルスドップラ−レ−ダ装置では、観測中の目
標がラジアル方向に一定速度(=等速運動)、もしくは
一定と見なせる速度で移動しているときには、コヒ−レ
ント積分によりSNRを改善することが可能である。と
ころが、観測目標がラジアル方向に加速運動をするとき
、ドップラ周波数帯域幅が拡がるため、SNR改善効果
が得られないという課題があった。この発明は上記のよ
うな課題を解消するためになされたもので、観測中の目
標がレンジビン範囲内でラジアル方向に加速運動をして
いても、コヒ−レント積分によるSNR改善効果が得ら
れるパルスドップラ−レ−ダ装置を得ることを目的とす
る。
[Problems to be Solved by the Invention] In the conventional pulse Doppler radar device configured as described above, the target being observed has a constant velocity (=uniform motion) in the radial direction, or a velocity that can be considered constant. When moving, it is possible to improve the SNR by coherent integration. However, when the observation target accelerates in the radial direction, the Doppler frequency bandwidth expands, so there is a problem that the SNR improvement effect cannot be obtained. This invention was made in order to solve the above-mentioned problems, and even if the target being observed is accelerating in the radial direction within the range bin range, it is possible to obtain a pulse that improves the SNR by coherent integration. The purpose is to obtain a Doppler radar device.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のパルスドップラ−レ−ダ装置は、パルス
状の送信電波を観測目標に向け放射し、反射された電波
を受信信号としてとりこみ、受信信号をディジタル複素
ビデオ信号に変換したのち、コヒ−レント積分して目標
の検出を行うパルスドップラ−レ−ダ装置において、以
下の要素を備えるようにしたものである。 (a)受信ディジタル複素ビデオ信号をレンジビン番号
とパルスヒット番号毎に記憶する記憶手段、(b)上記
記憶手段のディジタル複素ビデオデ−タを分割するデ−
タ分割手段、(c)上記の分割したデ−タを夫々パルス
ヒット方向に高速フ−リエ変換する高速フ−リエ変換手
段(以下、FFT手段と呼ぶ)、(d)上記各FFT手
段の出力信号から、予め想定した運動をする観測目標の
受信信号の位相曲線を部分区間毎に直線近似する部分直
線の位相勾配に、最も近い位相勾配をもつFFT手段の
出力信号を選択する出力切替手段、(e)上記の異なる
位相勾配をもつ部分直線が、部分区間の継目でつながる
ような位相補償量を予め算出し参照メモリに記憶する位
相補償量算出手段、(f)上記出力切替手段を制御して
夫々のFFT手段の出力信号から上記の特定出力信号を
選択するとともに、上記位相補償量算出手段を制御して
参照メモリから上記の位相補償量を呼出し、夫々を複素
積和演算手段へ転送する制御手段、(g)上記の選択さ
れたFFT手段の出力信号と、上記の参照メモリから呼
出された位相補償量を、夫々複素乗算して総和をとる複
素積和演算手段。
[Means for Solving the Problems] In order to achieve the above object, the pulse Doppler radar device of the present invention emits pulsed transmission radio waves toward an observation target, and uses the reflected radio waves as reception signals. This pulse Doppler radar device detects a target by coherently integrating the received signal after converting it into a digital complex video signal, and is equipped with the following elements. (a) storage means for storing received digital complex video signals for each range bin number and pulse hit number; (b) data for dividing the digital complex video data in the storage means;
(c) Fast Fourier transform means (hereinafter referred to as FFT means) that performs fast Fourier transform on each of the divided data in the pulse hit direction; (d) Output of each of the above FFT means; Output switching means for selecting, from the signal, an output signal of the FFT means having a phase gradient closest to a phase gradient of a partial straight line that linearly approximates a phase curve of a received signal of an observation target moving in a predetermined manner for each partial section; (e) a phase compensation amount calculation means that calculates in advance a phase compensation amount such that the above-mentioned partial straight lines having different phase gradients are connected at the seam of the partial sections and stores it in a reference memory; (f) controls the above-mentioned output switching means; selects the specific output signal from the output signals of the respective FFT means, controls the phase compensation amount calculation means to retrieve the phase compensation amounts from the reference memory, and transfers each to the complex product-sum calculation means. (g) complex product-sum calculation means for complex multiplying the output signal of the selected FFT means and the phase compensation amount read from the reference memory and calculating the sum;

【0006】[0006]

【作用】上記のように構成されたこの発明のパルスドッ
プラ−レ−ダ装置では、観測目標の受信信号をディジタ
ル複素ビデオ信号に変換し、レンジビン番号とパルスヒ
ット番号毎に記憶した記憶手段のデ−タを分割し、夫々
FFT手段によりパルスヒット方向に高速フ−リエ変換
する。上記の各FFT手段の出力信号から、予め想定し
た加速運動をする観測目標の受信信号の位相曲線を部分
区間毎に直線近似する部分直線の位相勾配に、最も近い
位相勾配をもつFFT手段の出力信号を選択するととも
に、上記異なる位相勾配をもつ部分直線が部分区間の継
目でつながるような位相補償量を参照メモリから呼出し
、夫々を積和演算することにより、観測中の目標がラジ
アル方向に加速運動をしていてもコヒ−レント積分によ
るSNR改善効果が得られる。
[Operation] The pulse Doppler radar device of the present invention configured as described above converts the received signal of the observation target into a digital complex video signal, and stores the data in the storage means for each range bin number and pulse hit number. - the data is divided into two parts, each of which is fast Fourier transformed in the pulse hit direction by FFT means. From the output signals of the above-mentioned FFT means, the output of the FFT means has the phase gradient closest to the phase gradient of a partial straight line that linearly approximates the phase curve of the received signal of the observation target that undergoes pre-assumed accelerated motion for each partial section. In addition to selecting a signal, the target being observed is accelerated in the radial direction by recalling the phase compensation amount from the reference memory such that the partial straight lines with different phase gradients are connected at the seams of the partial sections, and calculating the sum of products for each. Even when exercising, the SNR improvement effect can be obtained by coherent integration.

【0007】[0007]

【実施例】図1は本発明の一実施例を示す要部構成図で
ある。図中、14は受信ディジタル複素ビデオ信号をレ
ンジビン番号m,パルスヒット番号n毎に記憶する2次
元記憶手段、21は上記記憶手段14の受信ディジタル
複素ビデオデ−タを、パルスヒット方向に、デ−タ長L
の部分区間デ−タ(図2の例ではL=8)に分割するデ
−タ分割手段、22は上記各部分区間デ−タに夫々サイ
ドロ−ブ抑圧のための重み付けを行った後(図示してい
ない)、夫々パルスヒット方向に高速フ−リエ変換する
K個のFFT手段、23は上記各FFT手段22に接続
してFFT手段の出力信号から、予め想定した運動をす
る観測目標の受信信号の位相曲線を部分区間毎に直線近
似する部分直線の位相勾配に、最も近い位相勾配をもつ
FFT手段の出力信号を選択する出力切替手段、28は
上記の異なる位相勾配をもつ部分直線が、部分区間の継
目でつながるような位相補償量を予め算出し参照メモリ
に記憶する位相補償量算出手段、29は上記の出力切替
手段23を制御して夫々のFFT手段22の出力信号か
ら上記の特定出力信号を選択するとともに、上記の位相
補償量算出手段28を制御して参照メモリから上記の位
相補償量を呼出し、夫々を複素積和演算手段27へ転送
する制御手段、27は上記の選択されたFFT手段の出
力信号と、上記の参照メモリから呼出された位相補償量
を、夫々複素乗算して総和をとる複素積和演算手段、1
6は複素積和演算手段27の出力の振幅値を求める振幅
検出器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of essential parts showing an embodiment of the present invention. In the figure, 14 is a two-dimensional storage means for storing received digital complex video signals for each range bin number m and pulse hit number n, and 21 is a two-dimensional storage means for storing received digital complex video signals in the storage means 14 in the pulse hit direction. T length L
A data dividing means 22 divides the data into sub-interval data (L=8 in the example of FIG. 2), and after weighting each sub-interval data for sidelobe suppression, (not shown), K FFT means each performing fast Fourier transform in the pulse hit direction; 23 is connected to each FFT means 22 to receive an observation target moving in a predetermined manner from the output signal of the FFT means; Output switching means 28 selects the output signal of the FFT means having the phase gradient closest to the phase gradient of the partial straight line that linearly approximates the phase curve of the signal for each partial section; A phase compensation amount calculation means 29 calculates in advance a phase compensation amount that connects at the joint of the partial sections and stores it in a reference memory. Control means 27 selects the output signal, controls the phase compensation amount calculation means 28, reads the phase compensation amounts from the reference memory, and transfers each of them to the complex product-sum calculation means 27. complex product-sum calculation means for calculating the sum by complex multiplication of the output signal of the FFT means and the phase compensation amount read from the reference memory;
Reference numeral 6 denotes an amplitude detector for determining the amplitude value of the output of the complex product-sum calculation means 27.

【0008】次に、図1の本発明の要部の動作について
説明する。従来例と同等部分については重複説明を省略
する。受信手段でディジタル複素ビデオ信号に変換され
た受信信号は記憶手段14にレンジビン番号m,パルス
ヒット番号n毎に記憶される。図2の斜線部は観測目標
の存在するレンジビン番号mを例示している。今、想定
する運動をする(この実施例では、初速度V0 ,加速
度aの等加速運動とする)観測目標がレンジビン番号m
に存在すると仮定すると、観測目標の速度Vは式1で表
せる。     V=V0 +a・t            
                         
       (1)ここで、t=nΔt,nはパルス
ヒット番号,Δtは送信パルス繰返し周期である。上記
の想定する等加速運動をする観測目標の受信信号の位相
φ(t)は次式で表せ、図3に一例を図示するような2
次曲線になる。     φ(t)={(2V0 ・t+a・t2 )2
π/λ}+φ0 ,    (2)ここで、t=nΔt
,φ0 は初期位相,λは波長である。
Next, the operation of the main part of the present invention shown in FIG. 1 will be explained. Duplicate explanation of parts equivalent to the conventional example will be omitted. The received signal converted into a digital complex video signal by the receiving means is stored in the storage means 14 for each range bin number m and pulse hit number n. The shaded area in FIG. 2 exemplifies the range bin number m where the observation target exists. Now, the observation target that makes the assumed motion (in this example, it is assumed to be a uniformly accelerated motion with an initial velocity V0 and an acceleration a) has a range bin number m
Assuming that V exists, the velocity V of the observation target can be expressed by Equation 1. V=V0 +a・t

(1) Here, t=nΔt, n is the pulse hit number, and Δt is the transmission pulse repetition period. The phase φ(t) of the received signal of the observation target that assumes the above-mentioned uniformly accelerated motion can be expressed by the following equation, and an example is shown in FIG.
It becomes the following curve. φ(t)={(2V0 ・t+a・t2 )2
π/λ}+φ0, (2) where t=nΔt
, φ0 is the initial phase, and λ is the wavelength.

【0009】先に説明した記憶手段14にレンジビン番
号m,パルスヒット番号n毎に記憶された受信ディジタ
ル複素ビデオデ−タをパルスヒット方向にに分割する。 このデ−タ分割では、図2に例示するようにデ−タをオ
−バラップさせて(図2の例では4デ−タ)、デ−タ長
Lのデ−タ列(図2の例ではL=8)に分割する。分割
したデ−タは夫々サイドロ−ブ抑圧のための重み付けを
行った後(図示していない)、夫々FFT手段22によ
りL点FFTを行う。重みWl としては例えばテイラ
−ウィンドウを使用する。k番目の分割したデ−タ列を
入力とするFFT手段の出力信号は式3で表せ、図4に
そのFFT手段の出力信号の位相の時間変化を示す。
The received digital complex video data stored in the storage means 14 described above for each range bin number m and pulse hit number n is divided in the pulse hit direction. In this data division, as illustrated in FIG. 2, the data is overlapped (4 data in the example of FIG. 2), and a data string of data length L (in the example of FIG. Then, it is divided into L=8). After each divided data is weighted for sidelobe suppression (not shown), an L-point FFT is performed by the FFT means 22, respectively. For example, a Taylor window is used as the weight Wl. The output signal of the FFT means which receives the k-th divided data string as input can be expressed by Equation 3, and FIG. 4 shows the temporal change in the phase of the output signal of the FFT means.

【0010】0010

【数1】[Math 1]

【0011】ここで、Wl :重み, u(l,k):k番目のFFT手段に入力される部分区
間デ−タ, (k=1,…K)(l=1,…,L),k:分割したデ
−タ列の番号,(=FFT手段番号),受信信号の位相
φ(t)を部分区間毎に直線近似する部分直線の番号 α:各FFT手段の出力信号のスペクトル番号(α=1
,…,L), L:部分区間デ−タ長である。
Here, Wl: weight, u(l,k): subinterval data input to the k-th FFT means, (k=1,...K)(l=1,...,L), k: number of the divided data string, (=FFT means number), number of the partial straight line that linearly approximates the phase φ(t) of the received signal for each partial interval α: spectrum number of the output signal of each FFT means ( α=1
,...,L), L: Partial interval data length.

【0012】図5は図3に例示した等加速運動をする観
測目標の受信信号の位相φ(t)の2次曲線を、部分区
間毎に直線近似した一例を示すものである。近似には、
例えば最小2乗法により各部分区間で位相誤差の2乗和
を最小になるように決める。上記の2次曲線を部分区間
毎に直線近似した場合、異なる位相勾配をもつの部分直
線が部分区間の継目でつながるような位相補償量(図5
の例ではk=3の部分直線の位相補償量はP)を予め算
出し、参照メモリに記憶する。図6は、図5が想定する
運動として等加速運動の一例について説明しているのに
対し、他の等加速運動の例を加えたものである。観測目
標のもつ運動のパタ−ンに対応して、受信信号の位相φ
(t)の曲線のパタ−ン(以下、位相パタ−ンと呼ぶ)
は1対1に決まり、図6に示すように想定する等加速運
動の各パタ−ンに対して各位相パタ−ンをβ=1,2,
3,…と番号をつける。そして上記受信信号の位相φ(
t)の各曲線を部分区間毎に直線近似した位相勾配の異
なる部分直線に番号k(=1,2,…)をつける。上記
位相パタ−ン番号βと上記部分直線番号k毎に位相補償
量を予め算出して、位相補償量算出手段の参照メモリに
記憶しておく。
FIG. 5 shows an example of linear approximation of the quadratic curve of the phase φ(t) of the received signal of the observation target having uniformly accelerated motion illustrated in FIG. 3 for each partial section. For approximation,
For example, the least squares method is used to determine the sum of squares of phase errors in each subinterval to be the minimum. When the above quadratic curve is linearly approximated for each subsection, the amount of phase compensation (Fig. 5
In the example, the phase compensation amount P) for the partial straight line with k=3 is calculated in advance and stored in the reference memory. While FIG. 5 describes an example of uniformly accelerated motion as the assumed motion, FIG. 6 adds another example of uniformly accelerated motion. The phase of the received signal φ corresponds to the motion pattern of the observation target.
(t) curve pattern (hereinafter referred to as phase pattern)
is decided on a one-to-one basis, and as shown in Fig. 6, each phase pattern is set to β = 1, 2,
Number them 3,.... And the phase φ(
A number k (=1, 2, . . . ) is assigned to partial straight lines having different phase gradients obtained by linearly approximating each curve of t) for each partial section. A phase compensation amount is calculated in advance for each of the phase pattern number β and the partial straight line number k, and is stored in the reference memory of the phase compensation amount calculation means.

【0013】以上の説明から、等加速運動が想定される
観測目標に対しては、観測目標の受信信号の位相φ(t
)として図6に示すような位相パタ−ンを考える。 未知の等加速運動をする観測目標信号を抽出するために
、以下の手順で、コヒ−レント積分処理を行う。想定す
る等加速運動の位相パタ−ン番号をβとする。先ず、受
信信号(=記憶手段14にレンジビン番号m,パルスヒ
ット番号n毎に記憶された受信ディジタル複素ビデオデ
−タ)をデ−タ長Lで分割した各デ−タ列について、夫
々パルスヒット方向にL点FFTを行う。制御手段は、
出力切替手段23を制御して、FFT番号kの出力信号
から、位相パタ−ン番号βの部分直線番号kの位相勾配
に最も近い位相勾配をもつ出力信号(図4に示すα=1
,2,…,Lの何れか)を選択するとともに、位相補償
量算出手段28を制御して、上記位相勾配をもつ部分直
線(=位相パタ−ン番号βの部分直線番号k)の位相補
償量を参照メモリから呼出し、夫々を複素積和演算手段
27へ転送する。次いで、複素積和演算手段27にて、
上記選択されたFFTの出力信号と、位相補償量算出手
段28の参照メモリから呼出された位相補償量との複素
積和演算を行う。なお、選択されたFFT手段の出力信
号は複素積和演算手段に入力する前に、夫々サイドロ−
ブ抑圧のための重み付け(図示していない)を行ってい
る。以上により、複素積和演算手段27の出力信号(=
複素加算器出力信号)は次式で表せる。
From the above explanation, for an observation target for which uniformly accelerated motion is assumed, the phase φ(t
), consider a phase pattern as shown in FIG. In order to extract the observation target signal having unknown uniformly accelerated motion, coherent integration processing is performed according to the following procedure. Let β be the phase pattern number of the assumed uniformly accelerated motion. First, for each data string obtained by dividing the received signal (=received digital complex video data stored in the storage means 14 for each range bin number m and pulse hit number n) by the data length L, the pulse hit direction is determined. Perform L-point FFT. The control means are
The output switching means 23 is controlled to select an output signal having a phase gradient closest to the phase gradient of the partial straight line number k of the phase pattern number β (α=1 shown in FIG. 4) from the output signal of the FFT number k.
, 2, . The quantities are called from the reference memory and each is transferred to the complex product-sum calculation means 27. Next, in the complex product-sum calculation means 27,
A complex product-sum calculation is performed between the output signal of the selected FFT and the phase compensation amount read from the reference memory of the phase compensation amount calculation means 28. Note that the output signals of the selected FFT means are side-loaded before being input to the complex product-sum calculation means.
Weighting (not shown) is performed to suppress the effects. As described above, the output signal (=
The complex adder output signal) can be expressed by the following equation.

【0014】[0014]

【数2】[Math 2]

【0015】ここで、Wk :重み, V(β,k):FFT手段(番号k)の出力信号のうち
、位相パタ−ン番号βの部分直線番号kの位相勾配に最
も近い位相勾配をもつもの、 Φ(β,k):位相パタ−ン番号βの部分直線番号kの
位相補償量, β:位相パタ−ンの番号,(β=1,2,…)k:FF
T手段の番号(=分割したデ−タ列番号),及び位相パ
タ−ン番号βの位相曲線の部分区間番号(=部分区間を
直線近似した部分直線の番号),(k=1,2,…K) 式4は位相パタ−ンβについての積和演算手段27の出
力信号である。以上の説明では、想定する運動として観
測目標が式1に示す等加速運動する場合を例にとり説明
したが、式1に示す運動に限るものではなく、任意の運
動パタ−ンについても同様の処理を行って、コヒ−レン
ト積分によるSNR改善効果が得られる。
Here, Wk: weight, V(β,k): among the output signals of the FFT means (number k), the signal having the phase gradient closest to the phase gradient of the partial straight line number k of the phase pattern number β. Φ(β,k): Phase compensation amount of partial straight line number k of phase pattern number β, β: Number of phase pattern, (β=1, 2,...)k: FF
The number of the T means (=divided data sequence number), the partial section number of the phase curve of the phase pattern number β (=the number of the partial straight line that linearly approximated the partial section), (k=1, 2, ...K) Equation 4 is the output signal of the product-sum calculation means 27 for the phase pattern β. In the above explanation, we took as an example the case where the observation target moves with uniform acceleration as shown in Equation 1 as the assumed movement, but this is not limited to the movement shown in Equation 1, and the same processing can be applied to any arbitrary movement pattern. By doing this, the effect of improving SNR by coherent integration can be obtained.

【0016】[0016]

【発明の効果】以上のようなこの発明によれば、観測目
標の受信信号をディジタル複素ビデオ信号に変換し、レ
ンジビン番号とパルスヒット番号毎に記憶した記憶手段
のディジタル複素ビデオデ−タを分割し、夫々をFFT
手段によりパルスヒット方向に高速フ−リエ変換し、各
FFT手段の出力信号から、予め想定した加速運動をす
る観測目標の受信信号の位相曲線を部分区間毎に直線近
似する部分直線の位相勾配に、最も近い位相勾配をもつ
FFT手段の出力信号を選択するとともに、上記の異な
る位相勾配をもつ部分直線が部分区間の継目でつながる
ような位相補償量を参照メモリから呼出し、夫々を積和
演算して、コヒ−レント積分することにより、観測中の
目標がラジアル方向に加速運動をしていてもコヒ−レン
ト積分によるSNR改善効果が得られるパルスドップラ
−レ−ダ装置を得ることができる。
[Effects of the Invention] According to the present invention as described above, a received signal of an observation target is converted into a digital complex video signal, and the digital complex video data stored in the storage means is divided for each range bin number and pulse hit number. , FFT each
Fast Fourier transform is performed in the pulse hit direction by means of the FFT means, and from the output signal of each FFT means, the phase gradient of a partial straight line is obtained by linearly approximating the phase curve of the received signal of the observation target that is undergoing pre-assumed accelerated motion for each partial section. , selects the output signal of the FFT means with the closest phase gradient, reads from the reference memory the phase compensation amount such that the partial straight lines having different phase gradients are connected at the joint of the partial sections, and calculates the sum of products for each. By performing coherent integration, it is possible to obtain a pulse Doppler radar device that can obtain an SNR improvement effect by coherent integration even if the target being observed is accelerating in the radial direction.

【0017】[0017]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例を示す要部構成図である。FIG. 1 is a configuration diagram of main parts showing an embodiment of the present invention.

【図2】図1の記憶手段に記憶する受信ディジタル複素
ビデオデ−タの分割法を説明するメモリマップである。
FIG. 2 is a memory map illustrating a method of dividing received digital complex video data to be stored in the storage means of FIG. 1;

【図3】想定する等加速運動をする観測目標の受信信号
の位相曲線φ(t)の一例を示す図である。
FIG. 3 is a diagram showing an example of a phase curve φ(t) of a received signal of an observation target that assumes uniformly accelerated motion.

【図4】想定する等速運動をする観測目標の受信信号の
FFT出力の位相を示す図である。
FIG. 4 is a diagram showing the phase of an FFT output of a received signal of an observation target moving at an assumed uniform velocity.

【図5】図3に示す位相曲線φ(t)の直線近似の方法
を説明する図である。
5 is a diagram illustrating a method of linear approximation of the phase curve φ(t) shown in FIG. 3. FIG.

【図6】図5に示す位相曲線φ(t)の他の例を含めた
図である。
6 is a diagram including another example of the phase curve φ(t) shown in FIG. 5. FIG.

【図7】従来のパルスドップラ−レ−ダ装置の要部構成
図である。
FIG. 7 is a configuration diagram of main parts of a conventional pulse Doppler radar device.

【符号の説明】[Explanation of symbols]

14  記憶手段 21  データ分割手段 22  FFT手段 23  出力切替手段 25  複素乗算器 26  複素加算器 27  複素積和演算手段 28  位相補償量算出手段 29  制御手段 14. Storage means 21 Data division means 22 FFT means 23 Output switching means 25 Complex multiplier 26 Complex adder 27 Complex product-sum calculation means 28 Phase compensation amount calculation means 29 Control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】パルス状の送信電波を観測目標に向け放射
し、反射された電波を受信し、受信信号をディジタル複
素ビデオ信号に変換したのち、コヒ−レント積分して目
標の検出を行うパルスドップラ−レ−ダ装置において、
以下の要素を有するパルスドップラ−レ−ダ装置。 (a)受信ディジタル複素ビデオ信号をレンジビン番号
とパルスヒット番号毎に記憶する記憶手段、(b)上記
記憶手段のディジタル複素ビデオデ−タを分割するデ−
タ分割手段、(c)上記の分割したデ−タを夫々パルス
ヒット方向に高速フ−リエ変換する高速フ−リエ変換手
段(以下、FFT手段と呼ぶ)、(d)上記各FFT手
段の出力信号から、予め想定した運動をする観測目標の
受信信号の位相曲線を部分区間毎に直線近似する部分直
線の位相勾配に、最も近い位相勾配をもつFFT手段の
出力信号を選択する出力切替手段、(e)上記の異なる
位相勾配をもつ部分直線が、部分区間の継目でつながる
ような位相補償量を予め算出し参照メモリに記憶する位
相補償量算出手段、(f)出力切替手段を制御して夫々
のFFT手段の出力信号から上記の特定出力信号を選択
するとともに、位相補償量算出手段を制御して参照メモ
リから上記の位相補償量を呼出し、夫々を複素積和演算
手段へ転送する制御手段、(g)上記の選択されたFF
T手段の出力信号と、上記の参照メモリから呼出された
位相補償量を、夫々複素乗算して総和をとる複素積和演
算手段。
Claim 1: A pulse that emits a pulsed transmission radio wave toward an observation target, receives the reflected radio wave, converts the received signal into a digital complex video signal, and then performs coherent integration to detect the target. In Doppler radar equipment,
A pulse Doppler radar device having the following elements: (a) storage means for storing received digital complex video signals for each range bin number and pulse hit number; (b) data for dividing the digital complex video data in the storage means;
(c) Fast Fourier transform means (hereinafter referred to as FFT means) that performs fast Fourier transform on each of the divided data in the pulse hit direction; (d) Output of each of the above FFT means; Output switching means for selecting, from the signal, an output signal of the FFT means having a phase gradient closest to a phase gradient of a partial straight line that linearly approximates a phase curve of a received signal of an observation target moving in a predetermined manner for each partial section; (e) a phase compensation amount calculation means that calculates in advance a phase compensation amount such that the above-mentioned partial straight lines having different phase gradients are connected at the seams of the partial sections and stores it in a reference memory; (f) controlling an output switching means; Control means for selecting the above-mentioned specific output signal from the output signals of the respective FFT means, controlling the phase compensation amount calculation means to retrieve the above-mentioned phase compensation amounts from the reference memory, and transferring each of them to the complex product-sum calculation means. , (g) the above selected FF
Complex product-sum calculation means for complex multiplying the output signal of the T means and the phase compensation amount read from the reference memory, respectively, and calculating the sum.
JP3066485A 1991-03-29 1991-03-29 Pulse Doppler radar device Expired - Lifetime JP2737434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066485A JP2737434B2 (en) 1991-03-29 1991-03-29 Pulse Doppler radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066485A JP2737434B2 (en) 1991-03-29 1991-03-29 Pulse Doppler radar device

Publications (2)

Publication Number Publication Date
JPH04301584A true JPH04301584A (en) 1992-10-26
JP2737434B2 JP2737434B2 (en) 1998-04-08

Family

ID=13317141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066485A Expired - Lifetime JP2737434B2 (en) 1991-03-29 1991-03-29 Pulse Doppler radar device

Country Status (1)

Country Link
JP (1) JP2737434B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258786A (en) * 2005-02-15 2006-09-28 Mitsubishi Electric Corp Radar installation
JP2008275388A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Image radar apparatus
JP2010527278A (en) * 2007-05-16 2010-08-12 ベラソン インコーポレイテッド System and method for ultrasonic harmonic imaging
JP2015203681A (en) * 2014-04-16 2015-11-16 三菱電機株式会社 Radar device
JPWO2018220825A1 (en) * 2017-06-02 2019-11-07 三菱電機株式会社 Radar equipment
WO2024105756A1 (en) * 2022-11-15 2024-05-23 三菱電機株式会社 Radar signal processing device, radar device, and radar signal processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258786A (en) * 2005-02-15 2006-09-28 Mitsubishi Electric Corp Radar installation
JP2008275388A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Image radar apparatus
JP2010527278A (en) * 2007-05-16 2010-08-12 ベラソン インコーポレイテッド System and method for ultrasonic harmonic imaging
JP2015203681A (en) * 2014-04-16 2015-11-16 三菱電機株式会社 Radar device
JPWO2018220825A1 (en) * 2017-06-02 2019-11-07 三菱電機株式会社 Radar equipment
WO2024105756A1 (en) * 2022-11-15 2024-05-23 三菱電機株式会社 Radar signal processing device, radar device, and radar signal processing method

Also Published As

Publication number Publication date
JP2737434B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
Hu et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar
US4176351A (en) Method of operating a continuous wave radar
US6911937B1 (en) Digital polarimetric system
US4992797A (en) Method of detection and identification of one or more remote objects
US6297764B1 (en) Radar receiver having matched filter processing
JP3723650B2 (en) Radar system
JP2016151425A (en) Radar system
US5229775A (en) Digital pulse compression apparatus
US3768096A (en) Focusing control of synthetic aperture processing for sidelooking radar
NL8204616A (en) IMPULSE RADAR DEVICE.
US6624783B1 (en) Digital array stretch processor employing two delays
JPH04264285A (en) Method and apparatus for compensating for acceleration with matching filter
JPH0672920B2 (en) Radar equipment
US4249179A (en) Circuit arrangement for displacing the clutter spectrum in a radar receiver
JP2010175457A (en) Radar apparatus
RU2337373C1 (en) Method for azimuth resolution of moving targets, method for surveillance pulse radar set operation in azimuth resolution mode for moving targets, and radar system for method implementation
JPH04301584A (en) Pulse doppler radar equipment
RU2271019C1 (en) Method of compensation of signal phase incursions in onboard radar system and onboard radar system with synthesized aperture of antenna for flying vehicles
JP2957090B2 (en) Radar equipment
Lulu et al. High-resolution range-Doppler maps by coherent extension of narrowband pulses
WO2018225250A1 (en) Radar device
JPS6349193B2 (en)
JPH03218486A (en) Pulse doppler radar equipment
JP2019120613A (en) Rader system, method of controlling rader system, and program
US3795912A (en) Spectrum analysis radar system