JPH0231834B2 - - Google Patents
Info
- Publication number
- JPH0231834B2 JPH0231834B2 JP58132205A JP13220583A JPH0231834B2 JP H0231834 B2 JPH0231834 B2 JP H0231834B2 JP 58132205 A JP58132205 A JP 58132205A JP 13220583 A JP13220583 A JP 13220583A JP H0231834 B2 JPH0231834 B2 JP H0231834B2
- Authority
- JP
- Japan
- Prior art keywords
- synthetic aperture
- phase
- spectrum
- signal
- spectra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
- G01S13/9011—SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
【発明の詳細な説明】
この発明は航空機、あるいは飛しよう体に搭載
され地上をマツピングする合成開口レーダに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synthetic aperture radar that is mounted on an aircraft or a flying object and maps the ground.
まず、第1図に示す従来のこの種の合成開口レ
ーダの構成について説明する。 First, the configuration of a conventional synthetic aperture radar of this type shown in FIG. 1 will be described.
さて、第1図において、コヒーレント信号発生
器1より出力されたIF(Intermediate
Frequency)帯のCW信号はパルス伸長装置2に
入力され時間と共に周波数が変化するチヤーブ信
号(チヤーブ帯域幅=B)となる。 Now, in FIG. 1, the IF (Intermediate
The CW signal in the frequency band is input to the pulse expansion device 2 and becomes a chirp signal (chiab bandwidth = B) whose frequency changes with time.
このとき、上記チヤーブ信号はトリガ信号発生
器15からのトリガ信号に同期して発生されるも
のとする。パルス伸長装置2の出力はミキサ3で
安定化局部発振器4からのRF(Radio
Frequency)信号と混合され高出力増幅器5で高
出力化された後、送受切換器6、アンテナ7を経
て電波となつて空間に放射される。目標で反射さ
れた電波は再びアンテナ7、送受切換器6を経て
ミキサ3に入力され、ここで安定化局部発振器4
からのRF信号と混合されてIF帯の信号となる。 At this time, it is assumed that the chiave signal is generated in synchronization with the trigger signal from the trigger signal generator 15. The output of the pulse stretcher 2 is converted into an RF (Radio) from a stabilized local oscillator 4 by a mixer 3.
After being mixed with a frequency (frequency) signal and increased in output by a high-output amplifier 5, the signal passes through a transmitter/receiver switch 6 and an antenna 7, and is radiated into space as a radio wave. The radio waves reflected by the target are inputted again to the mixer 3 via the antenna 7 and the transmitter/receiver switch 6, where they are input to the stabilized local oscillator 4.
It is mixed with the RF signal from the IF band and becomes an IF band signal.
上記IF帯の信号はIF増幅器8で増幅された後
パルス圧縮装置9でレンジ方向にほぼ1/Bに圧
縮される。上記、圧縮された信号は位相検波器1
0・aでコヒーレント信号発生器1からの信号で
位相検波される。同時にコヒーレント信号発生器
1からの信号は90゜移相器11を経て位相検波器
10・bに入力される。位相検波器10・bに入
力された上記圧縮された信号は90゜移相器からの
出力により位相検波される。位相検波器10・a
及び10・bの出力は各々ゲート回路12・a,
12・bに入力されてゲーテイングされた後これ
らの出力16・a,16・bはアジマス圧縮装置
13に入力される。アジマス圧縮装置では種々の
アジマス方向に存在する目標からのレーダエコー
のドツプラー周波数が異なることを利用して目標
をアジマス方向で分離してアジマス分解能を向上
させる。このようにして得られた信号17を表示
装置14に入力してレンジ方向及びアジマス方向
共に高い分解能の画像を得る。このとき得られた
画像を更に高いアジマス分解能で観察しようとす
れば再び同一の目標に対し電波を放射し前回より
も長い合成開口時間で目標を観測する必要があ
る。 The IF band signal is amplified by an IF amplifier 8 and then compressed by a pulse compressor 9 to approximately 1/B in the range direction. Above, the compressed signal is passed through the phase detector 1
Phase detection is performed using the signal from the coherent signal generator 1 at 0.a. At the same time, the signal from the coherent signal generator 1 passes through a 90° phase shifter 11 and is input to a phase detector 10.b. The compressed signal input to the phase detector 10.b is subjected to phase detection using the output from the 90° phase shifter. Phase detector 10・a
The outputs of gate circuits 12.a and 10.b are respectively connected to gate circuits 12.a and 10.b.
After being input to 12.b and gated, these outputs 16.a and 16.b are input to an azimuth compression device 13. The azimuth compression device uses the fact that the Doppler frequencies of radar echoes from targets existing in various azimuth directions are different to separate targets in the azimuth direction and improve azimuth resolution. The signal 17 thus obtained is input to the display device 14 to obtain a high resolution image in both the range direction and the azimuth direction. In order to observe the image obtained at this time with even higher azimuth resolution, it is necessary to emit radio waves to the same target again and observe the target with a longer synthetic aperture time than the previous time.
送信波長λ、レーダ装置の移動速度v、速度v
の方向と、レーダ装置と目標を結ぶ方向とのなす
角即ちスクイント角をθ、合成開口時間をTとす
るとき一般にアジマス分解能δθはほぼ
δθ=λ/2vTsinθ (1)
で与えられる。パルス伸長装置2のパルス繰返し
周期をτ、アジマス圧縮装置13で用いられるス
ペクトル解析手段例えばFFTのポイント数をN
とすれば合成開口時間Tは
T=Nτ (2)
で与えられることから式(1)は
δθ=λ/2vNτsinθ (3)
となる。従つて送信波長λ、移動速度v、スクイ
ント角θ、及びパルス繰返し周期τが一定で、
FFTポイント数Nが固定されているならばアジ
マス分解能δθは一定となる。このアジマス分解能
δθを得る合成開口時間も一定となり、観察目標に
応じてクイツクルツクすることができない。すな
わち、合成開口時間を短くして低い分解能で広い
観測領域を素早く見て、その広い観測領域の中で
更に詳細に観測したい領域を合成開口時間を長く
して高い分解能で見る場合があるが、従来の方法
ではこのようにアジマス分解能を可変にすること
ができなかつた。 Transmission wavelength λ, moving speed v of the radar device, speed v
In general, the azimuth resolution δθ is approximately given by δθ=λ/2vTsinθ (1) where θ is the angle formed between the direction of the radar device and the direction connecting the radar device and the target, that is, the squint angle, and T is the synthetic aperture time. The pulse repetition period of the pulse expansion device 2 is τ, and the number of points of the spectrum analysis means used in the azimuth compression device 13, such as FFT, is N.
Then, since the synthetic aperture time T is given by T=Nτ (2), equation (1) becomes δθ=λ/2vNτsinθ (3). Therefore, the transmission wavelength λ, moving speed v, squint angle θ, and pulse repetition period τ are constant,
If the number N of FFT points is fixed, the azimuth resolution δθ is constant. The synthetic aperture time for obtaining this azimuth resolution δθ is also constant, and cannot be quickly adjusted depending on the observation target. In other words, there are cases where you shorten the synthetic aperture time to quickly view a wide observation area with low resolution, and then extend the synthetic aperture time to view an area within that wide observation area that you want to observe in greater detail with high resolution. With conventional methods, it has not been possible to make the azimuth resolution variable in this way.
この発明はこれらの欠点を解決するため合成開
口長を分割し所要アジマス分解能に応じて分割さ
れた合成開口長各々で信号処理した結果を必要な
数だけ合成してズーミング機能を持たせたもので
以下図面について詳細に説明する。 This invention solves these drawbacks by dividing the synthetic aperture length and combining the results of signal processing for each of the divided synthetic aperture lengths according to the required azimuth resolution to provide a zooming function. The drawings will be explained in detail below.
第2図はこの発明の実施例であつて第1図に示
したゲート回路12a,12bの各々の出力16
a,16bがレーダ装置から目標までの距離rに
対し位相がe×p(j4πr/λ)だけ位相補償装置1
18で補償される。(注;出力16a,16bは
実信号として記しているが記述を簡単にするため
以後複素信号として扱うが特に一般性は失われな
い)。ここにλは送信波長、jは√−1であり上
記位相補償は送信パルス毎に行うものとする。1
8の出力はレンジウオーク補償装置19によりレ
ーダ装置の移動にかかわらず同一目標からの受信
エコーが同一レンジビンに来るようにレンジビン
の移動が行われる。19の出力は同一レンジビン
毎にスペクトル解析手段1(例えばFFT)20
でまず合成開口長を分割化した各小区間に対して
スペクトルが求められる。例えば第3図に示すよ
うに合成開口長LをN分割したN個の小区間lそ
れぞれにおいてスペクトル解析手段120により
N組のスペクトルを計算する。或るいは例えば第
4図に示すように上記小区間lを重複させて2N
−1個の小区間に分割し各々の小区間で得られた
目標からのエコーに対しスペクトル解析手段12
0により2N−1組のスペクトルを計算する。 FIG. 2 shows an embodiment of the present invention, in which each output 16 of the gate circuits 12a and 12b shown in FIG.
a, 16b are compensated by the phase compensation device 118 by e×p(j4πr/λ) in phase with respect to the distance r from the radar device to the target. (Note: Outputs 16a and 16b are described as real signals, but to simplify the description, they will be treated as complex signals from now on without loss of generality.) Here, λ is the transmission wavelength, j is √-1, and the above phase compensation is performed for each transmission pulse. 1
The output of No. 8 is used to move the range bin by the range walk compensation device 19 so that the received echoes from the same target come to the same range bin regardless of the movement of the radar device. The output of 19 is transmitted to spectrum analysis means 1 (for example, FFT) 20 for each same range bin.
First, a spectrum is obtained for each small section obtained by dividing the synthetic aperture length. For example, as shown in FIG. 3, the spectrum analysis means 120 calculates N sets of spectra in each of N small sections l obtained by dividing the synthetic aperture length L into N. Or, for example, as shown in Fig. 4, the above subsection l may be overlapped to create 2N
- Spectral analysis means 12 for the echoes from the target obtained in each subsection by dividing into one subsection;
0, calculate 2N-1 sets of spectra.
次に第3図においてはN組、第4図においては
(2N−1)組のスペクトル解析手段1で計算され
たスペクトルがメモリ装置21に記憶される。 Next, N sets in FIG. 3 and (2N-1) sets of spectra calculated by the spectrum analysis means 1 in FIG. 4 are stored in the memory device 21.
一方、予め、所要アジマス分解能δR〓24が定
数演算器25に入力されて第3図に対しては
M=[λ/2δR〓l sinθ] M=1、2、…、N(4)
第4図に対しては
M=[λ/δR〓l sinθ]−1
M=1、2、…、(2N−1) (5)
で与えられるMが定数演算器25で計算されてい
るものとする。ここに[ ]はガウス記号であ
る。このMは定数演算器25の出力としてメモリ
装置21に入力されメモリ装置21からM組のス
ペクトルが取り出される。これらのスペクトルの
同一の周波数成分に対して、第3図の場合ではe
×p(−j2πfl/vn)、第4図の場合ではe×p(
−
j2πfl/2vn)で表わされる信号が位相補償装置2
22で定数演算器25による演算出力Mにもとず
いて乗算される。ここにn=1、2、…、Mであ
る。このように位相補償されたスペクトルに対し
て再びスペクトル解析手段2(例えばFFT)23
において定数演算器25による演算出力Mにもと
ずいてMポイントのスペクトルが求められる。 On the other hand , the required azimuth resolution δ R 〓24 is input to the constant calculator 25 in advance, and for FIG. For FIG. 4, M given by M=[λ/δ R 〓l sinθ]-1 M=1, 2,..., (2N-1) (5) is calculated by the constant calculator 25. shall be taken as a thing. Here [ ] is a Gauss symbol. This M is input to the memory device 21 as the output of the constant calculator 25, and M sets of spectra are taken out from the memory device 21. For the same frequency components of these spectra, in the case of Fig. 3, e
×p(-j2πfl/vn), in the case of Fig. 4, e×p(
- j2πfl/2vn) is multiplied by the phase compensator 222 based on the calculation output M from the constant calculator 25. Here, n=1, 2,...,M. The spectrum analysis means 2 (for example, FFT) 23 is applied to the phase-compensated spectrum again.
Based on the calculation output M from the constant calculator 25, a spectrum at M points is determined.
スペクトル解析手段223の出力は17となつ
て第1図に示した表示装置に表示され外部から与
えた所要アジマス分解能24に応じて同一目標に
対してズーミング効果を持たせた画像を得ること
ができる。 The output of the spectrum analysis means 223 becomes 17 and is displayed on the display device shown in FIG. 1, and an image with a zooming effect on the same target can be obtained according to the required azimuth resolution 24 given from the outside. .
以上のようにこの発明に係る合成開口レーダで
は合成開口長を小区間に区切り、各小区間に対し
スペクトルを求めこれらのスペクトルを所要数だ
け組合せることにより任意のアジマス分解能を得
ることができズーミングの効果を有する。 As described above, in the synthetic aperture radar according to the present invention, arbitrary azimuth resolution can be obtained by dividing the synthetic aperture length into small sections, obtaining spectra for each small section, and combining the required number of these spectra. It has the effect of
第1図は従来の合成開口レーダの構成図、第2
図は本発明によるアジマス圧縮装置の構成図、第
3図、第4図は本発明において用いられる分割化
された合成開口長を表わす図である。図中1はコ
ヒーレント信号発生器、2はパルス伸長装置、3
はミキサ、4は安定化局部発振器、5は高出力増
幅器、6は送受切換器、7はアンテナ、8はIF
増幅器、9はパルス圧縮装置、10は位相検波
器、11は90゜移相器、12はゲート回路、13
はアジマス圧縮装置、14は表示装置、15はト
リガ信号発生器、16はゲート回路12の出力、
17はアジマス圧縮装置13の出力、18は位相
補償装置119はレンジウオーク補償装置、20
はスペクトル解析手段1、21はメモリ装置、2
2は位相補償装置2、23はスペクトル解析手段
2、24は所要アジマス分解能を命令する入力、
25は定数演算器である。なお、図中同一あるい
は相当部分には同一符号を付して示してある。
Figure 1 is a configuration diagram of a conventional synthetic aperture radar, Figure 2
The figure is a block diagram of an azimuth compression device according to the present invention, and FIGS. 3 and 4 are diagrams showing divided synthetic aperture lengths used in the present invention. In the figure, 1 is a coherent signal generator, 2 is a pulse stretcher, and 3 is a coherent signal generator.
is mixer, 4 is stabilizing local oscillator, 5 is high output amplifier, 6 is transmitter/receiver switch, 7 is antenna, 8 is IF
amplifier, 9 is a pulse compression device, 10 is a phase detector, 11 is a 90° phase shifter, 12 is a gate circuit, 13
14 is an azimuth compression device, 14 is a display device, 15 is a trigger signal generator, 16 is an output of the gate circuit 12,
17 is the output of the azimuth compression device 13; 18 is the phase compensator 119; the range walk compensator; 20
is a spectrum analysis means 1, 21 is a memory device, 2
2 is a phase compensator 2; 23 is a spectrum analysis means 2; 24 is an input for commanding the required azimuth resolution;
25 is a constant calculator. It should be noted that the same or corresponding parts in the figures are indicated by the same reference numerals.
Claims (1)
装置において、ある目標からの複数個のエコー信
号に対し同相にするための位相補償手段1と、上
記位相補償手段1に接続されたレンジウオーク補
償手段と、上記レンジウオーク補償手段に接続さ
れて、N個の分割された合成開口長それぞれにお
ける信号に対しスペクトルを求めることのできる
手段1と、上記スペクトルを求めることのできる
手段1に接続されて、上記N組のスペクトルを記
憶することのできる手段と、上記N組のスペクト
ルを記憶することのできる手段に接続されて、上
記N個の分割された合成開口長の各々の遅れ時間
に相当する位相を補償することのできる位相補償
手段2と、上記位相補償手段2に接続されて、上
記位相補償手段2で得られた出力に対しスペクト
ルを求めることのできる手段2とを備え、スペク
トルを求めることのできる手段2において、外部
から与えられた任意の整数例えばM(M≦N)に
対しMポイントのスペクトルを求めることができ
ることを特徴とする合成開口レーダ。1. In a radar device mounted on an aircraft or a flying object, a phase compensation means 1 for making multiple echo signals from a certain target in phase, and a range walk compensation means connected to the phase compensation means 1. and means 1 connected to the range walk compensation means and capable of determining a spectrum for the signal at each of the N divided synthetic aperture lengths, and connected to the means 1 capable of determining the spectrum, means capable of storing said N sets of spectra; and a phase corresponding to the delay time of each of said N divided synthetic aperture lengths, said means being connected to said means capable of storing said N sets of spectra. and a means 2 connected to the phase compensation means 2 and capable of determining a spectrum from the output obtained by the phase compensation means 2. A synthetic aperture radar characterized in that the spectrum of M points can be obtained for any externally given integer, for example, M (M≦N).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58132205A JPS6024478A (en) | 1983-07-20 | 1983-07-20 | Synthetic-aperture radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58132205A JPS6024478A (en) | 1983-07-20 | 1983-07-20 | Synthetic-aperture radar |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6024478A JPS6024478A (en) | 1985-02-07 |
JPH0231834B2 true JPH0231834B2 (en) | 1990-07-17 |
Family
ID=15075846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58132205A Granted JPS6024478A (en) | 1983-07-20 | 1983-07-20 | Synthetic-aperture radar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6024478A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241683A (en) * | 1985-04-19 | 1986-10-27 | Mitsubishi Electric Corp | Synthetic aperture radar equipment |
JP2011247597A (en) * | 2010-05-21 | 2011-12-08 | Mitsubishi Electric Corp | Radar signal processor |
-
1983
- 1983-07-20 JP JP58132205A patent/JPS6024478A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6024478A (en) | 1985-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5059966A (en) | Synthetic aperture radar system | |
US20080100510A1 (en) | Method and apparatus for microwave and millimeter-wave imaging | |
US3878525A (en) | Frequency jumping CW radar | |
JPH02210285A (en) | Spot light maping radar device | |
US3334344A (en) | Doppler radar altimeter | |
Lutz et al. | Target simulator concept for chirp modulated 77 GHz automotive radar sensors | |
US20220107408A1 (en) | Radar device | |
US3710387A (en) | F.m. radar range system | |
US3270336A (en) | Eliminating multiple responses in a grating lobe antenna array | |
JP2751901B2 (en) | Satellite-based synthetic aperture radar | |
US3774202A (en) | Squint-mode spatial filter | |
US4338603A (en) | Self adaptive correlation radar | |
JPH0231834B2 (en) | ||
US4495501A (en) | Method and means for providing frequency agile operation of MTI _radar | |
US3848253A (en) | Side looking pulse radar system | |
US4232315A (en) | Range detector | |
JPH09113615A (en) | Interferometry sar system | |
JPH11183607A (en) | Synthetic aperture radar apparatus | |
DeMartinis et al. | A 100 ghz polarimetric compact radar range for scale-model radar cross section measurements | |
JPH01314984A (en) | Radar | |
JPS61284685A (en) | Radar equipment | |
US3299426A (en) | Moving target radar system | |
JPS58223770A (en) | Synthetic aperture radar device | |
JPS5845582A (en) | Synthetic aperture radar device | |
US2998599A (en) | Moving target indication |