JPS5845582A - Synthetic aperture radar device - Google Patents
Synthetic aperture radar deviceInfo
- Publication number
- JPS5845582A JPS5845582A JP56143246A JP14324681A JPS5845582A JP S5845582 A JPS5845582 A JP S5845582A JP 56143246 A JP56143246 A JP 56143246A JP 14324681 A JP14324681 A JP 14324681A JP S5845582 A JPS5845582 A JP S5845582A
- Authority
- JP
- Japan
- Prior art keywords
- target
- antenna
- synthetic aperture
- aperture radar
- extend
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は合成開口レーダ装置に関する。[Detailed description of the invention] The present invention relates to a synthetic aperture radar device.
合成開口レーダ(以下SARと称す)はサイドル、キン
グレーダの一棟であり、航空機または人工爾j1等の飛
翔体にisされ、マイクロ波で地上を撮る全天候製高分
解能レーダである。8A胆映像対象血を斜めに見て進み
ながら、映像対象面に対し電波の発射、受信をく夛返す
、その結果受、信パルスのコヒーレントな位相履歴が得
られ、信号熟理技術によって実効的大口径アンテナを用
いたのと同等な高方位分解能が得られる。この種のSA
Rに関してはマグロウヒル社発行のレーダハンドブ、り
23章シンセティ、クアパーチャレーダの項に示されて
いる。Synthetic aperture radar (hereinafter referred to as SAR) is a branch of the SEIDLE and KING radars, and is an all-weather, high-resolution radar that is placed on a flying object such as an aircraft or an artificial aircraft and captures images of the ground using microwaves. 8A While observing the image target blood diagonally, radio waves are emitted and received over and over again on the image target surface.As a result, a coherent phase history of the received and transmitted pulses is obtained, and signal analysis technology is used to effectively High azimuth resolution equivalent to that obtained using a large diameter antenna can be obtained. This kind of SA
Regarding R, it is shown in the Radar Handbook published by McGraw-Hill, Chapter 23, Syntheti and Quaperture radar.
一般にBARの方位分解能はアンテナの開口長が小さい
程高くなる。すなわち、実ビーム幅が広がると、移動し
ているレーダから観測している時間(積分時間)が長く
なル、受信されたレーダ反射波ノドツブラスベクトル帯
域が広がるため分解能が向上するがそれに伴ないパルス
繰返し周波数(PRF)もサンプリング定理を満足する
ようにPRF> FDm−FDI O必要かめる。こ
こでFDlはドツプラシフトを受けたレーダ受信波のう
ちの最高周波数でTo9Fm、は最低周波数である。Generally, the azimuth resolution of BAR increases as the aperture length of the antenna becomes smaller. In other words, as the actual beam width increases, the observation time (integration time) from the moving radar becomes longer, and the received radar reflected wave throat brass vector band expands, so the resolution improves. PRF > FDm-FDI O is required so that the pulse repetition frequency (PRF) without any pulse repetition frequency (PRF) also satisfies the sampling theorem. Here, FDl is the highest frequency of the radar received waves subjected to Doppler shift, and To9Fm is the lowest frequency.
しかしPRF t−高くすると距離方向最大観測幅Wが
wく、1カで制限される。ここでCは光速である。tた
。送信から次の送信時間までに目的とするターゲットで
反射した電波が受信される必喪かめ9、実現可能システ
ムの走査幅、分解能尋の自由度が制限される。また、航
空機等SARを搭載するプラットフォームの高度、速度
、姿勢等に対する条件も厳しくなハ実現困難な場合もめ
る。However, if the PRF t- is increased, the maximum observation width W in the distance direction becomes w, and is limited to 1 force. Here C is the speed of light. It was. The degree of freedom in terms of scan width and resolution of the system that can be realized is limited because the radio waves reflected from the intended target must be received between transmission and the next transmission time. In addition, the conditions for the altitude, speed, attitude, etc. of the platform on which the SAR is mounted, such as an aircraft, are severe and may be difficult to implement.
本発明は、衛星または航空機等に搭載されたシ田のアン
テナとしてビーム幅が狭くビーム方向が変化できるアン
テナを用いて、目的とするターゲットおよびその周辺に
できるだけ長時間レーダ電波を照射し続けるようアンテ
ナのビーム方向を制御することによって低PRF (パ
ルス繰返し周波数)で高方位分解能な焦点型5ARt提
供することKある。The present invention uses an antenna that has a narrow beam width and can change the beam direction as an antenna mounted on a satellite or aircraft, and uses the antenna to continue irradiating radar radio waves to the target target and its surroundings for as long as possible. By controlling the beam direction of the laser beam, it is possible to provide a focused 5ARt with low PRF (pulse repetition frequency) and high lateral resolution.
本発明によれば航空機、衛星等移動プラットフォームに
搭載され、できるだけ長時間目的とするターゲットを中
心とする周辺にレーダ電波を照射し続けるようにビーム
方向が制御されることにより受信時間會延伸し受信ドツ
プラスペクトル帯域幅を広げることによp比較的狭いビ
ームのアンテナを用いても高分解能の合成開口レーダを
得ることかで自る。According to the present invention, it is installed on a mobile platform such as an aircraft or a satellite, and the beam direction is controlled so as to continue irradiating radar radio waves around the target for as long as possible, thereby extending the reception time and receiving. By widening the Doppler spectral bandwidth, it is possible to obtain a high-resolution synthetic aperture radar even when using a relatively narrow beam antenna.
以下、本発明による高分解能SARの実施例倉示す第1
図を参照して説明すると、航空機に搭載されたSA師A
点から0点まで目標に電波を照射し反射波の受信記録を
行なうと同時に対地速If、高度、目標方位角等管側々
と記録する。この時、航空機に搭載された8ARアンテ
ナは絶えず目標がビーム七ンダになるよう制御される。The following is a first example of high-resolution SAR according to the present invention.
To explain with reference to the figure, the SA operator A installed on the aircraft
Radio waves are radiated to the target from point to zero, and the reflected waves are received and recorded, and at the same time ground speed If, altitude, target azimuth, etc. are recorded on both sides. At this time, the 8AR antenna mounted on the aircraft is constantly controlled so that the target is on the 7th beam.
目標、および目標周辺から反射されたレーダ信号はパル
ス繰返し周波数(以下PRFと称す)でサンプルされた
離散的データとして記録される。この受信信号は航空機
の速度によシト、ブラシ7トを受けておシ、その周波数
は航空機とターゲットの相対速度の変化に従って第2図
のように広範囲に変化する。従来の8人8ではPRFは
第2図中の周波数変化幅BW以上の必要があるが本装置
の場合アンテナの開口径で決まるPRF、 PRF’≧
4 ・Vain (’ )/J であればよい、ここで
Vは航空機の対地速度、θはアンテナビーム暢、λは送
信波の波長でめる。Radar signals reflected from the target and the vicinity of the target are recorded as discrete data sampled at a pulse repetition frequency (hereinafter referred to as PRF). This received signal is brushed depending on the speed of the aircraft, and its frequency varies over a wide range as shown in FIG. 2 as the relative speed of the aircraft and target changes. In the conventional 8 person 8 system, the PRF needs to be greater than the frequency change width BW in Figure 2, but in the case of this device, the PRF is determined by the antenna aperture diameter, PRF'≧
4 Vain (' )/J, where V is the ground speed of the aircraft, θ is the antenna beam stability, and λ is the wavelength of the transmitted wave.
この関係式は以下のように導かれる。第3図(a)に示
す如く、速KVで移動している衛星又は航空機SKM載
され九BARから発射された電波がA点で反射され、再
びSARで受信された時次式で示されるドツプラシフト
を受けている。This relational expression is derived as follows. As shown in Figure 3(a), the radio waves emitted from the nine BARs mounted on the satellite or aircraft SKM moving at a speed of KV are reflected at point A and received again by the SAR. Is receiving.
ここでλ:送信波の波長
SARシステムとして成立するためには、アンテナが照
射している有効領域(通常アンテナ利得低下が3dB以
内の領域)からの反射波のドツプラシフト範囲よシもP
RFは高くなければならない。Here, λ: wavelength of the transmitted wave In order to establish a SAR system, the Doppler shift range of the reflected wave from the effective area irradiated by the antenna (region where the antenna gain decrease is usually within 3 dB) must be P
RF must be high.
今、アンテナのビーム幅を2#とじた時、第3図(b)
のヨウにビームセンタがψ傾いた場合のドツプラシフト
を求めてみる。Now, when the beam width of the antenna is closed to 2#, Fig. 3 (b)
Let's find the Doppler shift when the beam center is tilted by ψ.
ここで−二00時fdは最大値をと9 4Viin# fdmax= よりてPRFはfd m ax以上あればよい。Here, fd at -200 is the maximum value and 9 4Viin# fdmax= Therefore, it is sufficient for PRF to be equal to or greater than fdmax.
第2図において必要最低PRFはfdとなるが実際0P
RFはず、としている、こればPRFをよシ高くとるこ
とによシ、処理単位数すなわち処理演算量が減少するた
めで本実施例では全処理データを4分割で処理できるよ
うPRFをfpとしている。In Figure 2, the minimum required PRF is fd, but in reality it is 0P.
This means that by setting PRF higher, the number of processing units, that is, the amount of processing calculations, is reduced.In this embodiment, PRF is set to fp so that all processing data can be divided into four parts. .
第4図受信データは送信から一定時間後の受信信号、す
なわち一定距離にある目標からの反射信号を並べたもの
であるth ’r’、 e T’@’ # Tlはそ
れぞれA点B点CA會通過した時城得したデータである
。このデータから目標付近の画像を得る処理はハードウ
スア、ソフトウェアどちらでも可能であるがここではソ
フトウェアで処理する例を示す。Figure 4 Received data is a list of received signals a certain time after transmission, that is, reflected signals from targets located at a certain distance. th 'r', e T'@'# Tl are points A and B, respectively. CA This is the data I obtained when I passed the meeting. Processing to obtain an image near the target from this data can be done using either hardware or software, but here we will show an example of processing using software.
第2図において受信データa時間軸上に並んでおり、こ
れを4分111− D*〜D4に分け、処理単位1〜処
理卑位4のようにデータを再構成する。In FIG. 2, received data a is arranged on the time axis, and is divided into four parts 111-D* to D4, and the data is reconfigured as processing units 1 to 4.
5TEP、では各処理単位データに対しs−すれぞれの
中心周波b me t 〜ω番が0周波数になるよう周
波数シフトを行ない、次に5TEPtで高速7−リエ変
換(FFT)t−用いて周波数領域に変換する。FFT
出力の各0周波数の所のデータはそれぞれ611〜#、
の周波数成分でろるので、 5Tli:Paでは4処理
率位の各データt−1つの周波数領域データとして並べ
る。この時、谷処理卑位データ間の1なり合う部分は加
算を行なう、8TEP4で1つの周波数領域データとな
った後は第5図に示すように通常のSAR処理と同様に
参照関数との相関を周波数領域で行ない画像化する。第
5図において、1はマツチドフィルタ、2はFFT回路
、3は’1fflデータ(@波数領域)、4は乗算器、
5triIFFT回路、6は出力画像データを示す。In 5TEP, frequency shift is performed for each processing unit data so that the center frequency bme t to ω becomes 0 frequency, and then in 5TEPt, a fast 7-lier transform (FFT) is used. Convert to frequency domain. FFT
The data at each 0 frequency of the output are 611 to #, respectively.
Therefore, in 5Tli:Pa, each data at 4 processing rates is arranged as t-1 frequency domain data. At this time, the portions where the low-level data in the valley processing are equal to 1 are added, and after 8TEP4 becomes one frequency domain data, as shown in Figure 5, the correlation with the reference function is calculated as in normal SAR processing. is performed in the frequency domain and converted into an image. In FIG. 5, 1 is a matched filter, 2 is an FFT circuit, 3 is '1ffl data (@wavenumber domain), 4 is a multiplier,
5triIFFT circuit, 6 indicates output image data.
本発明a以上説明したようにできるだけ長時間ターゲッ
トおよびその周辺を照射し続けるように制御された比較
的狭いビームアンテナ會持つ焦点fi 5ARt−構成
することにより、低PRF’で高分解能を実現できる。As described above, the present invention can achieve high resolution with a low PRF' by configuring the focal point with a relatively narrow beam antenna system that is controlled to continue irradiating the target and its surroundings for as long as possible.
第1図は本発明の賽施例を示した図、第2図は受信波の
周波数変化および処理単位會示した図。
第3図は本発明の原理t−説明するための図、第4図に
処理方法の前半を示した図、第5図は、第3図の次のス
テップの処理方法を示した図である。
l・・・マツチドフィルタ、2・・・FFT、3・・・
受信データ、4・・・乗算器%5・・・IFFT、6・
・・出力画像データ。
47一
咲 距 ざ 足
に
^ の 円FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing frequency changes of received waves and processing units. Fig. 3 is a diagram for explaining the principle of the present invention, Fig. 4 is a diagram showing the first half of the processing method, and Fig. 5 is a diagram showing the processing method of the next step of Fig. 3. . l...Matched filter, 2...FFT, 3...
Received data, 4... Multiplier %5... IFFT, 6.
...Output image data. 47 Issaki A circle on the foot
Claims (1)
たアンテナから放射されるビーム方向を可変とし、この
ビーム方向を予め定めたターゲット方向に制御するよう
に構成されfc仁とを特徴とする合成開口レーダ装置。Aircraft 1 A synthetic aperture radar device configured to vary the direction of a beam emitted from an antenna mounted on a mobile platform such as an artificial satellite, and to control the beam direction in a predetermined target direction. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56143246A JPS5845582A (en) | 1981-09-11 | 1981-09-11 | Synthetic aperture radar device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56143246A JPS5845582A (en) | 1981-09-11 | 1981-09-11 | Synthetic aperture radar device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5845582A true JPS5845582A (en) | 1983-03-16 |
Family
ID=15334282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56143246A Pending JPS5845582A (en) | 1981-09-11 | 1981-09-11 | Synthetic aperture radar device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5845582A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5952779A (en) * | 1982-09-20 | 1984-03-27 | Hitachi Ltd | Synthetic aperture radar device |
JPS59193379A (en) * | 1983-04-19 | 1984-11-01 | Mitsubishi Electric Corp | Synthetic aperture radar |
JPS6375686A (en) * | 1986-09-19 | 1988-04-06 | Tech Res & Dev Inst Of Japan Def Agency | Spotlight mapping radar device |
JP2000298168A (en) * | 1999-02-12 | 2000-10-24 | Nec Corp | Sar device |
KR101006080B1 (en) | 2009-03-26 | 2011-01-06 | 한국해양연구원 | Moving Method Speed Measurement Using Synthetic Opening Radar |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5661670A (en) * | 1979-10-24 | 1981-05-27 | Toshiba Corp | Synthetic aperture radar device |
-
1981
- 1981-09-11 JP JP56143246A patent/JPS5845582A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5661670A (en) * | 1979-10-24 | 1981-05-27 | Toshiba Corp | Synthetic aperture radar device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5952779A (en) * | 1982-09-20 | 1984-03-27 | Hitachi Ltd | Synthetic aperture radar device |
JPS59193379A (en) * | 1983-04-19 | 1984-11-01 | Mitsubishi Electric Corp | Synthetic aperture radar |
JPS6375686A (en) * | 1986-09-19 | 1988-04-06 | Tech Res & Dev Inst Of Japan Def Agency | Spotlight mapping radar device |
JP2000298168A (en) * | 1999-02-12 | 2000-10-24 | Nec Corp | Sar device |
KR101006080B1 (en) | 2009-03-26 | 2011-01-06 | 한국해양연구원 | Moving Method Speed Measurement Using Synthetic Opening Radar |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4851848A (en) | Frequency agile synthetic aperture radar | |
KR930001551B1 (en) | Radar system | |
JPH02210286A (en) | Composite aperture radar device | |
JP2001108744A (en) | Synthetic aperture radar system for aircraft or spacecraft | |
Kulpa et al. | The use of CLEAN processing for passive SAR image creation | |
Skolnik | Improvements for air-surveillance radar | |
US7420504B1 (en) | Method of operating a multibeam radar | |
Neyt et al. | Feasibility of STAP for passive GSM-based radar | |
JPH0688869A (en) | Digital radar system and method | |
US5982319A (en) | UHF synthetic aperture radar | |
Shoykhetbrod et al. | Concept for a fast tracking 60 GHz 3D-radar using frequency scanning antennas | |
JPS5845582A (en) | Synthetic aperture radar device | |
US20030222808A1 (en) | Radar imaging system and method | |
Maffei et al. | Spaceborne radar functional architecture for debris Bayesian inference | |
JP5035782B2 (en) | Split beam synthetic aperture radar | |
Yadav et al. | Synthetic aperture radar (SAR) image of small unmanned aerial vehicle (sUAV) | |
JP3649565B2 (en) | Synthetic aperture radar equipment | |
JP3332000B2 (en) | SAR device | |
KR101912519B1 (en) | Hybrid microwave imaging system and operating method thereof | |
Wirth | Signal processing for target detection in experimental phased-array radar ELRA | |
US4093950A (en) | Motion-compensation arrangements for MTI radars | |
US4014020A (en) | Automatic gain control circuit for high range resolution correlation radar | |
JPH0569473B2 (en) | ||
Conn et al. | Waveform generation and signal processing for a multifunction radar system | |
Nohara et al. | Space-based radar signal processing baselines for air, land and sea applications |