[go: up one dir, main page]

JPS60240840A - Control device of air-fuel ratio in internal-combustion engine - Google Patents

Control device of air-fuel ratio in internal-combustion engine

Info

Publication number
JPS60240840A
JPS60240840A JP9664884A JP9664884A JPS60240840A JP S60240840 A JPS60240840 A JP S60240840A JP 9664884 A JP9664884 A JP 9664884A JP 9664884 A JP9664884 A JP 9664884A JP S60240840 A JPS60240840 A JP S60240840A
Authority
JP
Japan
Prior art keywords
air
fuel
engine
fuel ratio
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9664884A
Other languages
Japanese (ja)
Inventor
Hiromitsu Yamaura
山浦 弘光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP9664884A priority Critical patent/JPS60240840A/en
Publication of JPS60240840A publication Critical patent/JPS60240840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable a change of air-fuel ratio to be avoided in an engine when it is driven in low speed operation, by stopping feedback correction of the air-fuel ratio by proportional integration control and fixing a feedback correction quantity of the air-fuel ratio to the predetermined value when a predetermined condition of low speed operation is detected. CONSTITUTION:A captioned device equips a supply fuel quantity determining means B which determines a supply quantity of fuel by suitably correcting in accordance with a water temperature and an idle condition a basic injection quantity Tp, calculated from an intake air quantity and an engine speed, of the data obtained from the output signal of an engine operational conditiin detecting means A. And a feedback correcting means D feedback corrects the above described supply quantity of fuel by proportional integration control in accordance with the output signal of an in-exhaust oxygen concentration detecting means C. Here the captioned device equips a detecting means E detecting a predetermined low speed operational condition, and when it is detected, a feedback correction quantity fixing means F operates so as to fix a feedback correction quantity for the supply quantity of fuel to the predetermined value.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、機関排気中の酸素濃度に基づき該機関に供給
される混合気の空燃比をフィードバック制御する機能を
備えた空燃比制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an improvement in an air-fuel ratio control device having a function of feedback controlling the air-fuel ratio of an air-fuel mixture supplied to an engine based on the oxygen concentration in engine exhaust gas.

く背景技術〉 この種の空燃比制御装置としては、たとえば電子制御燃
料噴射式内燃機関において、吸入空気流中に噴射する燃
料量を増減制御して該機関に供給される混合気の空燃比
を制御するものがある。
Background Art> This type of air-fuel ratio control device is used, for example, in an electronically controlled fuel injection internal combustion engine, to increase or decrease the amount of fuel injected into the intake air flow to control the air-fuel ratio of the air-fuel mixture supplied to the engine. There is something to control.

これについて説明すると、電子制御燃料噴射式内燃機関
においては燃料噴射量Ti(燃料噴射弁を駆動するため
の開弁パルス幅)は次式によって定められる。
To explain this, in an electronically controlled fuel injection type internal combustion engine, the fuel injection amount Ti (valve opening pulse width for driving the fuel injection valve) is determined by the following equation.

Ti=TpxCOEFxα十Ts ここに、”rpは基本噴射量でTp=KXQ/Nと表さ
れ、Kは定数、Qは吸入空気流量、Nは機関回転速度で
ある。C0EFは機関冷却水温度等の各種運転状態によ
り定まる補正係数、αは空燃比フィードバンク制御(以
下λコントロールと記す)のためのフィードバック補正
係数である。そして、Tsは電圧補正骨で、バッテリ電
圧の変動に伴う燃料噴射弁の開弁作動特性の変化を補正
するためのものである。
Ti = Tpx COEF A correction coefficient determined by various operating conditions, α is a feedback correction coefficient for air-fuel ratio feed bank control (hereinafter referred to as λ control), and Ts is a voltage correction factor, which is a correction coefficient for the fuel injection valve due to fluctuations in battery voltage. This is to correct changes in valve opening operation characteristics.

λコントロールは、排気系に酸素センサを設け、該酸素
センサの出力が所定のスライスレベルを超−えるか否か
により機関に供給される混合気の空燃比が設定空燃比よ
り濃いか薄いかを判定し、これに基づき機関に供給され
る混合気の空燃比が設定空燃比になるように燃料の噴射
量を制御するものである。すなわち、前記した空燃比フ
ィードバンク補正係数αΦ値を酸素センサの出力に基づ
き変化させることにより、燃料噴射量Tiを変化させ、
機関に供給される混合気の空燃比を設定空燃比に保つよ
うにしている。
λ control is an oxygen sensor installed in the exhaust system, and determines whether the air-fuel ratio of the mixture supplied to the engine is richer or leaner than the set air-fuel ratio based on whether the output of the oxygen sensor exceeds a predetermined slice level. Based on this determination, the fuel injection amount is controlled so that the air-fuel ratio of the air-fuel mixture supplied to the engine becomes the set air-fuel ratio. That is, by changing the above-mentioned air-fuel ratio feedbank correction coefficient αΦ value based on the output of the oxygen sensor, the fuel injection amount Ti is changed,
The air-fuel ratio of the air-fuel mixture supplied to the engine is maintained at a set air-fuel ratio.

ここで、空燃比フィードバック補正係数αの値は比例積
分制御(PI制御)により変化させ、安定した制御とし
ている。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral control (PI control) to achieve stable control.

すなわち、酸素センサの出力と所定のスライスレベルと
を比較し、酸素センサの出力がスライスレベルよりも大
きく (小さく)空燃比が設定空燃比より濃い(薄い)
場合には、αを急激に減少(増加)することなく、始め
に比例分だけ減少(増加)し、それから比例分よりも小
さな値に設定された積分分ずつ減少(増加)するように
して燃料噴射量を一時に急激に減少(増加)することな
く段階的に減少(増加)し、空燃比を薄く (濃く)す
る。
In other words, the output of the oxygen sensor is compared with a predetermined slice level, and if the output of the oxygen sensor is greater (smaller) than the slice level, the air-fuel ratio is richer (leaner) than the set air-fuel ratio.
In this case, without rapidly decreasing (increasing) α, first decrease (increase) by a proportional amount, and then decrease (increase) by an integral amount that is set to a smaller value than the proportional amount. The injection amount is gradually decreased (increased) without suddenly decreasing (increasing) all at once, making the air-fuel ratio leaner (richer).

ところが、このような比例積分制御による空燃比制御で
は巨視的には設定空燃比が達成された状態であっても、
空燃比フィードバンク補正係数αの値は微視的には第1
図に示すように設定空燃比を与える値αtを中心として
細かく変動し、これに伴い機関に供給される混合気の空
燃比が細かく変動する。
However, in air-fuel ratio control using such proportional-integral control, even if the set air-fuel ratio is achieved macroscopically,
Microscopically, the value of the air-fuel ratio feedbank correction coefficient α is the first
As shown in the figure, the air-fuel ratio fluctuates finely around the value αt that gives the set air-fuel ratio, and the air-fuel ratio of the air-fuel mixture supplied to the engine fluctuates finely accordingly.

そして、たとえばアイドル自走等の低速ギヤ位置におけ
る低速運転時には空燃比の変動による機関出力トルクの
変動が大きくなるため、上記の如き比例積分制御により
空燃比をフィードバンク制御する内燃機関では、機関低
速運転時に出力トルクの変動(第2図参照)に伴い振動
やうなりが発生し、運転性が悪化するというおそれが生
じるものであった。
For example, during low-speed operation in a low-speed gear position such as idle self-propulsion, fluctuations in the engine output torque due to fluctuations in the air-fuel ratio become large. During operation, vibrations and hums occur due to fluctuations in the output torque (see FIG. 2), and there is a fear that drivability may deteriorate.

(発明の目的〉 本発明は、このような問題点に注目してなされたもので
、機関低速運転時における空燃比の変動を回避し得る空
燃比制御装置を提供することを目的とし、これにより該
運転領域における運転性の向上を図るものである。
(Object of the Invention) The present invention has been made with attention to such problems, and an object of the present invention is to provide an air-fuel ratio control device that can avoid fluctuations in the air-fuel ratio during low-speed engine operation. The purpose is to improve drivability in this driving range.

〈発明の概要〉 このために本発明では、第3図に示すように機関運転状
態を検出する手段と、該手段の検出する機関運転状態に
基づき機関に供給する燃料量を決定する手段と、機関排
気中の酸素濃度を検出する手段と、該手段の検出する酸
素濃度に基づき機関に供給する前記燃料量を比例積分制
御によりフィードバック補正する手段とを備えた空燃比
制御装置において、所定の低速運転状態を検出する手段
と、該手段により所定の低速運転状態が検出されたとき
は機関に供給する燃料量に対するフィードバンク補正量
を所定値に固定する手段とを設け、機関低速運転状態に
おいて機関に供給される混合気の空燃比の変動を回避し
て前記目的の達成を図る。
<Summary of the Invention> For this purpose, the present invention includes means for detecting the engine operating state as shown in FIG. 3, and means for determining the amount of fuel to be supplied to the engine based on the engine operating state detected by the means. An air-fuel ratio control device comprising means for detecting an oxygen concentration in engine exhaust gas, and means for feedback correcting the amount of fuel supplied to the engine based on the oxygen concentration detected by the means, using proportional-integral control. means for detecting the operating state; and means for fixing a feed bank correction amount to a predetermined value for the amount of fuel supplied to the engine when a predetermined low speed operating state is detected by the means; The above objective is achieved by avoiding fluctuations in the air-fuel ratio of the air-fuel mixture supplied to the engine.

〈実施例〉 以下本発明を第4図に示す一実施例に基づき説明する。<Example> The present invention will be explained below based on an embodiment shown in FIG.

なお、このものは電子制御燃料噴射式内燃機関に本発明
を適用したものである。
Note that this is an application of the present invention to an electronically controlled fuel injection type internal combustion engine.

すなわち、図においてCPUI、ROM2.RAM3お
よびアドレスデコーダ4等を備えてなるマイクロコンピ
ュータのCPUIには機関運転状態検出手段としての各
種センサの出力信号が入力される。まず、アナログ入力
信号として熱線式エアフローメータ5からの吸入空気流
量信号、スロットルセンサ6からのスロットル開度信号
、水温センサ7からの機関冷却水温信号、ハラチリ8か
らのハソテリ電圧信号がアナログ入力インターフェイス
9およびA/D変換器10を介して入力される。また、
排気中の酸素濃度検出手段としての酸素センサ11の出
力信号もアナログ入力インターフェイス9を介してcp
uiに入力されるようになっている。ここに12はA/
D変換タイミングコントローラである。
That is, in the figure, CPUI, ROM2. Output signals from various sensors serving as engine operating state detection means are input to the CPUI of the microcomputer, which includes a RAM 3, an address decoder 4, and the like. First, the analog input interface 9 receives as analog input signals an intake air flow rate signal from the hot wire air flow meter 5, a throttle opening signal from the throttle sensor 6, an engine cooling water temperature signal from the water temperature sensor 7, and a voltage signal from the Hara Chiri 8. and is input via the A/D converter 10. Also,
The output signal of the oxygen sensor 11 as a means for detecting the oxygen concentration in the exhaust gas is also input to the cp via the analog input interface 9.
It is now entered into the ui. Here 12 is A/
This is a D conversion timing controller.

一方、デジタル入力信号としては、アイドルスイッチ1
3.ギヤ位置スイッチ14からの信号があり、これらは
デジタル入力インターフェイス15を介してCPUIに
入力されるようになっている。
On the other hand, as a digital input signal, idle switch 1
3. There are signals from the gear position switch 14, which are input to the CPUI via a digital input interface 15.

その他、クランク角センサ16からの180°毎のリフ
ァレンス信号と1°毎のポジション信号とがワンショッ
トマルチ回路17を介して、また車速センサ18からの
車速信号が波形整形回路19を介してCPtJlに入力
される。
In addition, a reference signal every 180° and a position signal every 1° from the crank angle sensor 16 are sent to CPtJl via a one-shot multi-circuit 17, and a vehicle speed signal from the vehicle speed sensor 18 is sent via a waveform shaping circuit 19 to CPtJl. is input.

これらの入力信号に対してCPU1からの出力信号とし
ては、燃料噴射弁20を駆動するためのパルス信号が電
流波形制御回路21を介して燃料噴射弁20に出力され
るようになっている。
As an output signal from the CPU 1 in response to these input signals, a pulse signal for driving the fuel injection valve 20 is outputted to the fuel injection valve 20 via the current waveform control circuit 21.

つぎに作用を第5図に示すフローチャートを参照しなが
ら説明する。
Next, the operation will be explained with reference to the flowchart shown in FIG.

まずSlで前記各種センサの出力信号が読込まれる。つ
いでS2ではSlで読込まれた吸入空気流量Qと、同じ
<31で読込まれたクランク角セ) ンサ16の出力か
ら決定される機関回転速度Nとから基本噴射量’rpを
演算する。
First, the output signals of the various sensors are read in Sl. Next, in S2, the basic injection amount 'rp is calculated from the intake air flow rate Q read in Sl and the engine rotational speed N determined from the output of the crank angle sensor 16 read in <31.

S3では水温センサ7、スロットルセンサ6の出力信号
に基づき係数C0EFの値を決定し、S4ではバッテリ
電圧に基づきへソテリ電圧補正分子sを設定する。
In S3, the value of the coefficient C0EF is determined based on the output signals of the water temperature sensor 7 and the throttle sensor 6, and in S4, the hesostatic voltage correction numerator s is set based on the battery voltage.

以上の過程82〜S4が第3図に示した供給燃料量決定
手段に対応する。
The above steps 82 to S4 correspond to the supply fuel amount determining means shown in FIG.

ついで35〜S8の判定においてギヤが低速ギヤ位置(
S5)、アイドルスイッチ13がオン(S6)1機関回
転速度が所定値以下(S7)、車速が所定値以下(S8
)であるときは、機関はアイドル自走運転状態にあり、
所定の低速運転状態にあると判断してS9へ進み、上記
の条件の少なくとも1つが満足されていないときは機関
は所定の低速運転状態にないと判断して310へ進む。
Then, in the judgments from 35 to S8, the gear is in the low speed gear position (
S5), the idle switch 13 is turned on (S6), the engine speed is below a predetermined value (S7), and the vehicle speed is below a predetermined value (S8).
), the engine is in idle self-running state,
It is determined that the engine is in a predetermined low speed operating state and the process proceeds to S9, and if at least one of the above conditions is not satisfied, it is determined that the engine is not in the predetermined low speed operating state and the process proceeds to S910.

すなわち、過程S5〜S8が第3−図に示した低速運転
状態検出手段に対応することになる。
That is, steps S5 to S8 correspond to the low-speed driving state detection means shown in FIG. 3.

S9ではフィードハック補正係数αに予め定められた定
数値を代入し、燃料噴射量に対するフィードハック補正
量を固定する。この過程が第3図に示したフィードハッ
ク補正量固定手段に対応する。
In S9, a predetermined constant value is substituted for the feedhack correction coefficient α, and the feedhack correction amount for the fuel injection amount is fixed. This process corresponds to the feed hack correction amount fixing means shown in FIG.

一方、SIOに進んだ場合は前述した比例積分制御によ
りフィードバンク補正係数αを設定する。
On the other hand, when proceeding to SIO, the feed bank correction coefficient α is set by the proportional-integral control described above.

すなわち、酸素センサ11の出力がリッチ側からリーン
側に反転した直後のこのルーチンの作動時にはαに比例
分を加え、酸素センサ11の出力反転後2回目以降のこ
のルーチンの作動時にはαに積分分を逐次加算する。以
上の場合とは逆に、酸素センサ11の出力がリーン側か
らリッチ側に反転した場合には、比例分および積分分の
加算を減算に変更して同様の操作が行われる。
That is, when this routine is activated immediately after the output of the oxygen sensor 11 is reversed from the rich side to the lean side, a proportional amount is added to α, and when this routine is activated for the second time or later after the output of the oxygen sensor 11 is reversed, an integral is added to α. are added sequentially. Contrary to the above case, when the output of the oxygen sensor 11 is reversed from the lean side to the rich side, the same operation is performed by changing the addition of the proportional and integral parts to subtraction.

つまりこの過程SIOが第3図に示した供給燃料量フィ
ードバック補正手段に対応することになる。
In other words, this process SIO corresponds to the supplied fuel amount feedback correction means shown in FIG.

siiではS2〜34.S9またはSIOでそれぞれ決
定されたT p 、COE F 、 T s 、αから
前掲の計算式により燃料噴射量Tiが演算される。S1
2では311で演算されたTiなるパルス幅を有するパ
ルス信号が電流波形整形回路21に出力され、燃料噴射
弁20が開弁作動する。
In sii, S2-34. The fuel injection amount Ti is calculated from T p , COE F , T s , and α determined in S9 or SIO, respectively, using the above-mentioned calculation formula. S1
In step 2, the pulse signal having the pulse width Ti calculated in step 311 is output to the current waveform shaping circuit 21, and the fuel injection valve 20 is opened.

このような作動をする空燃比制御装置によれば、所定の
低速運転状態が検出されるとフィードハック補正係数α
が一定値に固定されるから、比例積分制御によりαの値
を決定したときに見られるような機関に供給される混合
気の空燃比の徽細な変動が除去される(第6図参照)。
According to the air-fuel ratio control device that operates in this way, when a predetermined low-speed operating state is detected, the feed hack correction coefficient α
Since α is fixed at a constant value, the minute fluctuations in the air-fuel ratio of the air-fuel mixture supplied to the engine, which can be seen when the value of α is determined by proportional-integral control, are eliminated (see Figure 6). .

そして、アイドル自走等の低速運転領域における機関出
力トルクの変動に伴う振動やうなりの発生が防止されて
、この運転領域での運転性が良好に保たれるようになる
This prevents the occurrence of vibrations and hums due to fluctuations in engine output torque in low-speed operating ranges such as idling free running, and maintains good drivability in this operating range.

なお、所定の低速運転状態の検出は本実施例のものに限
らずタラソチスイノチ、アクセル踏み込み量等を含めて
検出するようにしてもよい。
Note that the detection of the predetermined low-speed driving state is not limited to that of this embodiment, and may also include detection of the treadmill speed, the amount of accelerator depression, and the like.

また、本実施例では電子制御燃料噴射式内燃機関の空燃
比を制御するものであったが、本発明は電子制御式気化
器を備える内燃機関の空燃比制御にも適用され同様の効
果を奏するものである。
Furthermore, although the present embodiment controls the air-fuel ratio of an electronically controlled fuel injection type internal combustion engine, the present invention can also be applied to air-fuel ratio control of an internal combustion engine equipped with an electronically controlled carburetor, and similar effects can be achieved. It is something.

〈発明の効果〉 以上説明したように本発明では、所定の低速運転状態を
検出する手段を設け、該手段が所定の低速運転状態を検
出したときは比例積分制御による空燃比フィードパンク
補正を停止し、空燃比フィードバック補正量を所定値に
固定する手段を設けた。このため、低速運転状態におい
ては、フィードバック制御に伴う機関に供給される混合
気の空燃比の変動が防止されるようになり、これにより
機関出力トルクの変動が防止されるとともに、低速運転
領域における振動やうなりの発生が防止され、この領域
における運転性の向上が図られる。
<Effects of the Invention> As explained above, in the present invention, a means for detecting a predetermined low-speed operating state is provided, and when the means detects a predetermined low-speed operating state, the air-fuel ratio feed puncture correction by proportional-integral control is stopped. However, means for fixing the air-fuel ratio feedback correction amount to a predetermined value is provided. Therefore, in low-speed operating conditions, fluctuations in the air-fuel ratio of the air-fuel mixture supplied to the engine due to feedback control are prevented, which prevents fluctuations in engine output torque and Vibrations and hums are prevented from occurring, and drivability in this area is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例におけるフィードハック補正係数αの変
化の仕方を示すタイムチャート、第2図は同上に対応す
る機関出力トルクの変化の仕方を示すタイムチャート、
第3図は本発明の構成を示すブロック図、第4図は本発
明の一実施例を示す構成図、第5図は同上の作動過程を
示すフローチャート、第6図は本発明の効果を示し、(
A)はフィードバック補正量の固定域を示すタイムチャ
ート、(B)は機関出力トルクの変化の仕方を示I す
タイムチャートである。 1・・・CPU 5・・・エアフローメータ 6・・・
スロットルセンサ 7・・・水温センサ 11・・・酸
素センサ 13・・・アイドルスイッチ 14・・・ギ
ヤ位置スイッチ 16・・・クランク角センサ 18・
・・車速センサ 特許出願人 日本電子機器株式会社 代 理 人 弁理士 笹 島 冨二雄 第1図 第2図 第6図(A) 第6図(B) 第3図
FIG. 1 is a time chart showing how the feed hack correction coefficient α changes in the conventional example, and FIG. 2 is a time chart showing how the engine output torque changes corresponding to the above.
Fig. 3 is a block diagram showing the configuration of the present invention, Fig. 4 is a block diagram showing an embodiment of the present invention, Fig. 5 is a flowchart showing the operating process of the same, and Fig. 6 shows the effects of the present invention. ,(
A) is a time chart showing the fixed range of the feedback correction amount, and (B) is a time chart showing how the engine output torque changes. 1...CPU 5...Air flow meter 6...
Throttle sensor 7... Water temperature sensor 11... Oxygen sensor 13... Idle switch 14... Gear position switch 16... Crank angle sensor 18.
... Vehicle speed sensor patent applicant Japan Electronics Co., Ltd. Representative Patent attorney Fujio Sasashima Figure 1 Figure 2 Figure 6 (A) Figure 6 (B) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態を検出する手段と、該手段の検出する機関
運転状態に基づき機関に供給する燃料量を決定する手段
とを備えるとともに、機関排気中の酸素濃度を検出する
手段と、該手段の検出する酸素濃度に基づき機関に供給
する前記燃料量を比例積分制御によりフィードバック補
正する手段とを備え、機関に供給される混合気の空燃比
が所定値となるように制御する空燃比制御装置において
、所定の低速運転状態を検出する手段と、該手段により
前記所定の低速運転状態が検出されたときは機関に供給
する燃料量に対するフィードバンク補正量を所定値に固
定する手段とを設けたことを特徴とする内燃機関の空燃
比制御装置。
A means for detecting an engine operating state, a means for determining an amount of fuel to be supplied to the engine based on the engine operating state detected by the means, and a means for detecting an oxygen concentration in the engine exhaust gas, an air-fuel ratio control device that controls the air-fuel ratio of the air-fuel mixture supplied to the engine to a predetermined value, comprising means for feedback correcting the amount of fuel supplied to the engine based on the oxygen concentration by proportion-integral control; The present invention further includes means for detecting a predetermined low-speed operating state, and means for fixing a feed bank correction amount for the amount of fuel supplied to the engine to a predetermined value when the predetermined low-speed operating state is detected by the means. Features: Air-fuel ratio control device for internal combustion engines.
JP9664884A 1984-05-16 1984-05-16 Control device of air-fuel ratio in internal-combustion engine Pending JPS60240840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9664884A JPS60240840A (en) 1984-05-16 1984-05-16 Control device of air-fuel ratio in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9664884A JPS60240840A (en) 1984-05-16 1984-05-16 Control device of air-fuel ratio in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60240840A true JPS60240840A (en) 1985-11-29

Family

ID=14170643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9664884A Pending JPS60240840A (en) 1984-05-16 1984-05-16 Control device of air-fuel ratio in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60240840A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915080A (en) * 1987-09-22 1990-04-10 Japan Electronic Control Systems Co., Ltd. Electronic air-fuel ratio control apparatus in internal combustion engine
US5014548A (en) * 1989-06-20 1991-05-14 Japan Electronic Control Systems, Co., Ltd. Method and apparatus for detecting deterioration of sucked air flow quantity-detecting device of engine
US5044196A (en) * 1989-06-20 1991-09-03 Japan Electronic Control Systems Co., Ltd. Method and apparatus for detecting deterioration of a hot-wire type sucked air flow quantity-detecting device for an engine
US5048490A (en) * 1989-06-16 1991-09-17 Japan Electronic Control Systems Co., Ltd. Method and apparatus for detection and diagnosis of air-fuel ratio in fuel supply control system of internal combustion engine
US5065728A (en) * 1989-06-21 1991-11-19 Japan Electronic Control Systems Co., Ltd. System and method for controlling air/fuel mixture ratio of air and fuel mixture supplied to internal combustion engine using oxygen sensor
US5095743A (en) * 1989-06-20 1992-03-17 Japan Electronic Control Systems Co., Ltd. Method and apparatus for detecting deterioration of sucked air flow quantity-detecting device of engine
US5131372A (en) * 1989-05-15 1992-07-21 Japan Electronic Control Systems Co., Ltd. Apparatus for controlling the respective cylinders in the fuel supply system of an internal combustion engine
US5152137A (en) * 1990-08-27 1992-10-06 Nissan Motor Co., Ltd. Air-fuel ratio control system for automotive vehicle engine
US5158059A (en) * 1990-08-30 1992-10-27 Honda Giken Kogyo K.K. Method of detecting abnormality in an internal combustion engine
US5227975A (en) * 1989-10-18 1993-07-13 Japan Electronic Control Systems Co., Ltd. Air/fuel ratio feedback control system for internal combustion engine
US5235957A (en) * 1991-11-05 1993-08-17 Japan Electronic Control Systems Co., Ltd. Diagnosing device and diagnosing method in air/fuel ratio control device for internal combustion engine
US5251437A (en) * 1990-09-04 1993-10-12 Japan Electronic Control Systems Co., Ltd. Method and system for controlling air/fuel ratio for internal combustion engine
US5353774A (en) * 1992-02-20 1994-10-11 Unisia Jecs Corporation Damage preventing method and device for sensor element of air/fuel ratio sensor with heater
US5363831A (en) * 1993-11-16 1994-11-15 Unisia Jecs Corporation Method of and an apparatus for carrying out feedback control on an air-fuel ratio in an internal combustion engine
US5394856A (en) * 1992-08-17 1995-03-07 Unisia Jecs Corporation System for and method of controlling air-fuel ratio in internal combustion engine
US5400591A (en) * 1992-09-08 1995-03-28 Nissan Motor Co., Ltd. Means for preventing exhaust emission from being deteriorated in case of trouble of secondary air supply system
US5408981A (en) * 1992-10-08 1995-04-25 Unisia Jecs Corporation Apparatus and method for controlling air/fuel mixture ratio in feedback control mode for internal combustion engine
US5492107A (en) * 1992-07-17 1996-02-20 Unisia Jecs Corporation Air fuel ratio control apparatus for an internal combustion engine
US5505184A (en) * 1994-02-28 1996-04-09 Unisia Jecs Corporation Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
US5598702A (en) * 1994-02-17 1997-02-04 Unisia Jecs Corporation Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
US5619852A (en) * 1994-07-08 1997-04-15 Unisia Jecs Corporation Air/fuel ratio control system for internal combustion engine
US5671720A (en) * 1995-08-30 1997-09-30 Unisia Jecs Corporation Apparatus and method for controlling air-fuel ratio of an internal combustion engine
US6188049B1 (en) 1998-03-17 2001-02-13 Unisia Jecs Corporation Apparatus and method for controlling heater of air-fuel ratio sensor in internal combustion engine
US6453720B1 (en) 1998-12-16 2002-09-24 Unisia Jecs Corporation Activation diagnosis method and activation diagnosis apparatus for air-fuel ratio sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279137A (en) * 1975-12-25 1977-07-04 Hitachi Ltd Air fuel ratio controller for engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279137A (en) * 1975-12-25 1977-07-04 Hitachi Ltd Air fuel ratio controller for engine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915080A (en) * 1987-09-22 1990-04-10 Japan Electronic Control Systems Co., Ltd. Electronic air-fuel ratio control apparatus in internal combustion engine
US5131372A (en) * 1989-05-15 1992-07-21 Japan Electronic Control Systems Co., Ltd. Apparatus for controlling the respective cylinders in the fuel supply system of an internal combustion engine
US5048490A (en) * 1989-06-16 1991-09-17 Japan Electronic Control Systems Co., Ltd. Method and apparatus for detection and diagnosis of air-fuel ratio in fuel supply control system of internal combustion engine
US5014548A (en) * 1989-06-20 1991-05-14 Japan Electronic Control Systems, Co., Ltd. Method and apparatus for detecting deterioration of sucked air flow quantity-detecting device of engine
US5044196A (en) * 1989-06-20 1991-09-03 Japan Electronic Control Systems Co., Ltd. Method and apparatus for detecting deterioration of a hot-wire type sucked air flow quantity-detecting device for an engine
US5095743A (en) * 1989-06-20 1992-03-17 Japan Electronic Control Systems Co., Ltd. Method and apparatus for detecting deterioration of sucked air flow quantity-detecting device of engine
US5065728A (en) * 1989-06-21 1991-11-19 Japan Electronic Control Systems Co., Ltd. System and method for controlling air/fuel mixture ratio of air and fuel mixture supplied to internal combustion engine using oxygen sensor
EP0569055A2 (en) 1989-10-18 1993-11-10 Japan Electronic Control Systems Co., Ltd. Air/fuel ratio feedback control system for internal combustion engine
US5227975A (en) * 1989-10-18 1993-07-13 Japan Electronic Control Systems Co., Ltd. Air/fuel ratio feedback control system for internal combustion engine
US5152137A (en) * 1990-08-27 1992-10-06 Nissan Motor Co., Ltd. Air-fuel ratio control system for automotive vehicle engine
US5158059A (en) * 1990-08-30 1992-10-27 Honda Giken Kogyo K.K. Method of detecting abnormality in an internal combustion engine
US5251437A (en) * 1990-09-04 1993-10-12 Japan Electronic Control Systems Co., Ltd. Method and system for controlling air/fuel ratio for internal combustion engine
US5235957A (en) * 1991-11-05 1993-08-17 Japan Electronic Control Systems Co., Ltd. Diagnosing device and diagnosing method in air/fuel ratio control device for internal combustion engine
US5353774A (en) * 1992-02-20 1994-10-11 Unisia Jecs Corporation Damage preventing method and device for sensor element of air/fuel ratio sensor with heater
US5492107A (en) * 1992-07-17 1996-02-20 Unisia Jecs Corporation Air fuel ratio control apparatus for an internal combustion engine
US5394856A (en) * 1992-08-17 1995-03-07 Unisia Jecs Corporation System for and method of controlling air-fuel ratio in internal combustion engine
US5400591A (en) * 1992-09-08 1995-03-28 Nissan Motor Co., Ltd. Means for preventing exhaust emission from being deteriorated in case of trouble of secondary air supply system
US5408981A (en) * 1992-10-08 1995-04-25 Unisia Jecs Corporation Apparatus and method for controlling air/fuel mixture ratio in feedback control mode for internal combustion engine
US5363831A (en) * 1993-11-16 1994-11-15 Unisia Jecs Corporation Method of and an apparatus for carrying out feedback control on an air-fuel ratio in an internal combustion engine
US5598702A (en) * 1994-02-17 1997-02-04 Unisia Jecs Corporation Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
US5505184A (en) * 1994-02-28 1996-04-09 Unisia Jecs Corporation Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
US5619852A (en) * 1994-07-08 1997-04-15 Unisia Jecs Corporation Air/fuel ratio control system for internal combustion engine
US5671720A (en) * 1995-08-30 1997-09-30 Unisia Jecs Corporation Apparatus and method for controlling air-fuel ratio of an internal combustion engine
US6188049B1 (en) 1998-03-17 2001-02-13 Unisia Jecs Corporation Apparatus and method for controlling heater of air-fuel ratio sensor in internal combustion engine
US6453720B1 (en) 1998-12-16 2002-09-24 Unisia Jecs Corporation Activation diagnosis method and activation diagnosis apparatus for air-fuel ratio sensor
US6550305B2 (en) 1998-12-16 2003-04-22 Unisia Jecs Corporation Activation diagnosis method and activation diagnosis apparatus for air-fuel ratio sensor

Similar Documents

Publication Publication Date Title
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
EP0226852A2 (en) Apparatus for controlling the air-fuel ratio for an internal combustion engine
US4753208A (en) Method for controlling air/fuel ratio of fuel supply system for an internal combustion engine
JPH07103054A (en) Controller of number of idling revolution of internal combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08284708A (en) Fuel injector for engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2976563B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0419377B2 (en)
JPH0615831B2 (en) Combustion control device for internal combustion engine
JPH0715272B2 (en) Air-fuel ratio controller for internal combustion engine
JP2650089B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3627334B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08177576A (en) Air-fuel ratio control device for engine
JP2981062B2 (en) Fuel injection control method in lean burn
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JP2924577B2 (en) Engine stability control device
JPH07247887A (en) Air-fuel ratio control device for internal combustion engine
JPS5825543A (en) Air-to-fuel ratio control method for internal combustion engine
JPS61201855A (en) Electronic control fuel injecting device for internal-combustion engine
JPS6179839A (en) Idle rotational speed control device in engine
JPS63140839A (en) Electronic control fuel injection device for internal combustion engine
JPS61106944A (en) Electronic control fuel injection device of internal-combustion engine
JPH0612082B2 (en) Electronically controlled fuel injection device for internal combustion engine