[go: up one dir, main page]

JPS61201855A - Electronic control fuel injecting device for internal-combustion engine - Google Patents

Electronic control fuel injecting device for internal-combustion engine

Info

Publication number
JPS61201855A
JPS61201855A JP4182285A JP4182285A JPS61201855A JP S61201855 A JPS61201855 A JP S61201855A JP 4182285 A JP4182285 A JP 4182285A JP 4182285 A JP4182285 A JP 4182285A JP S61201855 A JPS61201855 A JP S61201855A
Authority
JP
Japan
Prior art keywords
correction coefficient
engine
ratio correction
mixture ratio
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4182285A
Other languages
Japanese (ja)
Other versions
JPH0515904B2 (en
Inventor
Naomi Tomizawa
富澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP4182285A priority Critical patent/JPS61201855A/en
Publication of JPS61201855A publication Critical patent/JPS61201855A/en
Publication of JPH0515904B2 publication Critical patent/JPH0515904B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enoughly ensure an operation region in which preference is given an output even on a highland, by a method wherein mixing ratio correcting factors, respectively referred from setting means for lowlands and highlands, are compared with each other, and a fuel increase amount is corrected by means of the higher correcting factor. CONSTITUTION:In a control unit 13, a fundamental injection quantity is computed from an intake air flow rate and the rotation speed of an engine obtained by means of signals from a heat rays type flow meter 5 and a crank angle sensor 7. Based on the fundamental injection quantity a nd the rotation speed of an engine, a mixing ratio correcting factor for lowlands is referred frm a three-dimentional map stored in a memory. Based on the opening of a throttle valve and the rotation speed of an engine by means of a signal from a throttle sensor 6, a mixing ratio correcting factor for highlands is referred from a three- dimentional map stored in a memory. The two mixing ratio correcting factors are compared with each other, and the higher correcting factor and various increase correcting factors are added to determine an overall correcting factor.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の電子制御燃料噴射装置に関し、特
に吸気流量検出用として熱線式流量計を使用したものに
おける高地での出力特性改善対策に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and in particular, measures to improve output characteristics at high altitudes in a device that uses a hot wire flow meter for detecting intake air flow rate. Regarding.

〈従来の技術〉 電子制御燃料噴射装置を備えた内燃機関において、噴射
量T1は次式によって定められる。
<Prior Art> In an internal combustion engine equipped with an electronically controlled fuel injection device, the injection amount T1 is determined by the following equation.

T+ = TpX COE F xα+T。T+ = TpX COE F xα+T.

ここで、T、は基本噴射量で、 T p ” K X Q / N である。Kは定数、Qは吸気流量、Nは機関回転数であ
る。C0EFは各種増量補正係数で、Co E F =
 1 + Kyw + KAS+ KAl+、KMlで
ある。ここでKtWは水温増量補正係数I KASは始
動及び始動後増量補正係数r  KAIはアイドル後 
・増量補正係数、に、llは混合比補正係数である。α
は後述する空燃比のフィードバック制?III(λコン
トロール)のための空燃比フィードバック補正係数であ
る。T、は電圧補正分で、バッテリ電圧の変動による噴
射特性変化を補正するためのものである。
Here, T is the basic injection amount, T p ” K X Q / N. K is a constant, Q is the intake flow rate, and N is the engine speed. =
1 + Kyw + KAS+ KAl+, KMl. Here, KtW is the water temperature increase correction coefficient I, KAS is the start and post-start increase correction coefficient r, and KAI is after idling.
・Increase correction coefficient, ll is the mixture ratio correction coefficient. α
Is the air-fuel ratio feedback system described later? This is an air-fuel ratio feedback correction coefficient for III (λ control). T is a voltage correction amount, which is used to correct changes in injection characteristics due to fluctuations in battery voltage.

通常の定常運転時は、空燃比のフィードバック制御が行
われる。これは排気系にo2センサを取り付けて実際の
空燃比を検出し、空燃比が理論空燃比より濃いか薄いか
をスライスレベルにより判定し、理論空燃比になるよう
に燃料の噴射量を制御するわけであり、このため、前記
の空燃比フィードバック補正係数αというものを定めて
、このαを変化させることにより理論空燃比に保ってい
る。
During normal steady operation, feedback control of the air-fuel ratio is performed. This involves installing an O2 sensor in the exhaust system to detect the actual air-fuel ratio, determining whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio based on the slice level, and controlling the fuel injection amount to maintain the stoichiometric air-fuel ratio. Therefore, the aforementioned air-fuel ratio feedback correction coefficient α is determined, and by changing this α, the stoichiometric air-fuel ratio is maintained.

また、加速等の高負荷運転時等は、α−1に固定して空
燃比フィードバック制御を停止し、前記混合比補正係数
を大きく設定して、燃料噴射量を増量補正するようにし
て出力向上を優先している(特願昭58−160492
号参照)。
In addition, during high-load operation such as acceleration, the air-fuel ratio feedback control is stopped by fixing it to α-1, and the mixture ratio correction coefficient is set to a large value to increase the fuel injection amount to improve output. (Patent application 160492/1982)
(see issue).

ところで、前記吸気流量Qの流量計として、近年、吸気
通路内に白金等の熱線抵抗を配設し、この熱線抵抗の吸
気流量変化によって変化しようとする抵抗値を一定に保
つように熱線抵抗を含むブリッジ回路への通電電流値を
制御し、この電流値に対応する吸気流量を検出するよう
にした熱線式流量計を備えたものがある(実願昭59−
022418号参照)。
By the way, in recent years, as a flow meter for the intake flow rate Q, a hot wire resistor made of platinum or the like is disposed in the intake passage, and the hot wire resistance is adjusted to keep the resistance value of the hot wire resistance constant, which tends to change due to changes in the intake flow rate. There is a hot-wire flow meter that controls the value of the current flowing into the bridge circuit and detects the intake flow rate corresponding to this current value (Utility Application 1983-
(See No. 022418).

かかる熱線式流量計を使用すれば、吸気流量を質量で検
出できるため、真の酸素量に応じた燃料量を供給して良
好な空燃比制御が行える利点がある。
If such a hot wire flowmeter is used, the intake air flow rate can be detected by mass, so there is an advantage that a fuel amount corresponding to the true oxygen amount can be supplied and good air-fuel ratio control can be performed.

〈発明が解決しようとする問題点〉 かかる電子制御燃料噴射装置においては、従来、前記混
合比補正係数KHNにより燃料増量補正を行う運転領域
(即ちKMR>0)及び該運転領域における混合比補正
係数KMRの値を負荷条件としての基本噴射!!kTI
−と機関回転速度Nとに対応する3次元マツプとして設
定し、該マツプから検索したKMIに基づいて燃料増量
補正を行っている。
<Problems to be Solved by the Invention> Conventionally, in such an electronically controlled fuel injection device, an operating range (i.e. KMR>0) in which fuel increase correction is performed using the mixture ratio correction coefficient KHN and a mixture ratio correction coefficient in the operating range Basic injection using the KMR value as the load condition! ! kTI
- is set as a three-dimensional map corresponding to the engine rotational speed N, and fuel increase correction is performed based on the KMI retrieved from the map.

しかしながら、前記マツプは低地を基準として設定しで
あるため、熱線式流量計を使用したものでは前記したよ
うに吸気流量を質量で検出するものであるから、後述す
るような問題を生じる。
However, since the map is set based on a lowland, a hot wire type flow meter detects the intake air flow rate by mass as described above, which causes problems as described below.

即ち、高地において空気密度が低下すると、アクセルペ
ダルの踏込量に対する吸気流量(′!を量)Qが低地に
対して小さくなるため、全運転領域に対して空燃比フィ
ードバック制御の占める割合が増大する一方、吸気流量
Qに応じた基本噴射量T。
In other words, when the air density decreases at high altitudes, the intake flow rate ('!) Q relative to the amount of depression of the accelerator pedal becomes smaller than at low altitudes, so the ratio of air-fuel ratio feedback control to the entire driving range increases. On the other hand, the basic injection amount T depends on the intake air flow rate Q.

に基づいて燃料増量補正を必要とする加速等の運転領域
が相対的に減少する。特に極度の高地では殆ど全運転領
域で空燃比フィードバック制御のみが行われ、このため
燃料増量による加速に遅れを来したり、極端な場合は全
く加速時の燃料増量補正を行えなくなり、追い越し運転
時の安全性に問題を生じる。
Based on this, the operating range such as acceleration that requires fuel increase correction is relatively reduced. Particularly at extremely high altitudes, only air-fuel ratio feedback control is performed in almost all driving ranges, and this can result in a delay in acceleration due to fuel increase, or in extreme cases, it may not be possible to make fuel increase correction at all during acceleration, and when overtaking. poses a safety problem.

本発明は、上記の実状に鑑みなされたもので、熱線式流
量計を用いた電子制御燃料噴射装置において、低地にお
いて従来同様の高精度な空燃比制御を確保しつつ、高地
においても燃料増量補正によって出力を優先する運転領
域を十分に確保できるようにすることを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and uses an electronically controlled fuel injection system using a hot-wire flowmeter to ensure high-precision air-fuel ratio control at low altitudes as in conventional systems, while also providing fuel increase correction at high altitudes. The purpose is to ensure a sufficient operating range where output is given priority.

く問題点を解決するための手段) このため、本発明は第1図に示すように、機関Aの吸気
通路Bに熱線式流量計Cを備える一方、該熱線式流量計
Cからの吸気流量Q信号及び機関回転速度検出手段りか
らの機関回転速度N信号に基づいて吸気通路Bに設けら
れた燃料噴射弁Eから噴射される燃料の基本噴射ffi
 Trを設定する基本噴射量設定手段Fと、前記基本噴
射量T、を混合比補正係数に□を乗じて燃料噴射量を増
量補正する噴射量増量補正手段Gとを備えた内燃機関の
電子制御燃料噴射装置において、機関負荷条件としての
前記基本噴射量TPと機関回転速度Nとに基づいて低地
における燃料増量補正を行う運転領域及び該運転領域に
おける混合比補正係数KMRLO値を設定する低地用混
合比補正係数設定手段Hと、吸気通路Bに介装されたス
ロットル弁Iの開度θを検出する手段Jと、機関負荷条
件としてのスロットル弁開度θと機関回転速度Nとに基
づいて高地における燃料増量補正を行う運転領域及び該
運転領域における混合比補正係数に□、1の値を設定す
る高地用混合比補正係数設定手段にと、低地用混合比補
正係数設定手段H及び高地用混合比補正係数設定手段K
から夫々検索した混合比補正係数を比較し、大きい方の
混合比補正係数を選択する手段りとを設けた構成とする
Therefore, as shown in FIG. Basic injection ffi of fuel injected from the fuel injection valve E provided in the intake passage B based on the Q signal and the engine rotation speed N signal from the engine rotation speed detection means
Electronic control of an internal combustion engine, comprising a basic injection amount setting means F for setting Tr, and an injection amount increase correction means G for increasing the fuel injection amount by multiplying the basic injection amount T by a mixture ratio correction coefficient. In the fuel injection system, an operating region in which fuel increase correction is performed in lowlands based on the basic injection amount TP and engine rotational speed N as engine load conditions, and a lowland mixture in which a mixture ratio correction coefficient KMRLO value in the operating region is set. A ratio correction coefficient setting means H, a means J for detecting the opening degree θ of the throttle valve I installed in the intake passage B, and a high altitude A high-altitude mixture ratio correction coefficient setting means for setting a value of □ and 1 for the fuel increase correction coefficient in the operating region and the mixture ratio correction coefficient in the operating region, a low-altitude mixture ratio correction coefficient setting means H and a high-altitude mixing Ratio correction coefficient setting means K
The configuration is provided with means for comparing the mixture ratio correction coefficients respectively searched from and selecting the larger mixture ratio correction coefficient.

く作用〉 かかる構成とすれは、スロットル弁開度θに対する基本
噴射量TPが空気密度の大きな低地では相対的に増大す
るためTPを負荷条件として設定される低地用混合比補
正係数に□、の方が高地用混合比補正係数K MRll
より大きくなってK MALが使用されて、従来同様質
量吸気流量に基づく高精度な空燃比制御が行われる。
This configuration is possible because the basic injection amount TP relative to the throttle valve opening θ increases relatively in lowlands where the air density is large, so the lowland mixture ratio correction coefficient is set using TP as a load condition. Mixing ratio correction coefficient for high altitude K MRll
The K MAL becomes larger and is used to perform highly accurate air-fuel ratio control based on the mass intake flow rate as in the past.

逆に、高地では空気密度の低下によりスロットル弁開度
θに対する基本噴射量が相対的に減少するため、θを負
荷条件として設定される高地用混合比補正係数K。Hの
方が低地用混合比補正係数K MRLより大きくなって
に□、lが使用され、これにより、高出力を要求される
運転領域での燃料増量補正が確実に行われ、加速性能等
が向上する。
Conversely, at high altitudes, the basic injection amount relative to the throttle valve opening θ decreases due to a decrease in air density, so the high altitude mixture ratio correction coefficient K is set with θ as the load condition. Since H is larger than the lowland mixture ratio correction coefficient K MRL, □ and l are used, thereby ensuring fuel increase correction in driving ranges where high output is required, improving acceleration performance, etc. improves.

〈実施例〉 以下に本発明の詳細な説明する。<Example> The present invention will be explained in detail below.

一実施例を示す第2図において、内燃機関1の吸気通路
−2には、各気筒の吸気ボート部に燃料噴射弁3.スロ
ットルチャンバ内にスロットル弁4゜その上流側に熱線
式流量計5が備えられる。スロットル弁4の支軸には、
スロットル弁4開度θを検出するスロットルセンサ6が
設けられる。また、機関1のクランク軸近傍には、機関
回転速度を検出するクランク角センサ7が設けられ、ウ
ォータジャケット部には冷却水温度を検出する水温セン
サ8が設けられ、排気通路9には排気中の酸素濃度を検
出する02センサ10が設けられる。
In FIG. 2 showing one embodiment, an intake passage-2 of an internal combustion engine 1 includes a fuel injection valve 3. A hot wire flow meter 5 is provided in the throttle chamber upstream of the throttle valve 4°. The spindle of the throttle valve 4 has
A throttle sensor 6 is provided to detect the opening degree θ of the throttle valve 4. Further, a crank angle sensor 7 is provided near the crankshaft of the engine 1 to detect the engine rotation speed, a water temperature sensor 8 is provided in the water jacket portion to detect the cooling water temperature, and an exhaust passage 9 is provided with a water temperature sensor 8 for detecting the cooling water temperature. An 02 sensor 10 is provided for detecting the oxygen concentration.

そして、これら各種センサ類からの信号及びスタートス
イッチ11からの信号、バフテリ12からの電圧信号が
マイクロコンピュータを内蔵したコントロールユニット
13に入力される。
Signals from these various sensors, signals from the start switch 11, and voltage signals from the buffer battery 12 are input to a control unit 13 containing a microcomputer.

コントロールユニット13は、これら入力信号に基づき
第3図に示すプログラムに従って設定された燃料噴射量
に相応するパルス幅をもつ駆動パル ゛大信号を駆動回
路14に出力して燃料噴射弁3を駆動させ燃料噴射量制
御を行う。
Based on these input signals, the control unit 13 outputs a drive pulse large signal having a pulse width corresponding to the fuel injection amount set according to the program shown in FIG. 3 to the drive circuit 14 to drive the fuel injection valve 3. Controls fuel injection amount.

次に、第3図のフローチャートについて説明する。Next, the flowchart shown in FIG. 3 will be explained.

Slで、熱線式流量計5からの信号によって得られる吸
気流iIQとクランク角センサ7からの信号によって得
られる機関回転速度Nとから基本噴射量TP(= K 
x Q/N)を演算する。このi能が基本噴射量設定手
段に相当する。
At Sl, the basic injection amount TP (= K
x Q/N). This i-function corresponds to the basic injection amount setting means.

S2で、水温センサ8.スタートスイッチ11゜スロッ
トルセンサ6のアイドル接点からの信号に基づき水温増
量補正係数に、8.始動及び始動後増量補正係数K A
 S r アイドル後増量補正係数に^1を設定する。
At S2, water temperature sensor 8. The start switch 11° adjusts the water temperature increase correction coefficient based on the signal from the idle contact of the throttle sensor 6; 8. Starting and post-starting increase correction coefficient K A
S r Set ^1 to the post-idle increase correction coefficient.

S3では、Slで演算した基本噴射量T、と機関回転速
度Nとに基づき、メモリに記憶された3次元マツプから
低地用混合比補正係数に□1を検索する。前記メモリに
記憶されたマツプ及びその検索機能が低地用混合比補正
係数設定手段を構成する。
In S3, □1 is searched for the lowland mixture ratio correction coefficient from the three-dimensional map stored in the memory based on the basic injection amount T calculated in Sl and the engine rotational speed N. The map stored in the memory and its search function constitute lowland mixing ratio correction coefficient setting means.

S4では、スロットルセンサ6からの信号によるスロッ
トル弁開度θと、機関回転速度Nとに基づきメモリに記
憶された3次元マツプから高地用混合比補正係数に□1
1を検索する。この場合、前記マツプ及びその検索機能
が高地用混合比補正係数設定手段を構成する。
In S4, the high-altitude mixture ratio correction coefficient is set by □1 from the three-dimensional map stored in the memory based on the throttle valve opening θ according to the signal from the throttle sensor 6 and the engine rotational speed N.
Search for 1. In this case, the map and its search function constitute high altitude mixing ratio correction coefficient setting means.

ここで、前記K MIIL及びK MINについては夫
々所定の高出力領域においてKMIIL >01 Ks
*n >Oとなり、この運転領域の中でも負荷が高くな
る程KMIIL 、  K□11の値は大きくなってお
り、これ以外の運転領域ではKMIIL = 0 、 
KMI□=Oにしてあり、混合比補正は行われない。
Here, regarding K MIIL and K MIN, KMIIL >01 Ks in a predetermined high output region, respectively.
*n > O, and the higher the load within this operating range, the larger the value of KMIIL, K□11 becomes. In other operating ranges, KMIIL = 0,
KMI□=O, and no mixing ratio correction is performed.

そして、低地においては、第4図に示すようにに□1〉
0となる運転領域かに、、、>0となる運転領域に比べ
て広く、かつ、かかる運転領域内の同一運転条件に対し
て、KM、IL>K□工となるが、高地においては、空
気密度の低下によりθに対するTPが低地に比べて低下
するため第5図に示すようにに□、l〉0となる運転領
域がKMIIL > 0となる運転領域に比べて広くな
り、かつ、かかる運転領域内の同一運転条件に対してK
MRII >K14RLとなるように設定しである。
In lowlands, as shown in Figure 4, □1〉
The operating range in which it is 0 is wider than the operating range in which it is >0, and for the same operating conditions within this operating range, KM, IL>K□, but at high altitudes, Due to the decrease in air density, TP for θ is lower than in lowlands, so as shown in Figure 5, the operating region where □, l>0 becomes wider than the operating region where KMIIL > 0, and K for the same operating conditions within the operating range
It is set so that MRII>K14RL.

S5では、S3.S4.で求められたに□、とに□9と
を比較し、K□、≧K N l nの場合はS6へ進ん
で、KMRLを後述する燃料噴射量の補正に対して使用
する混合比補正係数KHmとして選択する。
In S5, S3. S4. Compare □ and □9 found in Select as KHm.

また、S5の比較でに□、<KMRHの場合はS7へ進
んで、K MIHを同じ(混合比補正係数に□として選
択する。
Further, in the case of □ and <KMRH in the comparison in S5, the process proceeds to S7 and selects the same K MIH (□ as the mixture ratio correction coefficient).

即ち、55.S6.S7の機能が混合比補正係数選択手
段を構成する。
That is, 55. S6. The function of S7 constitutes a mixture ratio correction coefficient selection means.

S8では、S2とS6又はS7で求められた各種増量補
正係数を加算し、総合した補正係数C0EFを求める。
In S8, the various increase correction coefficients obtained in S2 and S6 or S7 are added to obtain a total correction coefficient C0EF.

S9では、空燃比フィードバック制御(λコントロール
)を行う運転領域であるか否かを判定する。これは、水
温が所定以下の低温時、フューエルカット時、空燃比が
リッチ又はリーン状態で所定時間継続した時、クランキ
ング及び始動初期等の他、前記S6又はS7で求められ
るKMRが高速。
In S9, it is determined whether the operating range is where air-fuel ratio feedback control (λ control) is performed. This occurs when the water temperature is below a predetermined temperature, when the fuel is cut, when the air-fuel ratio continues in a rich or lean state for a predetermined period of time, during cranking and early startup, and when the KMR determined in S6 or S7 is high.

高負荷時に用いられる正の値となった場合等で空燃比フ
ィードバック制御を停止すべきと判断され、この場合は
SIOへ進んで空燃比フィードバック補正係数α−1に
固定される。
It is determined that the air-fuel ratio feedback control should be stopped when the value becomes a positive value used during high load, and in this case, the process proceeds to SIO and is fixed at the air-fuel ratio feedback correction coefficient α-1.

前記以外の運転領域では、空燃比フィードバック制御を
行うべきと判断され、511へ進む。
In operating ranges other than the above, it is determined that air-fuel ratio feedback control should be performed, and the process proceeds to 511.

311では、OXセンサ10からの出力とスライスレベ
ルとを比較して比例積分制御により空燃比フィードバッ
ク補正係数αが設定される。
At step 311, the output from the OX sensor 10 and the slice level are compared, and the air-fuel ratio feedback correction coefficient α is set by proportional-integral control.

512では、バッテリ12からのバッテリ電圧に基づい
て電圧補正分子、を設定する。
At 512, a voltage correction numerator is set based on the battery voltage from battery 12.

513で、噴射量T、を次式に従って演算する。At 513, the injection amount T is calculated according to the following equation.

T I= T P X COE F Xα+T。T I = T P X COE F X α + T.

S14で、噴射量T1に相当する駆動パルス信号が機関
回転に同期したタイミングで駆動回路14に出力される
In S14, a drive pulse signal corresponding to the injection amount T1 is output to the drive circuit 14 at a timing synchronized with engine rotation.

ここで、88〜S14の機能が燃料噴射量補正手段を構
成する。
Here, the functions 88 to S14 constitute a fuel injection amount correction means.

このようにすれば、低地においては従来同様熱線式流量
計5からの質量吸気流量に基づいて得られるT、を機関
負荷条件として混合比補正係数KMIIが設定されるた
め、高精度な空燃比制御を行える。
In this way, in lowlands, the mixture ratio correction coefficient KMII is set using T, which is obtained based on the mass intake flow rate from the hot-wire flowmeter 5 as the engine load condition, as in the past, so highly accurate air-fuel ratio control is possible. can be done.

一方、高地においては前記した理由によりスロットル弁
開度θを機関負荷条件として混合比補正係数KNIIが
設定されるため、追い越しや登板特等高出力が要求され
る運転領域でKl(IIに基づき十分な燃料増量補正を
行うことができ、良好な運転性が得られる。
On the other hand, at high altitudes, the mixture ratio correction coefficient KNII is set using the throttle valve opening θ as the engine load condition for the reason mentioned above. Fuel increase correction can be performed and good drivability can be obtained.

また、空気密度センサ(吸気圧センサ)等を用いること
なくソフトウェアのみで低地と高地との混合比補正係数
KMRを自動的に切り換えることができるため、コスト
的にも極めて有利である。
Furthermore, since the mixture ratio correction coefficient KMR for lowlands and highlands can be automatically switched only by software without using an air density sensor (intake pressure sensor) or the like, it is extremely advantageous in terms of cost.

さらに、低地から高地に至る際にKMIIL>0の領域
とKMRll > 0の領域とが徐々に接近して滑らか
に切り換わるため、違和感もなく運転フィーリング性に
も優れる。
Furthermore, when going from a lowland to a highland, the area where KMIIL>0 and the area where KMRll>0 gradually approach and switch smoothly, so there is no discomfort and the driving feeling is excellent.

〈発明の効果〉 以上説明したように、本発明によれば、低地における高
精度な空燃比制御を確保しつつ、空気密度の低下する高
地においても出力を優先して燃料増量補正を行う運転領
域が確保され、追い越しや登板時等でも良好な運転性が
得られ、その切換もソフトウェアのみで自動的に行うこ
とが可能でありコスト的にも有利である他、切換が滑ら
かに行われるため、運転フィーリング性に優れる等種々
の利点を備えるものである。
<Effects of the Invention> As explained above, according to the present invention, it is possible to achieve an operation range in which fuel increase correction is performed with priority given to output even at high altitudes where air density decreases while ensuring highly accurate air-fuel ratio control at low altitudes. This ensures good drivability even when overtaking or pitching, and the switching can be done automatically using only software, which is advantageous in terms of cost. It has various advantages such as excellent driving feeling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成1機能を示すブロック図、第2図
は本発明の一実施例の構成を示すブロック図、第3図は
同上実施例の制御過程を示すフローチャート、第4図は
同上実施例の低地における混合比補正係数の設定状態を
示す線図、第5図は同上実施例の高地における混合比補
正係数の設定状態を示す線図である。 1・・・内燃機関  2・・・吸気通路  3・・・燃
料噴射弁  4・・・スロットル弁  5・・・熱線式
流量計6・・・スロットルセンサ  7・・・クランク
角センサ13・・・コントロールユニット  14・・
・駆a 回m特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第2図 第 3図 その1 第3図 その2
FIG. 1 is a block diagram showing the configuration 1 function of the present invention, FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the control process of the above embodiment, and FIG. FIG. 5 is a diagram showing the setting state of the mixture ratio correction coefficient in the lowland area of the same embodiment as above, and FIG. 5 is a diagram showing the setting state of the mixture ratio correction coefficient in the highland area of the same embodiment. 1... Internal combustion engine 2... Intake passage 3... Fuel injection valve 4... Throttle valve 5... Hot wire flow meter 6... Throttle sensor 7... Crank angle sensor 13... Control unit 14...
・Driving patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 2 Figure 3 Part 1 Figure 3 Part 2

Claims (1)

【特許請求の範囲】[Claims] 機関の吸気通路に配設した熱線抵抗の抵抗値を吸気流量
変化に対して一定に保つべく熱線抵抗への電流値を制御
し、この電流値に対応する吸気流量を検出するようにし
た熱線式流量計を備える一方、前記熱線式流量計で検出
される吸気流量と機関回転速度を検出する手段で検出さ
れる機関回転速度とに基づいて吸気通路に設けられた燃
料噴射弁から噴射される燃料の基本噴射量を設定し、か
つ、機関負荷と機関回転速度とを条件とする所定の高出
力運転領域で前記基本噴射量に混合比補正係数を乗じて
燃料噴射量を増量補正する手段を備えた内燃機関の電子
制御燃料噴射装置において、機関負荷条件としての前記
基本噴射量と機関回転速度とに基づいて、低地における
燃料増量補正を行う運転領域及び該運転領域における混
合比補正係数値を設定する低地用混合比補正係数設定手
段と、吸気通路に介装されたスロツトル弁の開度を検出
する手段と、機関負荷条件としてのスロツトル弁開度と
機関回転速度とに基づいて高地における燃料増量補正を
行う運転領域及び該運転領域における混合比補正係数値
を設定する高地用混合比補正係数設定手段と、低地用混
合比補正係数設定手段及び高地用混合比補正係数設定手
段から夫々検索した混合比補正係数を比較し、大きい方
の混合比補正係数を選択する手段とを設けて構成したこ
とを特徴とする内燃機関の電子制御燃料噴射装置。
A hot-wire type that controls the current value to the hot-wire resistor in order to keep the resistance value of the hot-wire resistor installed in the engine's intake passage constant against changes in intake flow rate, and detects the intake flow rate corresponding to this current value. Fuel is injected from a fuel injection valve provided in an intake passage based on the intake flow rate detected by the hot-wire flowmeter and the engine rotation speed detected by the engine rotation speed detection means. and means for increasing the fuel injection amount by multiplying the basic injection amount by a mixture ratio correction coefficient in a predetermined high-output operation region conditioned on engine load and engine rotation speed. In an electronically controlled fuel injection system for an internal combustion engine, an operating range in which fuel increase correction is performed at low altitudes and a mixture ratio correction coefficient value in the operating range are set based on the basic injection amount and engine rotational speed as engine load conditions. means for setting a mixture ratio correction coefficient for low altitudes; means for detecting the opening degree of a throttle valve installed in the intake passage; and means for increasing the amount of fuel at high altitudes based on the throttle valve opening degree and engine speed as engine load conditions. The mixture retrieved from the high-altitude mixture ratio correction coefficient setting means for setting the operation region to be corrected and the mixture ratio correction coefficient value in the operation region, the low-altitude mixture ratio correction coefficient setting means, and the high-altitude mixture ratio correction coefficient setting means, respectively. 1. An electronically controlled fuel injection system for an internal combustion engine, comprising means for comparing ratio correction coefficients and selecting a larger mixture ratio correction coefficient.
JP4182285A 1985-03-05 1985-03-05 Electronic control fuel injecting device for internal-combustion engine Granted JPS61201855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4182285A JPS61201855A (en) 1985-03-05 1985-03-05 Electronic control fuel injecting device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4182285A JPS61201855A (en) 1985-03-05 1985-03-05 Electronic control fuel injecting device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS61201855A true JPS61201855A (en) 1986-09-06
JPH0515904B2 JPH0515904B2 (en) 1993-03-02

Family

ID=12618979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4182285A Granted JPS61201855A (en) 1985-03-05 1985-03-05 Electronic control fuel injecting device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61201855A (en)

Also Published As

Publication number Publication date
JPH0515904B2 (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPH10212989A (en) In-cylinder injection engine control device
JPH10331686A (en) Controller for internal combustion engine
JPH0331548A (en) Mixed fuel supply device of internal combustion engine
JPH0224550A (en) Controlling device of heater power of oxygen concentration sensor with heater
JP3203440B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2690482B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08284708A (en) Fuel injector for engine
JPH1018883A (en) Engine air-fuel ratio controller
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS61201855A (en) Electronic control fuel injecting device for internal-combustion engine
JPS61106944A (en) Electronic control fuel injection device of internal-combustion engine
JPH0715272B2 (en) Air-fuel ratio controller for internal combustion engine
JPS6313012B2 (en)
JPS59196932A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JPH07180580A (en) Air-fuel ratio control device for engine
JP2803084B2 (en) Idle speed control method
JPH0545803Y2 (en)
JP2631587B2 (en) Fuel supply control device for internal combustion engine
JPH0710050Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JPS61223240A (en) Bypass air quantity controller for internal-combustion engine on start
JPS6053642A (en) Air-fuel ratio control method in electronically controlled fuel injection type internal- combustion engine
JPS6179839A (en) Idle rotational speed control device in engine
JPH0423099B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees