[go: up one dir, main page]

JPS5825543A - Air-to-fuel ratio control method for internal combustion engine - Google Patents

Air-to-fuel ratio control method for internal combustion engine

Info

Publication number
JPS5825543A
JPS5825543A JP12506781A JP12506781A JPS5825543A JP S5825543 A JPS5825543 A JP S5825543A JP 12506781 A JP12506781 A JP 12506781A JP 12506781 A JP12506781 A JP 12506781A JP S5825543 A JPS5825543 A JP S5825543A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
sensor
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12506781A
Other languages
Japanese (ja)
Inventor
Takehisa Yaegashi
八重樫 武久
Toshimi Murai
村井 俊水
Hiroyuki Domiyo
道明 博之
Hiroki Matsuoka
松岡 広樹
Yukio Kinugasa
衣笠 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Toyota Jidosha Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Jidosha Kogyo KK filed Critical Toyota Motor Corp
Priority to JP12506781A priority Critical patent/JPS5825543A/en
Publication of JPS5825543A publication Critical patent/JPS5825543A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2496Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories the memory being part of a closed loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enhance the accuracy of air-to-fuel ratio control and the purifying performance of exhaust gas over a wide range of the load on the engine etc. by setting a map for the constant of feedback control made by an air-to-fuel ratio sensor according to the characteristics of the sensor and by reading this map for making the optimum feedback control. CONSTITUTION:Output from the air-to-fuel ratio sensor to sense the oxygen density is related to the air-to-fuel ratio feedback correction factor f(A/F) through treatment including an integral process, to provide such feedback constants as reversing delay times TDL, TDR, skip widths RSL, RSR, integral constants KIL, KIR, etc. The ratio of the amount of taken-in-air a (16) to the revolving speed of engine N (22) shall be mapped with respect to the speed N with at least one of the abovementioned constants, for example time TDL, being matched previously with the characteristics of the air-to-fuel ratio sensor 36, and be put in memory in the ROM66 of the control circuit 50. Accordingly, the basic injection time for the fuel can be corrected by determining the abovementioned factor f(A/F) through read-out of the time TDL on accordance with the condition of loading a/N of the engine to be followed by output processing of the sensor 36. Thus the injector 44 and idling speed control valve 48 are feedback controlled.

Description

【発明の詳細な説明】 本発明は、内燃機関の空燃比制御方法に係り、特に、三
元触媒を用いて排気ガス浄化対策が施された自動車用内
燃機関に用いるに好適な、触媒流入ガスの二次空燃比を
感知する空燃比センサと、混合気或い祉触媒流入ガスの
空燃比を制御する空燃比制御アクチュエータとを用い、
前記空燃比センサの出力に対して積分を含む処理を施す
ことによって得られる帰還制御信号により前記空燃比制
御アクチュエータを帰還制御して、混合気或いは触媒流
入ガスの空燃比を所望空燃比とする内燃機関の空燃比制
御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an internal combustion engine, and particularly to a method for controlling an air-fuel ratio of an internal combustion engine, and in particular, a method for controlling a catalyst inflow gas, which is suitable for use in an automobile internal combustion engine in which exhaust gas purification measures are taken using a three-way catalyst. using an air-fuel ratio sensor that detects the secondary air-fuel ratio of
Feedback control of the air-fuel ratio control actuator is performed using a feedback control signal obtained by performing processing including integration on the output of the air-fuel ratio sensor, so that the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas becomes a desired air-fuel ratio. This invention relates to improvements in an engine air-fuel ratio control method.

内燃機関、特に、厳しい排気ガス浄化対策が要求される
自動車用内燃機関においては、近年、精密な空燃比制御
を行なうことが必要となっており、例えば、触媒流入ガ
ス中の残存酸素濃度から触媒流入ガスの二次空燃比を感
知するための散票濃度センサと、混合気或いは触媒流入
ガスの空燃比を制御する空燃比制御アクチュエータとを
備え、前記酸素濃度センナの出力に対して積分を含む処
理を施すことによって得られる帰還制御信号により前記
空燃比制御アクチュエータを帰還制御して、触媒流入ガ
ス中の残存酸素濃度を、理論空燃比の混合気を燃焼させ
た場合の残存酸素濃度と等しくするようにしたものが実
用化されている。
In recent years, it has become necessary to perform precise air-fuel ratio control in internal combustion engines, especially automotive internal combustion engines that require strict exhaust gas purification measures. It includes a scatter concentration sensor for sensing the secondary air-fuel ratio of the inflowing gas, and an air-fuel ratio control actuator for controlling the air-fuel ratio of the air-fuel mixture or the catalyst inflowing gas, and includes an integral for the output of the oxygen concentration sensor. Feedback control is performed on the air-fuel ratio control actuator using a feedback control signal obtained by performing the processing to make the residual oxygen concentration in the catalyst inflow gas equal to the residual oxygen concentration when a mixture at the stoichiometric air-fuel ratio is combusted. This has been put into practical use.

このような空燃比制御によれば、エンジン運転状態の変
化に拘らず、良好な排気ガス浄化性能を得ることができ
るとbう特徴を有する。
Such air-fuel ratio control has the characteristic that good exhaust gas purification performance can be obtained regardless of changes in engine operating conditions.

しかしながら従来は、前記酸素濃度センサの出力に対し
て積分を含む処理を施す際に用いられる、反転遅延時間
、スキップ幅、積分定数等の帰還制御定数のうち、いず
れか1つを、エンジン回転速度に応じて切り換えるのみ
であった念め、エンジン回転速度及びエンジン負荷等に
より変化する酸素濃度センサの特性と、帰還制御定数の
値が十分に合わないことがあり1例えば、エンジン低負
荷域に合わせるとエンジン高負荷域で空燃比の中心値が
ずれてしまい、排気ガス浄化性能が低下して、有害な成
分が多(排出されてしまうことがあった。
However, conventionally, any one of the feedback control constants, such as the reversal delay time, skip width, and integral constant, used when performing processing including integration on the output of the oxygen concentration sensor, is set to the engine rotational speed. Note that the characteristics of the oxygen concentration sensor, which changes depending on the engine speed and engine load, may not match the value of the feedback control constant 1. When the engine is in a high load range, the center value of the air-fuel ratio deviates, reducing exhaust gas purification performance and causing a large amount of harmful components to be emitted.

本発明は、前記従来の欠点を解消するべくなされたもの
で、エンジン回転速度及びエンジン負荷により変化する
空燃比センサの特性に合わせて、最適表帰還制御定数の
値を選択することができ、従って、空燃比制御精度を向
上して、排気ガス浄化性能を向上することができる内燃
機関の空燃比制御方法を提供することを目的とする。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and it is possible to select the value of the optimum table feedback control constant according to the characteristics of the air-fuel ratio sensor that change depending on the engine rotation speed and engine load. An object of the present invention is to provide an air-fuel ratio control method for an internal combustion engine that can improve air-fuel ratio control accuracy and improve exhaust gas purification performance.

本発明は、触媒流入ガスの二次空燃比を感知する空燃比
センサと、混合気或いは触媒流入ガスの空燃比を制御す
る空燃比制御アクチュエータとを用い、前記空燃比セン
サの出力に対して積分を含む処理を施すことによって得
られる帰還制御信号により前記空燃比制御アクチュエー
タを帰還制御して、混合気或いは触媒流入ガスの空燃比
を所望空燃比とする内燃機関の空燃比制御方法において
、前記空燃比センサの出力に対して積分を含む処理を施
す際に用いられる帰還制御定数の少な(とも1種を、予
め、前記空燃比センサの特性に合わせてマツプ化してお
き、エンジン回転速度及びエンジン負荷に応じて、前記
マツプより読出した値により、前記空燃比センサの出力
を処理するようにして、前記目的を達成したものである
The present invention uses an air-fuel ratio sensor that senses the secondary air-fuel ratio of the catalyst inflow gas and an air-fuel ratio control actuator that controls the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas, and integrates the output of the air-fuel ratio sensor. In the air-fuel ratio control method for an internal combustion engine, the air-fuel ratio control actuator is feedback-controlled by a feedback control signal obtained by performing processing including A small number of feedback control constants (both one type) used when performing processing including integration on the output of the fuel ratio sensor are mapped in advance according to the characteristics of the air-fuel ratio sensor, and engine speed and engine load are mapped in advance. The above object is achieved by processing the output of the air-fuel ratio sensor according to the value read from the map.

以下図面を参照して1本発明の実施例を詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

本発明に係る内燃機関の空燃比制御方法が採用された電
子制御燃料噴射装置の実施例が配設された電子制御エン
ジンは、第1図及び第2図に示す如(、エンジンlOの
吸気通路12のエアクリーナ14より下流11に配設さ
れ良、エンジンの吸入空気量を検出するためのエアフロ
ーメータ16と、該エアフローメータ16内に配設され
た、吸入空気温を検出するための吸気温センサ18と、
エンジン回転に応じて回転する軸20aを有するディス
トリビュータ20に内蔵され、エンジン回転に応じたパ
ルス信号を発生するクランク角センサ22と、エンジン
ブロック24に配設された、エンジン冷却水温を検出す
るための冷却水温センサ26と、吸気通路12に配設さ
れた、アクセルペダルと連動して開閉される吸気絞り弁
28の開度及び開度変化速度を検出するためのスロット
ルポジションセンサ30と、混合気の燃焼によって形成
された排気ガスが流入する排気マニホルド32の下流側
に配設された、触媒、例えば三元触媒が充填された触媒
コンバータ34Vc流入する触媒流入ガス中の残存酸素
濃度から触媒流入ガスの二次空燃比を感知するための酸
素濃度センサ36と、変速機38の出力軸の回転速度か
ら車両の走行速度、即ち、車速を検出するための車速セ
ンサ4゜と、エンジン10の吸気マニホルド42内に燃
料を噴射するためのインジェクタ44と、吸気通路12
の途中のサージタンク46に配設された、アイドル時に
前記吸気絞り弁28をバイパスする空気流量を制御する
ための、パルスモータ、電磁作動弁等からなるアイドル
回転速度制御弁48と、エンジンの吸入空気量とエンジ
ン回転数に応じて基本の燃料噴射時間を算出すると共に
、算出された基本の燃料噴射時間に対して、前記酸素濃
度センサ36の出力に対して積分を含む処理を施すこと
によって得られる帰還制御信号により空燃比帰還補正を
行ない、前記インジェクタ44に燃料噴射信号を出力す
るデジタル電子制御回路50とから構成されている。第
1図において、52a点火プラグであり、1に2図にお
いて、54はバッテリである。
An electronically controlled engine equipped with an embodiment of an electronically controlled fuel injection device employing the air-fuel ratio control method for an internal combustion engine according to the present invention is shown in FIGS. an air flow meter 16 disposed downstream 11 of the air cleaner 14 of 12 for detecting the intake air amount of the engine; and an intake temperature sensor disposed within the air flow meter 16 for detecting the intake air temperature. 18 and
A crank angle sensor 22 is built into the distributor 20, which has a shaft 20a that rotates in accordance with the engine rotation, and generates a pulse signal in accordance with the engine rotation. A cooling water temperature sensor 26, a throttle position sensor 30 for detecting the opening degree and the rate of change in the opening degree of an intake throttle valve 28, which is disposed in the intake passage 12 and is opened and closed in conjunction with the accelerator pedal, and A catalytic converter 34Vc filled with a catalyst, for example, a three-way catalyst, is disposed on the downstream side of the exhaust manifold 32 into which exhaust gas formed by combustion flows. An oxygen concentration sensor 36 for sensing the secondary air-fuel ratio, a vehicle speed sensor 4° for detecting the running speed of the vehicle, that is, the vehicle speed from the rotational speed of the output shaft of the transmission 38, and an intake manifold 42 of the engine 10. an injector 44 for injecting fuel into the intake passage 12;
An idle rotation speed control valve 48 consisting of a pulse motor, an electromagnetic actuated valve, etc. is disposed in a surge tank 46 in the middle of the engine and is used to control the flow rate of air that bypasses the intake throttle valve 28 during idle. The basic fuel injection time is calculated according to the air amount and the engine speed, and the calculated basic fuel injection time is obtained by performing processing including integration on the output of the oxygen concentration sensor 36. The digital electronic control circuit 50 performs air-fuel ratio feedback correction based on a feedback control signal generated by the engine, and outputs a fuel injection signal to the injector 44. In FIG. 1, 52a is a spark plug, and in FIGS. 1 and 2, 54 is a battery.

前記デジタル電子制御回路50は、第2図に詳細に示す
如く、エア70−メータ16、吸気温センサ18.冷却
水温センサ26、酸素濃度センサ36、及び、バッテリ
54出力のアナログ信号をデジタル信号に変換するため
の、マルチプレクサ機能を有するアナログ−デジタル変
換器60と、前記クランク角センサ22及びスロットル
ポジションセンナ30出力のデジタル信号を入力すると
共に、演算結果をインジェクタ44及びアイドル回転速
度制御弁481C出力するのに適した信号に変換する、
バッファ機能を有する入出力インターフェース回路62
と、水晶発振器64mを備えた中央演算処理回路64と
、リードオンリーメモリ66と、ランダムアクセスメ、
そり68と、電源バックアップ用のランダムアクセスメ
モリ70とから構成されている。
As shown in detail in FIG. 2, the digital electronic control circuit 50 includes an air 70-meter 16, an intake air temperature sensor 18. An analog-to-digital converter 60 having a multiplexer function for converting analog signals output from the cooling water temperature sensor 26, oxygen concentration sensor 36, and battery 54 into digital signals, and outputs from the crank angle sensor 22 and throttle position sensor 30. inputs the digital signal, and converts the calculation result into a signal suitable for outputting the injector 44 and idle rotation speed control valve 481C.
Input/output interface circuit 62 with buffer function
, a central processing circuit 64 equipped with a crystal oscillator 64m, a read-only memory 66, a random access memory,
It consists of a sled 68 and a random access memory 70 for power backup.

以下動作を説明する。まず、デジタル電子制御回路50
Fi、エアフローメータ16出力の吸入空気IQとクラ
ンク角センサ22出力から算出されるエンジン回転速度
Nにより、次式を用いて燃料の基本噴射時間TPを算出
する。
The operation will be explained below. First, the digital electronic control circuit 50
Based on Fi, the intake air IQ output from the air flow meter 16, and the engine rotational speed N calculated from the output from the crank angle sensor 22, the basic fuel injection time TP is calculated using the following equation.

Tp=に一−’   ・・・・・・・・・・・・(1)
ここでに蝶係数である。
Tp=ni-' ・・・・・・・・・・・・(1)
Here is the butterfly coefficient.

更に、各センサからの信号に応じて、次式を用めて前記
基本噴射時間Tp を補正することにより、有効同期噴
射時間τ1を算出する。
Furthermore, the effective synchronous injection time τ1 is calculated by correcting the basic injection time Tp according to the signals from each sensor using the following equation.

τ1=Tp −/ (A/F’ ) ・f(WL) ・
f (THA)X(1+f(ASE)+f(AFW)十
f(OTP) )X(1−f(R8) )・・・・・・
・・・(2) ここで、f(A/F)は空燃比帰還補正係数、f(WL
)は暖機増量補正係数、f (THA )は吸気温補正
係数、f(ASE)1;1始動後増量補正係数、/(A
EW)t;j暖機時加速増量補正係数、/(OTP)は
オーバーヒート(出力)増量係数、f(R8)Fi減量
係数である。
τ1=Tp −/(A/F') ・f(WL) ・
f (THA)X (1 + f (ASE) + f (AFW) + f (OTP) )
...(2) Here, f(A/F) is the air-fuel ratio feedback correction coefficient, f(WL
) is the warm-up increase correction coefficient, f (THA ) is the intake air temperature correction coefficient, f (ASE) 1; 1 after-start increase correction coefficient, / (A
EW)t;j acceleration increase correction coefficient during warm-up, /(OTP) is overheat (output) increase coefficient, f(R8)Fi reduction coefficient.

このようにして求められる有効同期噴射時間τ1に、次
式に示す如く、バッテリ電圧が低下した際のインジェク
タ44の応答遅れ時間に対応する無効噴射時間rv を
加えることにより、同期噴射時間τS を算出する。
The synchronous injection time τS is calculated by adding the invalid injection time rv corresponding to the response delay time of the injector 44 when the battery voltage drops to the effective synchronous injection time τ1 obtained in this way, as shown in the following equation. do.

tB*τ1+τV  ・……−・・−・(3)この同期
噴射時間τSに対応する燃料噴射信号が、インジェクタ
44FC出方され、エンジン回転と同期してインジェク
タ44が同期噴射時間τSだけ開か九て、エンジンの吸
気マニホルド42内に燃料が噴射される。
tB*τ1+τV ・……−・・−・(3) A fuel injection signal corresponding to this synchronous injection time τS is output from the injector 44FC, and the injector 44 is opened for the synchronous injection time τS in synchronization with the engine rotation. , fuel is injected into the intake manifold 42 of the engine.

本実施例における空燃比帰還補正は次のようにして行な
われる。即ち、まず、第3図CASK示すような前記酸
素濃度センサ36の出方に対して、積分を含む処理を施
して、ta3図(81示すような空燃比帰還補正係数f
 (A/F ’)を得る際に用いられる、反転遅延時間
TDx、 、 TDR、スキラフ幅R8L。
The air-fuel ratio feedback correction in this embodiment is performed as follows. That is, first, processing including integration is performed on the output of the oxygen concentration sensor 36 as shown in FIG.
Inversion delay time TDx, , TDR, skilough width R8L used when obtaining (A/F').

R2H,積分定数KII、、 KIR(添字T−は酸素
濃度センナの出力がリーンからリッチに変化した場合、
添字R1i同じくリッチからり一ンに変化した場合にそ
れぞれ対応)等の帰還制御定数の少なくとも1種1例え
ば、リーンからリッチに変わった時の反転遅延時間TD
X、を、予め前記酸素濃度センサ36の特性に合わせて
、エンジン−転速塵及び吸(手動変速機付車両の場合)
、或いFi第2表(自動変速機付車両の場合)に示す如
くマツプ化しておき、前記デジタル電子制御回路50の
す〜ドオンリーメモリ66Vc記憶しておく。
R2H, integral constant KII, KIR (subscript T- indicates that when the output of the oxygen concentration sensor changes from lean to rich,
At least one type of feedback control constant 1 such as the subscript R1i (which also corresponds to the case where the change from rich to lean), etc. For example, the reversal delay time TD when changing from lean to rich
X, according to the characteristics of the oxygen concentration sensor 36 in advance, and the engine speed dust and suction (in the case of a vehicle with a manual transmission)
, or Fi as shown in Table 2 (for vehicles with automatic transmissions) and stored in the digital electronic control circuit 50's only memory 66Vc.

第1表 第2表 T Ds < T D4 、 Nt’ < Nt’、(
!L) 、t < (−Q−)、z、TD+’<NN T Dr’< T Ds’ < T D4’ < T 
DI’である。
Table 1 Table 2 T Ds < T D4 , Nt'<Nt', (
! L), t < (-Q-), z, TD+'<NN T Dr'< T Ds'< T D4'< T
DI'.

又、リッチからリーンに変化した時の反転遅延時間TD
Rは、例えば、エンジン回転速度N、エンとし、又、ス
キップ幅R8L 、 R2Htit、アイドル状態とオ
フアイドル状態で切り換え、更に、積分定数KII、、
KIRは、エンジン回転速度NK比例して変化するよう
にしておく。
Also, the reversal delay time TD when changing from rich to lean
R is, for example, engine rotational speed N, engine, skip width R8L, R2Htit, switching between idle state and off-idle state, and integral constant KII, .
KIR is set to change in proportion to engine rotational speed NK.

このようにマツプ化された帰還制御定数を用いて、実際
の空燃比帰還制御に際しては、エンジン回転速度Nとエ
ンジン回転速度と吸入空気量の比ン運転条件に応じた反
転遅延時間TDX、’に読出し、該読出した値を用いて
前記酸素濃度センサ36の出力を処理することによって
、・・前出第3図031示すような空燃比帰還補正係数
f (A/F )  を得て、前出(2)弐により、燃
料の基本噴射時間Tpを補正する。
Using the feedback control constants mapped in this way, in actual air-fuel ratio feedback control, the reversal delay time TDX,' is determined according to the ratio of the engine rotation speed N, the engine rotation speed, and the intake air amount to the operating conditions. By reading and processing the output of the oxygen concentration sensor 36 using the read value, the air-fuel ratio feedback correction coefficient f (A/F ) as shown in FIG. (2) Correct the basic fuel injection time Tp using 2.

具体的には、まず、前出第1表或いは第2表に示したよ
うなマツプに応じて、下記第3表に示す如く、各データ
TDL(IX)(ここでIXは、インデックスで0〜8
の数値をとる)を記憶しておく。
Specifically, first, according to the map shown in Table 1 or Table 2 above, each data TDL (IX) (where IX is an index from 0 to 8
).

第3表 次いで、エンジン回転速度N及び吸入空気tQから、第
4図に示すようなインデックス計算ルーチンに従って、
インデックスIXを計算する。更に、決定されたインデ
ックスIXに応じて、前出第3表のようにマツプ化され
ているデータから必要なデータを読出して、計算に用い
るものである。
Table 3 Next, from the engine speed N and intake air tQ, according to the index calculation routine as shown in FIG.
Calculate index IX. Furthermore, according to the determined index IX, necessary data is read out from the mapped data as shown in Table 3 above and used for calculation.

尚、前記実施例においては、リーンからリッチに変化す
る時の反転遅延時間TDLのみをマツプ化するようにし
てい九が、他の帰、還制御定数についても、同様のマツ
プにより、或いは、切り分は方を変えたマツプによりマ
ツプ化することも勿論可能である。
In the above embodiment, only the reversal delay time TDL when changing from lean to rich is mapped, but other feedback control constants may also be mapped or divided. Of course, it is also possible to create a map using a map with a different direction.

前記実施例においては、本発明が、デジタル化された電
子制御燃料噴射装置により燃料噴射時間を制御するよう
にした電子制御エンジンに適用されていたが、本発明の
適用範囲はこれに限定されず、例えば、空燃比制御アク
チュエータを、混合気を形成するための燃料通路或いは
エアブリード通路の有効面積を制御することにより、或
いは、排気ガスに混入される2次空気の流tを制御する
ことKより、混合気或いは触媒流入ガスの空燃比を制御
する制御電磁弁とすることによって、電子制御燃料噴射
装置分備えない一般の内燃機関にも同様に適用可能であ
る。
In the embodiments described above, the present invention was applied to an electronically controlled engine in which the fuel injection time was controlled by a digitalized electronically controlled fuel injection device, but the scope of application of the present invention is not limited to this. , for example, by controlling the air-fuel ratio control actuator to control the effective area of a fuel passage or an air bleed passage for forming an air-fuel mixture, or by controlling the flow t of secondary air mixed into the exhaust gas. Therefore, by using a control solenoid valve that controls the air-fuel ratio of the air-fuel mixture or the gas flowing into the catalyst, it can be similarly applied to general internal combustion engines that are not equipped with an electronically controlled fuel injection device.

以上説明した通り、本発明によれば、エンジン回転速度
及びエンジン負荷により変化する空燃比センサの特性に
合わせて、最適な帰還制御定数の値を選択することがで
きる。従って、いずれかの領域を犠牲にすることなく、
全ての領域で空燃比制御精度を向上させることができ、
排気ガス浄化性能を向上することができるという優れた
効果を有する。
As described above, according to the present invention, it is possible to select the optimum value of the feedback control constant in accordance with the characteristics of the air-fuel ratio sensor that change depending on the engine speed and engine load. Therefore, without sacrificing any area,
Air-fuel ratio control accuracy can be improved in all areas,
It has an excellent effect of improving exhaust gas purification performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の空燃比制御方法が採
用された電子制御燃噴射装置の実施例が配設された電子
制御エンジンの構成を示す、一部ブロック線図を含む断
面図、第2図は、前記実施例におけるデジタル電子制御
回路の具体的構成を示すブロック線図、第3図は、同じ
く前記実施例における、酸素濃度センサ出力と空燃比帰
還補正係数の関係の一例を示す線図、第4図は、同じく
前記実施例における、マツプ化された帰還制御定数を読
出す際に用いられるインデックスを計算するためのルー
チンを示す流れ図である。 10・・・エンジン、16・・・エアフローメータ、2
0・・・ディストリビュータ、22・・・クランク角セ
ンサ、28・・・吸気絞り弁、34・・・触媒コンバー
タ、36・・・酸素濃度センサ、44−・・インジェク
タ、50・・・デジタル電子制御回路。 代理人  高 矢    論 (ほか1名)
FIG. 1 is a cross-sectional view, including a partial block diagram, showing the configuration of an electronically controlled engine in which an embodiment of an electronically controlled fuel injection device employing the air-fuel ratio control method for an internal combustion engine according to the present invention is installed. , FIG. 2 is a block diagram showing the specific configuration of the digital electronic control circuit in the embodiment, and FIG. 3 shows an example of the relationship between the oxygen concentration sensor output and the air-fuel ratio feedback correction coefficient in the embodiment. The diagram shown in FIG. 4 is a flowchart showing a routine for calculating an index used in reading out mapped feedback control constants, also in the embodiment described above. 10...Engine, 16...Air flow meter, 2
0... Distributor, 22... Crank angle sensor, 28... Intake throttle valve, 34... Catalytic converter, 36... Oxygen concentration sensor, 44-... Injector, 50... Digital electronic control circuit. Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)触媒流入ガスの二次空燃比を感知する空燃比セン
サと、混合気或いは触媒流入ガスの空燃比を制御する空
燃比制御アクチュエータとを用い、前記空燃比センサの
出力に対して積分を含む処理を施すことによって得られ
る帰還制御信号により前記空燃比制御アクチュエータを
帰還制御して、混合気或いは触媒流入ガスの空燃比を所
望空燃比とする内燃機関の空燃比制御方法において、前
記空燃比センサの出力に対して積分を含む処理を施す際
に用いられる帰還制御定数の少なくとも1種を、予め、
前記空燃比センサの特性に合わせてマツプ化しておき、
エンジン回転速度及びエンジン負荷に応じて、前記マツ
プより読出しt値により、前記空燃比センサの出力を処
理するようにしたことを特徴とする内燃機関の空燃比制
御方法。
(1) Using an air-fuel ratio sensor that senses the secondary air-fuel ratio of the catalyst inflow gas and an air-fuel ratio control actuator that controls the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas, an integral is calculated for the output of the air-fuel ratio sensor. In the air-fuel ratio control method for an internal combustion engine, the air-fuel ratio control actuator is feedback-controlled by a feedback control signal obtained by performing a process that includes the step of controlling the air-fuel ratio of the air-fuel mixture or the catalyst inflow gas to a desired air-fuel ratio. At least one kind of feedback control constant used when performing processing including integration on the output of the sensor is set in advance,
Create a map according to the characteristics of the air-fuel ratio sensor,
An air-fuel ratio control method for an internal combustion engine, characterized in that the output of the air-fuel ratio sensor is processed using a t value read from the map in accordance with engine rotational speed and engine load.
JP12506781A 1981-08-10 1981-08-10 Air-to-fuel ratio control method for internal combustion engine Pending JPS5825543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12506781A JPS5825543A (en) 1981-08-10 1981-08-10 Air-to-fuel ratio control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12506781A JPS5825543A (en) 1981-08-10 1981-08-10 Air-to-fuel ratio control method for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5825543A true JPS5825543A (en) 1983-02-15

Family

ID=14900994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12506781A Pending JPS5825543A (en) 1981-08-10 1981-08-10 Air-to-fuel ratio control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5825543A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183045U (en) * 1986-05-14 1987-11-20
JPH04203446A (en) * 1990-11-30 1992-07-24 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183045U (en) * 1986-05-14 1987-11-20
JPH04203446A (en) * 1990-11-30 1992-07-24 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPS58148238A (en) Electron control fuel injection method for internal- combustion engine
JP2917632B2 (en) Engine air-fuel ratio control device
JPS62147033A (en) Air-fuel ratio control device for internal combustion engine
JPS6231179B2 (en)
JPS58144642A (en) Electronically controlled fuel injection method for internal combustion engines
JPS6223557A (en) Learning control method for internal combustion engine
JPS5825543A (en) Air-to-fuel ratio control method for internal combustion engine
JP2757625B2 (en) Air-fuel ratio sensor deterioration determination device
JP3405128B2 (en) Engine air-fuel ratio control device
JPS593136A (en) Air-fuel ratio learning control method for internal combustion engines
JPH057546B2 (en)
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JP3627334B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000097081A (en) Air-fuel ratio control device of internal-combustion engine
JPS6090934A (en) Method of controlling fuel supply when internal- combustion engine is operated with its throttle valve being fully opened
JPH0368221B2 (en)
JPH0545803Y2 (en)
JPS5859335A (en) Air-fuel ratio learning control method for internal combustion engines
JPH0734926A (en) Fuel control method
JPS58144640A (en) Electronically controlled fuel injection method for internal combustion engines
JPH02102335A (en) Air-fuel ratio feedback control method for internal combustion engine
JPH0531647B2 (en)
JPS63212746A (en) Air fuel ratio control device of internal combustion engine