[go: up one dir, main page]

JPS60214526A - Manufacturing equipment of semiconductor - Google Patents

Manufacturing equipment of semiconductor

Info

Publication number
JPS60214526A
JPS60214526A JP7234684A JP7234684A JPS60214526A JP S60214526 A JPS60214526 A JP S60214526A JP 7234684 A JP7234684 A JP 7234684A JP 7234684 A JP7234684 A JP 7234684A JP S60214526 A JPS60214526 A JP S60214526A
Authority
JP
Japan
Prior art keywords
vacuum
chamber
auxiliary
cartridge
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7234684A
Other languages
Japanese (ja)
Inventor
Hiroshi Sagara
相楽 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7234684A priority Critical patent/JPS60214526A/en
Publication of JPS60214526A publication Critical patent/JPS60214526A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prevent contamination or damage by foreign matters such as dust, to improve the quality and the yield of a substrate and to contrive improving the efficiency of treating works by carrying in and out of a vacuum treatment chamber a semiconductor substrate through an auxiliary vacuum chamber. CONSTITUTION:Vacuum gate valves 11, 12 to a vacuum treatment container 1 wherein ions are implanted into a semiconductor substrate are closed and a cartridge 20 is carried in and out of auxiliary vacuum chambers 9, 10 through vacuum gate valves 13, 14 of an inlet side and an outlet side by cartridge transfer means 21, 22, 23. Further, the vacuum gate valves 13, 14 of the inlet and the outlet to the outside of the chamber are closed, the inside of the auxiliary vacuum chamber 9 is made a vacuum and a semiconductor substrate 6 is loaded or unloaded one by one between the cartridge 20 carried in the auxiliary vacuum chamber and a disk 3 in the vacuum treatment container by substrate handling means 24. In these constructions, all the exchanges of the substrates are carried out in vacuum and the depreciation of the quality and the yield of the substrate due to dust suspended in the atmosphere and fine grain like dust generated during transfer can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は真空処理容器内で半導体基板へのイオン注入
、あるいは真空蒸着、スパッタリング法による半導体基
板への薄膜生成等の処理を行う半導体製造装置、特に前
記真空処理室への基板の供給および処理済基板の取り出
しを行う搬入、搬出機構に関する。
This invention relates to a semiconductor manufacturing apparatus that performs processing such as ion implantation into a semiconductor substrate in a vacuum processing chamber, or the formation of a thin film on a semiconductor substrate by vacuum evaporation or sputtering, and in particular, a method for supplying and processing a substrate to the vacuum processing chamber. The present invention relates to a loading/unloading mechanism for taking out a board.

【従来技術とその問題点】[Prior art and its problems]

この種の半導体製造装置として、真空処理室内に複数枚
の半導体基板を同上に並べて装荷保持する着脱式の回転
ディスクを備え、室内を真空引きした状態でディスクを
回転しつつウェハに例えばイオンビームを投射してイオ
ン注入処理を行い、処理後は真空処理室の蓋を一旦開放
して、大気圧状態で基板と一緒にディスクを取り出し、
さらに新たな基板を装荷した別の交換用ディスクと入れ
替えた後に、真空処理容器の蓋を閉じかつ容器内を真空
引きして次回のイオン注入処理を行うものが知られてい
る。しかしこの方式のものは1回の処理を行うごとに真
空処理容器を大気圧状態に開放し、再び真空引きする必
要があるので作業能率が低く、かつ真空処理容器内への
塵埃侵入による半導体基板の品質低下も避けられない等
の欠点がある。またこの改良方式として、例えば特許出
願公開昭57−136754号の公開特許公報に記載さ
れているように、真空処理容器の一側に真空ゲートバル
ブを介して内圧が真空状態と大気圧状態とに変動するロ
ック室を連設し、真空処理容器内を真空圧に維持したま
ま、前記ロック室と真空処理容器との間で処理後の基板
を装荷したディスクと新たな基板を装荷したディスクと
を入れ替えて交換するようにした方式も知られている。 この方式によれば真空処理容器を真空状態に維持できる
ので前回の処理と次回の処理との間の真空引きの待ち時
間が殆ど無くなり、基板の処理能率の改善が図れる。し
かして上記したいずれの従来方式も、ディスクへの基板
装荷および処理後の基板の取り出しは、ディスクを室外
へ引き出して大気雰囲気の中で行うため、空気中の浮遊
塵埃等の微粒子状の異物による汚損を受け昌<、基板の
品質2歩留りを低下させる難点が残る。
This type of semiconductor manufacturing equipment is equipped with a removable rotating disk that loads and holds multiple semiconductor substrates side by side in a vacuum processing chamber, and while the chamber is evacuated, the disk is rotated and a wafer is exposed to, for example, an ion beam. After the process, the lid of the vacuum processing chamber is opened and the disk is removed together with the substrate under atmospheric pressure.
Furthermore, it is known that after replacing the disk with another replacement disk loaded with a new substrate, the lid of the vacuum processing container is closed and the inside of the container is evacuated to perform the next ion implantation process. However, this method has low work efficiency because it is necessary to open the vacuum processing container to atmospheric pressure and evacuate it again each time processing is performed. There are drawbacks such as unavoidable quality deterioration. In addition, as an improved method of this, for example, as described in the published patent application No. 136754/1980, the internal pressure is changed between the vacuum state and the atmospheric pressure state via a vacuum gate valve on one side of the vacuum processing container. A fluctuating lock chamber is provided in series, and a disk loaded with a processed substrate and a disk loaded with a new substrate are transferred between the lock chamber and the vacuum processing chamber while maintaining the vacuum pressure inside the vacuum processing chamber. A method in which the parts are replaced and replaced is also known. According to this method, since the vacuum processing container can be maintained in a vacuum state, there is almost no waiting time for evacuation between the previous processing and the next processing, and the processing efficiency of the substrate can be improved. However, in all of the above-mentioned conventional methods, the loading of substrates onto disks and the removal of substrates after processing are carried out by taking the disks outside into the atmosphere, so there is a problem with foreign matter in the form of particulates such as floating dust in the air. There remains the problem of contamination, which reduces the quality of the substrate and the yield rate.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、そ
の目的は従来装置の欠点を除去し、半導体基板の搬入、
搬出に際して塵埃等の異物による汚損を防止して基板の
品質9歩留りを向上し、さらには処理作業能率の改善が
図れるようにした半導体製造装置を提供することにある
This invention has been made in view of the above points, and its purpose is to eliminate the drawbacks of the conventional equipment, and to improve the loading and unloading of semiconductor substrates.
It is an object of the present invention to provide a semiconductor manufacturing apparatus which can prevent contamination by foreign substances such as dust during transport, improve the quality and yield of substrates, and further improve processing efficiency.

【発明の要点】[Key points of the invention]

上記目的を達成するためにこの発明は、真空処理容器の
周上に連設された基板搬入、搬出用の補助真空室と、該
補助真空室と真空処理容器との間の通路および室外に通
じる補助真空室の入口、出口にそれぞれ配備された真空
ゲートバルブと、補助真空室に接続された真空排気系と
、補助真空室の入口、出口側真空ゲートバルブを経て半
導体基板収容用カートリッジを搬入、搬出するカートリ
ッジ移送手段と、および補助真空室に搬入されたカート
リッジと真空処理容器内の回転ディスクとの相互間で真
空ゲートバルブを経て半導体基板を1枚ずつ掴んで受け
渡しする基板ハンドリング手段とを備え、真空処理容器
へ通じる真空ゲートバルブを閉じた状態で、カートリッ
ジ移送手段により入口、出口側の真空ゲートバルブを経
て補助真空室へのカートリッジの搬入、搬出を行い、さ
らに室外へ通じる入口、出口側の真空ゲートバルブを閉
じ、かつ補助真空室内を真空引きした状態で、基板ハン
ドリング手段により補助真空室内に搬入されたカートリ
ッジと真空処理容器内のディスクとの間で1枚ずつ半導
体基板の装荷、取り出しを行うように構成し、大気中で
は複数枚の基板を専用カートリッジに収容して取扱い、
かつ真空処理容器に対する基板の交換作業はすべて塵埃
汚損のおそれのない真空状態の中で行えるようにしたも
のである。
In order to achieve the above object, the present invention provides an auxiliary vacuum chamber for loading and unloading substrates that is connected to the circumference of a vacuum processing container, and a passageway between the auxiliary vacuum chamber and the vacuum processing container that communicates with the outside of the room. The semiconductor substrate storage cartridge is carried in through the vacuum gate valves installed at the entrance and exit of the auxiliary vacuum chamber, the vacuum exhaust system connected to the auxiliary vacuum chamber, and the vacuum gate valves at the entrance and exit of the auxiliary vacuum chamber. A cartridge transfer means for carrying out the cartridge, and a substrate handling means for grasping and transferring semiconductor substrates one by one through a vacuum gate valve between the cartridge carried into the auxiliary vacuum chamber and a rotating disk in the vacuum processing container. With the vacuum gate valve leading to the vacuum processing container closed, the cartridge is carried into and out of the auxiliary vacuum chamber via the vacuum gate valves on the inlet and outlet sides using the cartridge transfer means, and then the inlet and outlet sides leading to the outside. With the vacuum gate valve closed and the auxiliary vacuum chamber evacuated, semiconductor substrates are loaded and unloaded one by one between the cartridge carried into the auxiliary vacuum chamber by the substrate handling means and the disk in the vacuum processing container. In the atmosphere, multiple boards are housed in a dedicated cartridge and handled.
In addition, all operations for replacing substrates in the vacuum processing container can be performed in a vacuum state without fear of dust or contamination.

【発明の実施例】[Embodiments of the invention]

第1図ないし第4図、および第5図はそれぞれ半導体基
板にイオン注入を行うこの発明の実施例を示すものであ
り、図において1は円形状の密閉容器として構成された
真空処理容器であり、その内部には駆動モータ2により
回転操作される基板保持用の回転ディスク3が収設され
、かつこのディスク3にはその周上に並んで複数基の基
板クランプ機構4を装備している。この基板クランプ機
構4は、例えばディスクから起立する基板保持用の開閉
爪を備えており、符号5で示す操作部によって爪を開閉
制御し、半導体基板6を着脱式に把持する。一方、基板
クランプ機構4に把持されてディスク3の同上に並ぶ基
板6に対向して真空処理容器1にはイオン注入ロアが開
口接続されており、図示されてないイオン発生源から基
板6へ向けてイオンビーム8が投射される。なおイオン
ビーム8を基板6へ均一に投射させるには、イオンビー
ムを定位置に保持したままディスク3を回転させつつ真
空処理容器全体をディスクの半径方向へ往復動させるか
、あるいは逆にイオンビーム8を半径方向へ偏向して振
らせる方法が採用される。 また真空処理容器1には図示されてない真空排気系が接
続されており、イオン注入処理時には例えば5 Xl0
−’Pa以下の圧力に保持される。 ところで、前記真空処理容器1の外周には、互いに周方
向に位置をずらして基板搬入用の補助真空室9と基板搬
出用の補助真空室1oとがそれぞれ真空ゲートパルプ1
1.12を介して設置されている。 またこの補助真空室9.10は室外へ通じる入口。 出口側にも真空ゲートバルブ13.14および15.1
6が設置しである。なお、補助真空室9,1oには第1
図のように真空ポンプ16.開閉弁17.18を含む真
空排気系19が接続配管されている。 一方、前記補助真空室9.10には、基板6の複数枚を
一列に並べて収納する基板収容カートリッジ20を前記
の真空ゲートパルプ13.14.15.16を経て補助
真空室9,1oへ搬入、あるいは室外へ搬出するカート
リッジ移送手段として、入口側のブツシャ21と、補助
真空室内の移送コンベア22と、出口側の移送コンベア
23とを組合わせたカートリッジ移送機構が設備されて
いる。さらに補助真空室9、および補助真空室10に対
応する真空処理容器内の箇所にはそれぞれ符号24.2
5で示す基板ハンドリング機構が配備しである。このう
ち基板ハンドリング機構24は補助真空室9に搬入され
て来たカートリッジ20から1枚ずつ基板6を取り出し
、真空ゲートバルブ11を経て真空処理容器内へ搬入し
、基板クランプ機構4へ受け渡すものであり、その機構
は例えば伸縮アームの先端に基板把持用のクランパを備
えてなる。一方の基板ハンドリング機構25はイオン注
入処理後の基板を1枚ずつ基板クランプ機構4から取り
出し、真空ゲートバルブ12を経て補助真空室1o内に
搬入待機している空のカートリッジ20へ受け渡すよう
動作するもので、その機構は前記と同様である。なお基
板ハンドリング機構24.25の据付は場所は図示例に
限らず、例えば基板ハンドリング機構24.25を共に
真空処理容器側、あるいは補助真空室側に据付けて基板
の受け渡しを行うように構成してもよい。 次に上記構成による半導体基板の搬入、搬出動作につい
て説明する。 基板搬入側(第3図)では、複数枚の半導体基板6を収
容しているカートリッジ2oはブツシャ21によって真
空ゲートパルプ13を介して補助真空室9に移送され、
更に補助真空室9に送り込まれたカートリッジ20がコ
ンベア22によって所定位置まで移送されたところで、
真空ゲートバルブ13は図示されていない適当な駆動機
構によって閉動作して補助真空室9を気密密閉状態とす
る。ここで真空排気系19を運転し、補助真空室9が例
えばIPa以下の所定圧力以下になったことを検知すれ
ば、常時真空状態の真空処理容器1と補助真空室9との
間に設置された真空ゲートパルプ11が開放され、続い
て補助真空室9に設置された基板ハンドリング機構24
がカートリッジ20に収容しである半導体基板6を1枚
ずつ取り出し、真空処理容器1内にある基板クランプ機
構4へ移送して受け渡す。ここでクランプ機構4が半導
体基板6をホールドすれば、ハンドリング機構24は基
板6の把持を解除し最初の位置にもどるとともに、コン
ベア22はハンドリング機構24が次の基板6を取り出
す位置まで1ピンチだけカートリッジ20を左方へ移送
する。 さらに、半導体基板6を装荷したクランプ機構4はディ
スク1とともに第1図に示す矢印方向の回転の割り出し
動作によって移送され、次のクランプ機構4が基板ハン
ドリング機構24に対応する所定位置に移動して来る。 以後前記した基板の受け渡し動作を繰り返し行うことに
より、ディスク3に設置されたクランプ機構4の全てに
半導体基板6が1枚ずつ装荷される。基板6゛の全数を
装荷完了後、真空処理容器1と補助真空室9との間に設
置された真空ゲートバルブ11は閉塞され、前述のイオ
ン注入処理が開始される。一方、半導体基板6を全て真
空処理容器内に移して空になったカートリッジ20はイ
オン注入処理をしている間に真空ゲートバルブ13.1
4を開放し、コンベア22.23によって補助真空室9
の室外へ送出される。また続いて複数枚の半導体基板6
を収容しである新たなカートリッジ20が入口側の真空
ゲートバルブ13を経て補助真空室9に送り込まれ、室
内の所定位置まで移送される。その後真空ゲートパルプ
13.14は閉塞され、さらに真空排気系19によって
真空状態を保持し、カートリッジ20を次のイオン注入
処理まで待機させる。 一方、基板搬出側(第4図)では、半導体基板6を収容
していない空のカートリッジ20がブツシャ21によっ
て真空ゲートバルブ15を介して補助真空室10に送り
込まれる。補助真空室lo内に移送されλ空のカートリ
ッジ20はコンベア22によって所定位置まで移送され
、前述のイオン注入処理完了まで待機すると同時に、真
空ゲートバルブ15が閉塞して補助真空室10を気密密
閉状態とする。続いて真空排気系19を運転して補助真
空室1oを真空引きする。ここで前述のイオン注入処理
中に回転しているディスク3はイオン注入処理が完了す
ると定位置に停止する。次に常時真空状態の真空処理容
器1と補助真空室10との間に設置された真空ゲートバ
ルブ12を開放させ、真空処理容器側に設置されたハン
ドリング機構25がディスク3に設置されたクランプ機
構4から処理後の半導体基板6を取り出し、補助真空室
10内の空のカートリッジ2゜へ移送して収容し、再び
ハンドリング機構25は最初の位置に復帰する。続いて
コンベア22はハンドリング機構25が次の基板を収容
可能な所定位置までカートリッジ20を左方へ1ピッチ
分だけ移送する。さらにディスク側ではクランプ機構4
がディスク3の回転割り出し動作によって移動し、次の
クランプ機構4が取り出しの所定位置に移送される。以
後同様な動作を繰り返し行い、ディスク3のクランプ機
構4に保持されている処理後の基板6を1枚ずつカート
リッジ20に移し替えて収容する。全ての基板6をカー
トリッジ20へ収容すると、次に真空ゲートバルブ12
は閉塞され、処理済の基板で一杯になったカートリッジ
20はイオン注入処理をしている間に真空ゲー、トバル
ブ15.16を開放した状態でコンベア22.23によ
って補助真空室10の室外へ送出される。また、別なカ
ートリッジ20がブツシャ21によって新たに送り込ま
れ、室内の所定位置まで移送される。所定位置に移送後
真空ゲートバルブ15.16は閉塞され、さらに補助真
空室10を真空排気系によって真空状態を保持した状態
でカートリッジ20を次の収容作業まで室内に待機させ
る。 なお、上記は基板搬入、基板搬出の動作を別々に分けて
説明したが、実際は基板搬入作業と基板搬出作業とが経
時的に別個に行われるものではなく、基板搬出作業と基
板搬入作業を並行して行い、ディスク3上のイオン処理
後の基板は新たな半導体基板に全て交換される。そして
基板6の交換完了後に真空ゲートバルブ11.12は閉
塞され、イオン注入処理が再び開始される。この方式は
真空状態で基板を交換することを可能とするとともに、
基板搬出作業と基板搬入作業が並列同時進行されるため
処理能率の向上が図れる。 第5図はこの発明の他の実施例を示すもので、先記した
実施例と異なる点は真空ゲートバルブ26を介して真空
処理容器1に連設された補助真空室27が基板搬入と搬
出用を兼用しており、1室で基板搬出作業と基板搬入作
業を行わせる点にある。 これにより装置の小型化、簡略化が図れるという利点が
得られる。 以上の実施例は、半導体基板にイオンを注入する場合の
半導体製造装置について述べたが、これに限定せず、例
えば半導体基板の表面に蒸着、スパッタリングなどによ
って薄膜を生成して半導体を製造する装置にも同時に実
施できる。
Figures 1 to 4 and Figure 5 each show an embodiment of the present invention for implanting ions into a semiconductor substrate, and in the figures, 1 is a vacuum processing container configured as a circular closed container. A rotary disk 3 for holding a substrate, which is rotated by a drive motor 2, is housed inside the disk 3, and this disk 3 is equipped with a plurality of substrate clamping mechanisms 4 arranged along its circumference. The substrate clamping mechanism 4 includes, for example, an opening/closing claw for holding a substrate that stands up from a disk, and controls the opening/closing of the claw by an operating section 5 to grip a semiconductor substrate 6 in a removable manner. On the other hand, an ion implantation lower is open-connected to the vacuum processing chamber 1, facing the substrate 6 held by the substrate clamp mechanism 4 and arranged on the disk 3, and directed toward the substrate 6 from an ion generation source (not shown). The ion beam 8 is projected. In order to uniformly project the ion beam 8 onto the substrate 6, the entire vacuum processing chamber must be reciprocated in the radial direction of the disk while the disk 3 is rotated while the ion beam is held in a fixed position, or conversely, the ion beam 8 may be projected uniformly onto the substrate 6. 8 is deflected in the radial direction and made to swing. In addition, a vacuum exhaust system (not shown) is connected to the vacuum processing chamber 1, and during ion implantation processing, for example, 5 Xl0
-'Pa or less pressure is maintained. Incidentally, on the outer periphery of the vacuum processing container 1, an auxiliary vacuum chamber 9 for carrying in substrates and an auxiliary vacuum chamber 1o for carrying out substrates are located at positions shifted from each other in the circumferential direction.
Installed via 1.12. The auxiliary vacuum chambers 9 and 10 are entrances leading to the outside. Vacuum gate valves 13.14 and 15.1 also on the outlet side
6 is installed. Note that the auxiliary vacuum chambers 9 and 1o have a first
Vacuum pump 16. A vacuum evacuation system 19 including on-off valves 17, 18 is connected. On the other hand, in the auxiliary vacuum chamber 9.10, a substrate storage cartridge 20 storing a plurality of substrates 6 in a row is carried into the auxiliary vacuum chamber 9, 1o via the vacuum gate pulp 13.14.15.16. Alternatively, as a cartridge transporting means for transporting the cartridge to the outside, a cartridge transport mechanism is provided which combines a buttonhole 21 on the entrance side, a transport conveyor 22 in the auxiliary vacuum chamber, and a transport conveyor 23 on the exit side. Furthermore, the locations within the vacuum processing container corresponding to the auxiliary vacuum chamber 9 and the auxiliary vacuum chamber 10 are each marked with 24.2.
A substrate handling mechanism indicated by 5 is provided. Of these, the substrate handling mechanism 24 takes out the substrates 6 one by one from the cartridge 20 carried into the auxiliary vacuum chamber 9, carries them into the vacuum processing container through the vacuum gate valve 11, and transfers them to the substrate clamping mechanism 4. The mechanism includes, for example, a clamper for gripping the substrate at the tip of a telescoping arm. One substrate handling mechanism 25 operates to take out the substrates after ion implantation processing from the substrate clamping mechanism 4 one by one and transfer them to the empty cartridge 20 waiting to be carried into the auxiliary vacuum chamber 1o via the vacuum gate valve 12. The mechanism is the same as described above. Note that the installation location of the substrate handling mechanisms 24 and 25 is not limited to the illustrated example; for example, the substrate handling mechanisms 24 and 25 may be installed on the side of a vacuum processing container or on the side of an auxiliary vacuum chamber to transfer substrates. Good too. Next, the loading and unloading operations of semiconductor substrates with the above configuration will be explained. On the substrate loading side (FIG. 3), the cartridge 2o containing a plurality of semiconductor substrates 6 is transferred to the auxiliary vacuum chamber 9 via the vacuum gate pulp 13 by the pusher 21.
Furthermore, when the cartridge 20 sent into the auxiliary vacuum chamber 9 is transferred to a predetermined position by the conveyor 22,
The vacuum gate valve 13 is closed by a suitable drive mechanism (not shown) to hermetically seal the auxiliary vacuum chamber 9. Here, if the vacuum evacuation system 19 is operated and it is detected that the pressure in the auxiliary vacuum chamber 9 has become below a predetermined pressure, for example, IPa or less, the vacuum chamber 9 is installed between the vacuum processing container 1, which is always in a vacuum state, and the auxiliary vacuum chamber 9. The vacuum gate pulp 11 is opened, and then the substrate handling mechanism 24 installed in the auxiliary vacuum chamber 9 is opened.
The semiconductor substrates 6 housed in the cartridge 20 are taken out one by one and transferred to the substrate clamping mechanism 4 in the vacuum processing container 1 for delivery. If the clamp mechanism 4 holds the semiconductor substrate 6 here, the handling mechanism 24 releases its grip on the substrate 6 and returns to the initial position, and the conveyor 22 moves just one pinch until the handling mechanism 24 takes out the next substrate 6. Transfer the cartridge 20 to the left. Furthermore, the clamping mechanism 4 loaded with the semiconductor substrate 6 is transferred together with the disk 1 by an indexing operation of rotation in the direction of the arrow shown in FIG. come. Thereafter, by repeating the above-described substrate transfer operation, one semiconductor substrate 6 is loaded onto all the clamp mechanisms 4 installed on the disk 3. After all the substrates 6' have been loaded, the vacuum gate valve 11 installed between the vacuum processing container 1 and the auxiliary vacuum chamber 9 is closed, and the ion implantation process described above is started. On the other hand, while the cartridge 20, which has become empty after all the semiconductor substrates 6 have been transferred into the vacuum processing container, is undergoing ion implantation processing, the vacuum gate valve 13.
4 is opened and the auxiliary vacuum chamber 9 is opened by the conveyor 22.23.
is sent outdoors. Then, a plurality of semiconductor substrates 6
A new cartridge 20 containing the cartridge is sent into the auxiliary vacuum chamber 9 through the vacuum gate valve 13 on the inlet side, and transported to a predetermined position within the chamber. Thereafter, the vacuum gate pulps 13 and 14 are closed, and the vacuum state is further maintained by the vacuum evacuation system 19, so that the cartridge 20 is placed on standby until the next ion implantation process. On the other hand, on the substrate unloading side (FIG. 4), an empty cartridge 20 containing no semiconductor substrate 6 is sent into the auxiliary vacuum chamber 10 by the pusher 21 via the vacuum gate valve 15. The λ empty cartridge 20 transferred into the auxiliary vacuum chamber lo is transferred to a predetermined position by the conveyor 22, and waits until the above-mentioned ion implantation process is completed. At the same time, the vacuum gate valve 15 is closed and the auxiliary vacuum chamber 10 is hermetically sealed. shall be. Subsequently, the evacuation system 19 is operated to evacuate the auxiliary vacuum chamber 1o. Here, the disk 3 which is rotating during the above-described ion implantation process stops at a fixed position when the ion implantation process is completed. Next, the vacuum gate valve 12 installed between the vacuum processing container 1 which is always in a vacuum state and the auxiliary vacuum chamber 10 is opened, and the handling mechanism 25 installed on the vacuum processing container side is connected to the clamping mechanism installed on the disk 3. The processed semiconductor substrate 6 is taken out from the auxiliary vacuum chamber 10 and stored in the empty cartridge 2°, and the handling mechanism 25 returns to the initial position again. Subsequently, the conveyor 22 moves the cartridge 20 to the left by one pitch to a predetermined position where the handling mechanism 25 can accommodate the next substrate. Furthermore, on the disk side, the clamp mechanism 4
is moved by the rotational indexing operation of the disk 3, and the next clamp mechanism 4 is transferred to a predetermined position for removal. Thereafter, the same operation is repeated, and the processed substrates 6 held by the clamp mechanism 4 of the disk 3 are transferred one by one to the cartridge 20 and housed therein. After all the substrates 6 are loaded into the cartridge 20, the vacuum gate valve 12
is closed and the cartridge 20 filled with processed substrates is sent out of the auxiliary vacuum chamber 10 by the conveyor 22.23 with the vacuum gate and valve 15.16 open during the ion implantation process. be done. Further, another cartridge 20 is newly fed in by the pusher 21 and transported to a predetermined position in the room. After being transferred to a predetermined position, the vacuum gate valves 15 and 16 are closed, and the auxiliary vacuum chamber 10 is maintained in a vacuum state by the evacuation system, and the cartridge 20 is kept on standby in the chamber until the next housing operation. Note that although the operations of board loading and board unloading are explained separately above, in reality, board loading and board unloading are not performed separately over time, but board unloading and board loading are performed concurrently. All of the ion-treated substrates on the disk 3 are replaced with new semiconductor substrates. After the substrate 6 has been replaced, the vacuum gate valves 11, 12 are closed and the ion implantation process is restarted. This method makes it possible to exchange substrates in a vacuum, and
Processing efficiency can be improved because the board unloading work and the board loading work are carried out in parallel. FIG. 5 shows another embodiment of the present invention, which differs from the previously described embodiment in that an auxiliary vacuum chamber 27 connected to the vacuum processing container 1 via a vacuum gate valve 26 is used for loading and unloading substrates. This room is used for both functions, allowing both board unloading and board loading work to be carried out in one room. This provides the advantage that the device can be made smaller and simpler. Although the above embodiments have been described with respect to a semiconductor manufacturing apparatus for implanting ions into a semiconductor substrate, the present invention is not limited to this. can be carried out at the same time.

【発明の効果】【Effect of the invention】

上述のようにこの発明によれば、真空処理容器の同上に
連設された基板搬入、搬出用の補助真空室と、該補助真
空室と真空処理容・器との間の通路および室外に通じる
補助真空室の入口、出口にそれぞれ配備された真空ゲー
トバルブと、補助真空室に接続された真空排気系と、補
助真空室の入口。 出口側真空ゲートバルブを経て半導体基板収容用カート
リッジを搬入、搬出するカートリッジ移送手段と、およ
び補助真空室に搬入されたカートリッジと真空処理容器
内の回転ディスクとの相互間で真空ゲートバルブを経て
半導体基板を1枚ずつ掴んで受け渡しする基板ハンドリ
ング手段とを備え、真空処理容器へ通じる真空ゲートバ
ルブを閉じた状態で、カートリッジ移送手段により人口
。 出口側の真空ゲートバルブを経て補助真空室へのカート
リッジの搬入、搬出を行い、さらに室外へ通じる入口、
出口側の真空ゲートバルブを閉じ、かつ補助真空室内を
真空引きした状態で、基板ハンドリング手段により補助
真空室内に搬入された15− カートリッジと真空処理容器内のディスクとの間で1枚
ずつ半導体基板の装荷、取り出しを行うよう構成したこ
とにより、基板の交換は全て真空状態で行われ、大気中
の浮遊塵埃および移し替え時に発生する微粒子状の塵埃
等による基板品質の低下9歩留り低下が解消できる。さ
らに処理後の基板交換作業に際して、基板搬入作業と基
板搬出作業とを並行して行うことが可能であり処理能率
の向上が図れる等の利点も得られる。
As described above, according to the present invention, there is an auxiliary vacuum chamber for loading and unloading substrates that is connected to the top of the vacuum processing container, and a passageway between the auxiliary vacuum chamber and the vacuum processing container/vessel that communicates with the outside of the room. Vacuum gate valves installed at the entrance and exit of the auxiliary vacuum chamber, a vacuum exhaust system connected to the auxiliary vacuum chamber, and the entrance of the auxiliary vacuum chamber. A cartridge transfer means for loading and unloading a cartridge for storing semiconductor substrates through an exit side vacuum gate valve, and a cartridge conveying means for loading and unloading semiconductor substrate storage cartridges through a vacuum gate valve on the exit side, and between the cartridges loaded into an auxiliary vacuum chamber and a rotating disk in a vacuum processing container through a vacuum gate valve. It is equipped with a substrate handling means that grasps and transfers the substrates one by one, and with the vacuum gate valve leading to the vacuum processing container closed, the cartridge transfer means is used to transfer the substrates. Cartridges are carried into and out of the auxiliary vacuum chamber via the vacuum gate valve on the exit side, and an inlet leading to the outside of the room.
With the vacuum gate valve on the exit side closed and the auxiliary vacuum chamber evacuated, semiconductor substrates are loaded one by one between the 15-cartridge and the disk in the vacuum processing container, which are carried into the auxiliary vacuum chamber by the substrate handling means. By loading and unloading the substrates, all substrate exchanges are performed in a vacuum, which eliminates substrate quality deterioration9 yield loss caused by floating dust in the atmosphere and particulate dust generated during transfer. . Further, when exchanging the substrate after processing, it is possible to carry out the substrate loading operation and the substrate unloading operation in parallel, and it is possible to obtain the advantage that the processing efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の正面図、第2図ないし第4図
はそれぞれ第1図の矢視n−n、m−m。 IV−IV断面図、第5図はこの発明の他の実施例の正
面図である。 140.真空処理容器、3011回転デ回転ディスク0
.基板クランプ機構、601.半導体基板、9゜10、
27.、、補助真空室、11.12.13.14.15
.16゜26、、、真空ゲートバルブ、193.真空排
気系、20.、。 カートリッジ、21.22.23.、、カートリッジ移
送第1図 第2図 第3図
FIG. 1 is a front view of an embodiment of the present invention, and FIGS. 2 to 4 are taken along arrows nn and m-m in FIG. 1, respectively. The IV-IV sectional view and FIG. 5 are front views of another embodiment of the present invention. 140. Vacuum processing container, 3011 rotation de rotating disk 0
.. Board clamp mechanism, 601. Semiconductor substrate, 9°10,
27. ,, auxiliary vacuum chamber, 11.12.13.14.15
.. 16°26,, vacuum gate valve, 193. Vacuum exhaust system, 20. ,. Cartridge, 21.22.23. ,, Cartridge transfer Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)真空処理容器内に複数の基板クランプ機構が同上に
並置された回転ディスクを備え、半導体基板を1枚ずつ
前記基板クランプ機構へ装荷してイオン注入等の処理を
行う半導体製造装置であって、前記真空処理容器の周上
に連設された基板搬入。 搬出用の補助真空室と、該補助真空室と真空処理容器と
の間の道路および室外に道じる補助真空室の入口、出口
にそれぞれ配備された真空ゲートバルブと、補助真空室
に接続された真空排気系と、補助真空室の入口、出口側
真空ゲートバルブを経て半導体基板収容用カートリッジ
を搬入、搬出するカートリッジ移送手段と、および補助
真空室に搬入されたカートリッジと真空処理容器内の回
転ディスクとの相互間で真空ゲートバルブを経て半導体
基板を1枚ずつ掴んで受け渡しする基板ハンドリング手
段とを備え、真空処理容器へ通じる真空ゲートバルブを
閉じた状態で、カートリッジ移送手段により入口、出口
側の真空ゲートバルブを経て補助真空室へのカートリッ
ジの搬入、搬出を行い、さらに室外へ通じる人口、出口
側の真空ゲートパルプを閉じ、かつ補助真空室内を真空
引きした状態で、基板ハンドリング手段により補助真空
室内に搬入されたカートリッジと真空処理容器内のディ
スク゛との間で1枚ずつ半導体基板の装荷。 取り出しを行うことを特徴とする半導体製造装置。 2、特許請求の範囲第1項記載の半導体製造装置におい
て、補助真空室は基板搬入用と搬出用とに分けて各独立
構成され、かつそれぞれ真空ゲートパルプを介して真空
処理容器に連設されていることを特徴とする半導体製造
装置。 3)特許請求の範囲第1項記載の半導体製造装置におい
て、補助真空室は基板搬入および搬出を兼用する共通な
1室として構成されていることを特徴とする半導体製造
装置。
[Claims] 1) A rotating disk on which a plurality of substrate clamping mechanisms are arranged side by side is provided in a vacuum processing container, and semiconductor substrates are loaded one by one into the substrate clamping mechanisms and subjected to processing such as ion implantation. A semiconductor manufacturing apparatus, in which substrates are carried in continuously on the periphery of the vacuum processing container. An auxiliary vacuum chamber for carrying out, vacuum gate valves installed at the road between the auxiliary vacuum chamber and the vacuum processing container, and at the entrance and exit of the auxiliary vacuum chamber leading to the outside, and connected to the auxiliary vacuum chamber. a vacuum evacuation system, a cartridge transfer means for loading and unloading the semiconductor substrate storage cartridge through the inlet and outlet vacuum gate valves of the auxiliary vacuum chamber, and rotation of the cartridge loaded into the auxiliary vacuum chamber and the vacuum processing container. It is equipped with a substrate handling means that grasps and transfers semiconductor substrates one by one between the disk and the disk through a vacuum gate valve, and with the vacuum gate valve leading to the vacuum processing container closed, the cartridge transfer means is used to transfer the semiconductor substrates to the inlet and outlet sides. Cartridges are loaded and unloaded into and out of the auxiliary vacuum chamber through the vacuum gate valve of the chamber, and the vacuum gate pulp on the outlet side leading to the outside is closed, and with the auxiliary vacuum chamber evacuated, the cartridge is assisted by the substrate handling means. Semiconductor substrates are loaded one by one between the cartridge carried into the vacuum chamber and the disk inside the vacuum processing container. Semiconductor manufacturing equipment characterized by taking out. 2. In the semiconductor manufacturing apparatus as set forth in claim 1, the auxiliary vacuum chamber is configured independently for carrying in and carrying out substrates, and each is connected to the vacuum processing container via a vacuum gate pulp. A semiconductor manufacturing device characterized by: 3) A semiconductor manufacturing apparatus according to claim 1, wherein the auxiliary vacuum chamber is configured as one common chamber that serves both for loading and unloading substrates.
JP7234684A 1984-04-11 1984-04-11 Manufacturing equipment of semiconductor Pending JPS60214526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7234684A JPS60214526A (en) 1984-04-11 1984-04-11 Manufacturing equipment of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7234684A JPS60214526A (en) 1984-04-11 1984-04-11 Manufacturing equipment of semiconductor

Publications (1)

Publication Number Publication Date
JPS60214526A true JPS60214526A (en) 1985-10-26

Family

ID=13486649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7234684A Pending JPS60214526A (en) 1984-04-11 1984-04-11 Manufacturing equipment of semiconductor

Country Status (1)

Country Link
JP (1) JPS60214526A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331962A (en) * 1976-09-06 1978-03-25 Nissin Electric Co Ltd Apparatus for making semiconductor device
JPS5697954A (en) * 1980-01-07 1981-08-07 Hitachi Ltd Ion-implantation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331962A (en) * 1976-09-06 1978-03-25 Nissin Electric Co Ltd Apparatus for making semiconductor device
JPS5697954A (en) * 1980-01-07 1981-08-07 Hitachi Ltd Ion-implantation device

Similar Documents

Publication Publication Date Title
US6332280B2 (en) Vacuum processing apparatus
KR890002837B1 (en) Continuous sputtering apparatus
US4534314A (en) Load lock pumping mechanism
US6450750B1 (en) Multiple loadlock system
EP0161928B1 (en) Transfer plate rotation system
CA2150473A1 (en) Wafer processing machine vacuum front end method and apparatus
US6537012B2 (en) Vacuum processing apparatus and a vacuum processing system
JPS60113428A (en) semiconductor manufacturing equipment
JPS60214526A (en) Manufacturing equipment of semiconductor
JPH0652721B2 (en) Semiconductor wafer processing equipment
JP2884753B2 (en) Ion processing equipment
JP2690971B2 (en) Processing method
USRE39775E1 (en) Vacuum processing operating method with wafers, substrates and/or semiconductors
JPS61168934A (en) Wafer handling method
JPS6244571A (en) Ion implantation device
JP2639093B2 (en) Ion processing equipment
JPH04272643A (en) Device and method for ion implantation
JPH05140743A (en) Vacuum treating device
JPS6128030B2 (en)
JPH1098087A (en) Wafer transportation device
JPH0159354B2 (en)
JPS61163270A (en) Thin film forming device by ion vapor deposition
JP2912318B2 (en) Transfer system for vacuum processing equipment
JPS62204515A (en) Conveying apparatus for sample
JPH0367451A (en) Ion implanter