JPS60180927A - Production of base material for optical fiber - Google Patents
Production of base material for optical fiberInfo
- Publication number
- JPS60180927A JPS60180927A JP59034300A JP3430084A JPS60180927A JP S60180927 A JPS60180927 A JP S60180927A JP 59034300 A JP59034300 A JP 59034300A JP 3430084 A JP3430084 A JP 3430084A JP S60180927 A JPS60180927 A JP S60180927A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- flame
- optical fiber
- supplying
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、多重火炎バーナな用いて高速合成された光フ
アイバ用多孔質母材を透明ガラス化する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for transparently vitrifying a porous preform for optical fiber synthesized at high speed using multiple flame burners.
従来、光フアイバ用母材を製造する方法としては、MC
VD法(Modified Chemical Vap
orDeposition)、VAD法(Vapor−
Phase AxialDeposition)等が知
られており、これらの方法によって、光損失や帯域特性
に優れた光ファイバが製造可能となっている。産業界に
おける現在の関心事は、上記方法で得られる優れた特性
の光ファイバや光フアイバ用母材を大量に、短時間で製
造することであり、これが光ファイバの価格を低減化す
るのに役立つものと期待されている。Conventionally, the method for manufacturing optical fiber base material is MC.
VD method (Modified Chemical Vap
orDeposition), VAD method (Vapor-
Phase Axial Deposition) and the like are known, and by these methods, it is possible to manufacture optical fibers with excellent optical loss and band characteristics. The current concern in industry is to produce optical fibers and optical fiber preforms with excellent properties in large quantities and in a short period of time, which can be obtained by the above-mentioned methods, and this will reduce the cost of optical fibers. It is expected that it will be useful.
本発明者らは、既にVAD法を基盤として、新しい多重
火炎構造のバーナな用いる母材高速合成法を開発しく特
願昭58−219380号)、その有効性を明らかにし
た。The present inventors have already developed a high-speed synthesis method for base materials using a burner with a new multiple flame structure based on the VAD method (Japanese Patent Application No. 58-219380), and clarified its effectiveness.
多重火炎バーナな用いて高速合成された多孔質母材は、
次の工程で高温の電気炉において透明ガ2ス化され光フ
ァイバの線引きに供せられるO
第1図に2重火炎バーナの1例を用いた光フアイバ用母
材の製造装置上部を断面概略図で示す。第1図において
、符号1は2重火炎バーナ、2は内側火炎層、3は原料
層、4は外側火炎、5−は合成されつつある光フアイバ
用多孔質母材であり、また、aは内側火炎による火炎長
そして、bは二重火炎による火炎長を意味する。本発明
者らの基本検討によって、酸水素炎バーナにガラス原料
を送り込み微粒子を生成させる時、火炎内に微粒子がと
どまる時間が長い程、微粒子径は増大し、母材への単位
時間当りの堆積量が増大することが明らかにされている
。第1図の2重火炎バーナは内側火炎を外側火炎に対し
て退行可能とし火炎の長さを増加させ、微粒子が火炎内
にとどまる時間の増大を実現したものである。The porous base material synthesized at high speed using multiple flame burners is
In the next step, O is turned into a transparent gas in a high-temperature electric furnace and used for drawing optical fibers. Illustrated in the diagram. In FIG. 1, 1 is a double flame burner, 2 is an inner flame layer, 3 is a raw material layer, 4 is an outer flame, 5- is a porous base material for an optical fiber that is being synthesized, and a is a porous base material for an optical fiber that is being synthesized. Flame length due to inner flame and b means flame length due to double flame. Basic studies by the present inventors revealed that when glass raw materials are fed into an oxyhydrogen flame burner to generate fine particles, the longer the fine particles stay in the flame, the larger the particle size increases, and the deposition rate per unit time on the base material increases. It has been shown that the amount increases. The double flame burner shown in FIG. 1 allows the inner flame to retract relative to the outer flame, thereby increasing the length of the flame and increasing the time during which particulates remain in the flame.
具体的には、前記2重火炎バーナを用い、S i C1
4、GeCl4を原料として、例えば外径150■、長
さ約900fi、重量2500Fの大型多孔質母材を作
製し、(平均合成速度5.5f1分)、高速合成な実現
している。Specifically, using the double flame burner, S i C1
4. Using GeCl4 as a raw material, a large porous base material with an outer diameter of 150 mm, a length of about 900 fi, and a weight of 2500 F was produced, and high-speed synthesis was achieved (average synthesis speed 5.5 f1 min).
ところが、この大型多孔質母材を電気炉に入れて、通常
のVAD法により作製した多孔質母材と同様の条件で透
明ガラス化してみたところ、通常のVAD多孔質母材は
、完全に透明ガラス化されるのに比して、大型高速合成
母材は、半透明若しくは白色に近い色を示し、不完全な
透明ガラス化しかできないことが明らかKなった。However, when we put this large porous base material into an electric furnace and made it into transparent glass under the same conditions as porous base materials produced by the normal VAD method, we found that the normal VAD porous base material was completely transparent. Compared to the vitrification, the large-scale high-speed synthesis base material exhibited a translucent or almost white color, and it became clear that only incomplete transparent vitrification could be achieved.
通常のVAD多孔質母材と大型高速合成母材の違いは、
(1)微粒子径(VAD+0.1μm以下、高速合成l
O12μ情程度)(2)かさ密度(vAD:約0.23
t/♂、高速合成:約0.5 ? f/3”)(3)
寸法(VADj約60 m 直径、高速合成:約150
+w直径)等に表れているため、高速合成した多孔質母
材は、それ自身に適した透明ガラス化条件が必要である
ものと推定される。The difference between normal VAD porous base material and large high speed synthetic base material is
(1) Fine particle size (VAD + 0.1 μm or less, high-speed synthesis)
(2) Bulk density (vAD: approx. 0.23
t/♂, high speed synthesis: about 0.5? f/3”) (3)
Dimensions (VADj approx. 60 m diameter, high speed synthesis: approx. 150
+w diameter), etc., so it is presumed that the porous base material synthesized at high speed requires transparent vitrification conditions suitable for itself.
本発明は以上の様な状況にかんがみてなされたものであ
り、その目的は高速合成された多孔質母材を透明ガラス
化する方法を提供することにある。The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a method for transparently vitrifying a porous base material synthesized at high speed.
本発明を概説すれば、本発明は光フアイバ用母材の製造
方法に関する発明であって、中心部にガラス原料供給用
ノズル、外側部に可燃性ガス供給用、支燃性ガス供給用
及び不活性ガス供給用の各ノズルを有する同心円状多重
ノズルの外側に同心円状に更にもう一組以上の原料供給
用、不活性ガス供給用、可燃性カス供給用及び支燃性ガ
ス供給用ノズルからなる外側合成用ノズルを設けた多重
火炎バーナに、光フアイバ母材用原料を導き、該多重火
炎バーナにより生成した微粒子を堆積させて多孔質母材
を形成させ、これを昇温速度5℃/分以下に相当する速
度で加熱して透明ガラス化することを特徴とする。To summarize the present invention, the present invention relates to a method for manufacturing a base material for optical fiber, and includes a nozzle for supplying glass raw material in the center, a nozzle for supplying combustible gas, a combustion supporting gas and a non-flammable gas in the outer part. Consisting of a concentric multiple nozzle having each nozzle for supplying active gas, and one or more sets of nozzles for supplying raw materials, supplying inert gas, supplying combustible waste, and supplying combustion-supporting gas concentrically outside The raw material for the optical fiber base material is introduced into a multiple flame burner equipped with an outer synthesis nozzle, and the fine particles generated by the multiple flame burner are deposited to form a porous base material, which is heated at a heating rate of 5°C/min. It is characterized by being heated to transparent vitrification at a rate corresponding to the following:
本発明者らは、母材の加熱透明ガラス化に当り、各種の
昇温速度において実験を行い、5℃/分以下が有効であ
ることを見出した。The present inventors conducted experiments at various heating rates for heating transparent vitrification of the base material, and found that a heating rate of 5° C./min or less was effective.
しかして、本発明による5℃/分以下に相当する速度を
得る方法には多孔質母材を電気炉の一定の位置に設置し
て昇温する方法や、対応するゆっくりとした速度で電気
炉の高温部に挿入して行く方法などがある。このように
5℃/分以下の昇温速度にすることによって多孔質母材
を完全に透明化することができる。According to the present invention, methods for obtaining a speed corresponding to 5°C/min or less include a method in which the porous base material is placed at a certain position in an electric furnace and heated, or a method in which the porous base material is heated at a certain position in an electric furnace, or a method in which the porous base material is heated at a correspondingly slow speed There is a method of inserting it into the high temperature part of the machine. In this way, by setting the temperature increase rate to 5° C./min or less, the porous base material can be made completely transparent.
以下、本発明を実施例及び比較例により丈に具体的に説
明するが本発明はこれら実施例に限定されない。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
比較例1
2重火炎バーナな用いて外径1!10■φの大型多孔質
母材を作製した。内側火炎にはS i C14、GeC
l4を、更に外側火炎には5iC1,を供給し、5〜4
f/分の速度で合成した。この母材を約80mの厚さに
輪切りにして、電気炉の均熱部に設置し、Heガス雰囲
気下で、室温から所定の温度(最高1600℃)まで昇
温し、透明ガラス化処理を行った。炉心管は石英ガラス
製であり、内径は約1405mφである。Comparative Example 1 A large porous base material with an outer diameter of 1.10 mm was produced using a double flame burner. S i C14, GeC for the inner flame
14 and further 5iC1 to the outer flame, 5 to 4
Synthesis was carried out at a rate of f/min. This base material was cut into rounds approximately 80 m thick, placed in the soaking section of an electric furnace, heated from room temperature to a predetermined temperature (maximum 1600°C) in a He gas atmosphere, and subjected to transparent vitrification treatment. went. The furnace core tube is made of quartz glass and has an inner diameter of approximately 1405 mφ.
前記高速合成母材は、GeO2を約8〜10重量%含有
するものであり、通常のVAD法で作製した多孔質母材
では約1450〜1500℃で透明ガラス化が可能なも
のである。The high-speed synthesis base material contains about 8 to 10% by weight of GeO2, and a porous base material produced by a normal VAD method can be made into transparent glass at a temperature of about 1450 to 1500°C.
これらの高速合成母材を1450℃、1500℃、15
50℃、1600℃の各温度で高温処理を行った。昇温
速度は10℃/分であった。These high-speed synthesis base materials were heated at 1450℃, 1500℃, 15
High temperature treatment was performed at each temperature of 50°C and 1600°C. The temperature increase rate was 10°C/min.
どの母材も完全には透明ガラス化されず、より低温で処
理した母材様、不透明の度合いは、太きかった。None of the base materials was completely transformed into transparent glass, and the base materials treated at lower temperatures had a greater degree of opacity.
第2図は150.、.0℃(試料1)及び1600℃(
試料2)で高、温処理(昇温速度10℃/分)して得ら
れた透明ガラス化試料(試料厚さ21m、5W、101
1111)と5℃/分以下の昇温速度で1550℃まで
高温処理した試料(試料3、実施例1参照)の波長と吸
収係数との関係を示すグラフである。このグラフから昇
温速度10℃/分においては高温で処理する程透明度が
増すことがわかるが、1600℃においてもまだ十分に
透明ガラス化されていないことが示されている。Figure 2 shows 150. ,. 0℃ (Sample 1) and 1600℃ (
A transparent vitrified sample (sample thickness 21 m, 5 W, 101
1111) and a sample (Sample 3, see Example 1) that was subjected to high temperature treatment up to 1550°C at a temperature increase rate of 5°C/min or less and the relationship between wavelength and absorption coefficient. This graph shows that at a heating rate of 10° C./min, the higher the treatment temperature, the higher the transparency, but it is shown that even at 1600° C., the glass is not yet sufficiently transparent and vitrified.
この様に透明ガラス化が不十分な母材を線引きに用いる
と、例えば、ジャケット管に挿入するために、酸水素バ
ーナで延伸する時発泡する等の不都合が生じることも見
うけられた。It has been found that when a base material that is insufficiently transparent and vitrified is used for wire drawing, problems such as foaming occur when drawing with an oxyhydrogen burner for insertion into a jacket tube, for example.
実施例1及び比綾例2
比較例1と同様の条件で作製した高速合成多孔質母材を
用い、他の条件は全く同様にして昇温速度のみを変化さ
せ透明ガラス化を試みた。Example 1 and Comparative Example 2 Using a high-speed synthesis porous base material produced under the same conditions as in Comparative Example 1, transparent vitrification was attempted by changing only the heating rate under the same conditions as in Comparative Example 1.
昇温速度は7℃/分、5℃/分、3℃/分、1℃/分で
あり、ガラス化温度は1550℃であった。7℃/分の
昇温速度では、不透明さが残ったが、5℃/分以下のゆ
っくりとした昇温では完全に透明なガラス母材が得られ
た。(兎2図の試料3) 3℃/分、1℃/分でも同様
な結果であり、吸収係数の測定では、10wI厚さの試
料で測定不可能な程透明であった。The heating rate was 7°C/min, 5°C/min, 3°C/min, 1°C/min, and the vitrification temperature was 1550°C. At a heating rate of 7°C/min, opacity remained, but at a slow heating rate of 5°C/min or less, a completely transparent glass matrix was obtained. (Sample 3 in Figure 2) Similar results were obtained at 3° C./min and 1° C./min, and in the measurement of the absorption coefficient, the sample with a thickness of 10 wI was so transparent that it could not be measured.
1600℃でも、はぼ同様の結果が得られた。Similar results were obtained at 1600°C.
以上のことから、透明な母材を得るためには、5℃/分
以下の昇温速度が必要であることが明らかになった。From the above, it has become clear that in order to obtain a transparent base material, a temperature increase rate of 5° C./min or less is required.
実施例2
6℃/分の昇温速度で1550℃の高温下において、塩
素系脱水剤を流しな力tら高速合成母材を透明ガラス化
した。この母材から光ファイバを線引きし、光損失特性
を測定した。Example 2 At a high temperature of 1550° C. at a temperature increase rate of 6° C./min, a chlorine-based dehydrating agent was poured and a high-speed synthesis base material was made into transparent glass. An optical fiber was drawn from this base material and its optical loss characteristics were measured.
その結果を第3図に示す。すなわち第3図は波長(μm
)(横軸)と光損失(dB/km )(縦軸)との関係
を示すグラフである。The results are shown in FIG. In other words, Figure 3 shows the wavelength (μm
) (horizontal axis) and optical loss (dB/km ) (vertical axis).
波長1.6μ溝で約[1L7dB/kmの光損失値が得
られており、通常の光ファイバの損失値と比較して遜色
のない値であることがわかる。It can be seen that an optical loss value of approximately [1L7 dB/km was obtained with a wavelength of 1.6 μm groove, which is comparable to the loss value of a normal optical fiber.
前述の実施例では、一定の位置に(′wl!気炉の中心
均熱部)多孔質母材を設置して昇温し透明ガラス化を行
ったが、逆に電気炉をある温度に昇温後、高温部にゆっ
くりと多孔質母材を挿入してガラス化することも可能で
ある。この場合は前述の5℃/分以下の昇温速度に対応
する、ゆっくりとした挿入速度にすればよいことはもち
ろんのことである。In the above example, the porous base material was installed at a certain position ('wl! center soaking part of the air furnace) and the temperature was raised to achieve transparent vitrification. After heating, it is also possible to slowly insert the porous base material into the high temperature part and vitrify it. In this case, it goes without saying that a slow insertion speed corresponding to the above-mentioned temperature increase rate of 5° C./min or less may be used.
実除例えば、直径1!IQIII+の高速合成母材を、
最高温度1550℃の電気炉(温度分布の1例を第4図
に示す)に、90■/時の速度で挿入して、完全な透明
カラス母材が得られている。Actual division, for example, diameter 1! IQIII+ high speed synthesis base material,
A completely transparent glass base material was obtained by inserting it into an electric furnace with a maximum temperature of 1550° C. (an example of the temperature distribution is shown in FIG. 4) at a rate of 90 cm/hour.
第4図は、本発明に従って透明ガラス化する際に用いる
電気炉の温度分布の1例を示すグラフである。グラフに
おいて横軸は温度(U)、縦軸は炉中央からの距11m
(、、w、)を示す。FIG. 4 is a graph showing an example of the temperature distribution of an electric furnace used for transparent vitrification according to the present invention. In the graph, the horizontal axis is temperature (U), and the vertical axis is distance 11m from the center of the furnace.
(,,w,) is shown.
挿入速度は以下のようにして昇温速度に変換できる。The insertion rate can be converted into a heating rate as follows.
第4図の温度分布を基に、多孔質母材の収縮が起きる1
100〜1400℃の温度傾斜を1.5℃/mとすると
、90m/時の挿入速度は、約り℃/分に対応する。こ
れは、前述の5℃/分以下の昇温速度を満たしているこ
とは言うまでもない。Based on the temperature distribution in Figure 4, shrinkage of the porous base material occurs 1
Assuming a temperature gradient of 1.5°C/m from 100 to 1400°C, an insertion speed of 90 m/hr corresponds to approximately °C/min. Needless to say, this satisfies the aforementioned temperature increase rate of 5° C./min or less.
以上説明したように、本発明に従って、5℃/分以下の
ゆっくりとした昇温速度で加熱するか、あるいは、それ
に対応するゆつ(りとした挿入速度で多孔質母材を高温
部に挿入することにより、多重火炎バーナな用いて高速
合成した多孔質母材を完全に透明カラス化することがで
きるため、特性の優れた光ファイバを低価格で大量に製
造できる利点がある。As explained above, according to the present invention, the porous base material is heated at a slow heating rate of 5°C/min or less, or the porous base material is inserted into the hot part at a correspondingly slow insertion speed. By doing so, the porous base material synthesized at high speed using multiple flame burners can be made into completely transparent glass, which has the advantage of being able to mass-produce optical fibers with excellent properties at low cost.
第1図は、2重火炎バーナの1例を用いた光フアイバ用
母材の製造装置上部の断面概略図、第2図は、1500
℃及び1600℃(昇温速度10℃/分)で高温処理し
たガラス試料(試料1、試料2)と5℃/分以下の昇温
速度で1550℃まで高温処理した試料(試料5)の波
長と吸収係数との関係を示すグラフ、第3図は、本発明
の方法で透明ガラス化した母材から得られた光ファイバ
の波長と光損失との関係を示すグラフ、第4図は、本発
明に従って透明ガラス化する際に用いる電気炉の温度分
布の1例を示すグラフである。
1:2重火炎バーナ、2:内側火炎層、3I原料層、4
!外側火炎、
5:光フアイバ用多孔質母材
特許出願人 日本電信電話公社
代理人 中本 宏
同 弁上 昭FIG. 1 is a schematic cross-sectional view of the upper part of an optical fiber base material manufacturing apparatus using an example of a double flame burner, and FIG.
Wavelengths of glass samples (sample 1, sample 2) treated at high temperature at ℃ and 1600℃ (temperature increase rate 10℃/min) and sample (sample 5) treated at high temperature up to 1550℃ at a temperature increase rate of 5℃/min or less FIG. 3 is a graph showing the relationship between the wavelength and the optical loss of an optical fiber obtained from a base material made transparent by the method of the present invention, and FIG. 4 is a graph showing the relationship between It is a graph which shows an example of the temperature distribution of the electric furnace used when transparent vitrifying according to the invention. 1: Double flame burner, 2: Inner flame layer, 3I raw material layer, 4
! Outer flame, 5: Porous base material for optical fiber Patent applicant: Nippon Telegraph and Telephone Public Corporation agent Hirotoshi Nakamoto Akira Bengami
Claims (1)
ガス供給用、支燃性カス供給用及び不活性ガス供給用の
各ノズルを有する同心円状多重ノズルの外側に同心円状
に更にもう一組以上の原料供給用、不活性ガス供給用、
可燃性ガス供給用及び支燃性ガス供給用ノズルからなる
外側合成用ノズルを設けた多重火災バーナに、光フアイ
バ母材用原料を導き、該多重火炎バーナにより生成した
微粒子を堆積させて多孔質母材を形成させ、これを昇温
速度5℃/分以下に相当する速度で加熱して透明ガラス
化することを特徴とする光フアイバ用母材の製造方法。t. Another set of concentric multiple nozzles arranged concentrically on the outside of the concentric multiple nozzle, which has a glass raw material supply nozzle in the center and nozzles for combustible gas supply, combustion-supporting scum supply, and inert gas supply on the outside part. For the above raw material supply, inert gas supply,
The raw material for the optical fiber base material is introduced into a multi-fire burner equipped with an outer synthesis nozzle consisting of a nozzle for supplying combustible gas and a nozzle for supplying combustion-supporting gas, and fine particles generated by the multi-flame burner are deposited to form a porous structure. A method for manufacturing an optical fiber base material, which comprises forming a base material and heating the base material at a rate corresponding to a temperature increase rate of 5° C./min or less to make it transparent vitrified.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59034300A JPS60180927A (en) | 1984-02-27 | 1984-02-27 | Production of base material for optical fiber |
CA000475011A CA1284921C (en) | 1984-02-27 | 1985-02-22 | Method, apparatus and burner for fabricating an optical fiber preform |
AU39122/85A AU556545B2 (en) | 1984-02-27 | 1985-02-25 | Producing optical fibre preforms |
US06705362 US4618354B1 (en) | 1984-02-27 | 1985-02-25 | Method,apparatus and burner for fabricating an optical fiber preform |
KR1019850001192A KR870001739B1 (en) | 1984-02-27 | 1985-02-26 | Making method for optical fiber preform and apparatus |
DE8585301304T DE3575414D1 (en) | 1984-02-27 | 1985-02-26 | METHOD, DEVICE AND BURNER FOR PRODUCING A PREFORM FOR OPTICAL FIBERS. |
EP85301304A EP0154500B1 (en) | 1984-02-27 | 1985-02-26 | Method, apparatus and burner for fabrication an optical fiber preform |
AU60205/86A AU586490B2 (en) | 1979-06-12 | 1986-07-14 | Burner for fabricating an optical fiber preform |
AU60204/86A AU584223B2 (en) | 1984-02-27 | 1986-07-14 | Apparatus for fabricating an optical fiber preform |
US07/054,886 US4801322A (en) | 1984-02-27 | 1987-05-27 | Method, apparatus and burner for fabricating an optical fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59034300A JPS60180927A (en) | 1984-02-27 | 1984-02-27 | Production of base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60180927A true JPS60180927A (en) | 1985-09-14 |
JPS641414B2 JPS641414B2 (en) | 1989-01-11 |
Family
ID=12410302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59034300A Granted JPS60180927A (en) | 1979-06-12 | 1984-02-27 | Production of base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60180927A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6172645A (en) * | 1984-09-19 | 1986-04-14 | Sumitomo Electric Ind Ltd | Method for manufacturing base material for optical fiber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542755A (en) * | 1977-06-08 | 1979-01-10 | Nippon Telegr & Teleph Corp <Ntt> | Production of soot form double glass rod |
JPS5430853A (en) * | 1977-08-11 | 1979-03-07 | Nippon Telegr & Teleph Corp <Ntt> | Production of soot form glass rod |
JPS5617935A (en) * | 1979-07-20 | 1981-02-20 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5688836A (en) * | 1979-12-20 | 1981-07-18 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of glass stock for optical fiber |
-
1984
- 1984-02-27 JP JP59034300A patent/JPS60180927A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542755A (en) * | 1977-06-08 | 1979-01-10 | Nippon Telegr & Teleph Corp <Ntt> | Production of soot form double glass rod |
JPS5430853A (en) * | 1977-08-11 | 1979-03-07 | Nippon Telegr & Teleph Corp <Ntt> | Production of soot form glass rod |
JPS5617935A (en) * | 1979-07-20 | 1981-02-20 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5688836A (en) * | 1979-12-20 | 1981-07-18 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of glass stock for optical fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6172645A (en) * | 1984-09-19 | 1986-04-14 | Sumitomo Electric Ind Ltd | Method for manufacturing base material for optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS641414B2 (en) | 1989-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR830002158B1 (en) | Method for forming optical waveguide preform having continuously removable starting member | |
JPS6086049A (en) | Manufacture of glass products | |
JPS61155225A (en) | Manufacture of optical wave guide tube | |
JPS60180927A (en) | Production of base material for optical fiber | |
JP2612871B2 (en) | Method of manufacturing graded-in-desk type optical fiber preform | |
JPH038737A (en) | Production of preform for optical fiber | |
JPS60264338A (en) | Manufacture of optical fiber preform | |
JPS62108744A (en) | Transparent vitrification method of porous glass base material | |
JPS60251142A (en) | Manufacture of base material for optical fiber | |
JPH0316930A (en) | Production of optical fiber having complicate refractive index distribution | |
JPH0327493B2 (en) | ||
JP2898705B2 (en) | Manufacturing method of optical fiber preform | |
JPS63285128A (en) | Manufacturing method of optical fiber base material | |
JP3439258B2 (en) | Method for producing glass preform for optical fiber | |
JP4230073B2 (en) | Method for producing aluminum-added glass base material | |
JPS61117127A (en) | Treatment of parent material comprising porous glass for optical fiber | |
JPH03232732A (en) | Production of glass preform for hydrogen-resistant optical fiber | |
JPS6138137B2 (en) | ||
JPH01203238A (en) | Production of optical fiber preform | |
JPS59137333A (en) | Manufacture of base material for optical fiber | |
JPH04349147A (en) | Radiation-resistant optical fiber and its production | |
JPS61281039A (en) | Production of optical fiber | |
JPH02192426A (en) | Production of optical fiber preform having extremely low loss | |
JPH0419174B2 (en) | ||
JPH0784331B2 (en) | Method for manufacturing glass base material for optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |