[go: up one dir, main page]

JPH03232732A - Production of glass preform for hydrogen-resistant optical fiber - Google Patents

Production of glass preform for hydrogen-resistant optical fiber

Info

Publication number
JPH03232732A
JPH03232732A JP2923290A JP2923290A JPH03232732A JP H03232732 A JPH03232732 A JP H03232732A JP 2923290 A JP2923290 A JP 2923290A JP 2923290 A JP2923290 A JP 2923290A JP H03232732 A JPH03232732 A JP H03232732A
Authority
JP
Japan
Prior art keywords
hydrogen
base material
oxygen
optical fiber
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2923290A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yokogawa
清 横川
Kazuo Kamiya
和雄 神屋
Koichi Shiomoto
弘一 塩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2923290A priority Critical patent/JPH03232732A/en
Publication of JPH03232732A publication Critical patent/JPH03232732A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a業上の利用分野) 本発明は耐水素性光ファイバ用ガラス母材の製造方法、
特には耐水素性であることから波長1,520nmでの
吸収がなく、したがってこの波長での伝送損失の小さい
光ファイバを与える耐水素性光ファイバ用ガラス母材の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A field of application) The present invention relates to a method for manufacturing a glass base material for hydrogen-resistant optical fibers;
In particular, the present invention relates to a method for manufacturing a hydrogen-resistant glass preform for an optical fiber, which provides an optical fiber that is hydrogen-resistant and has no absorption at a wavelength of 1,520 nm, and therefore has low transmission loss at this wavelength.

(従来の技術) 光ファイバは四塩化けい素などの気体状ガラス原料を酸
水素火炎中で火炎加水分解させ、ここで発生したガラス
微粒子を担体上に堆積して多孔質ガラス母材を作り、つ
いでこれを加熱し透明ガラス化して光ファイバ用ガラス
母材とし、つぎにこれを線引きするという方法で製造さ
れている。
(Prior art) Optical fibers are made by subjecting gaseous glass raw materials such as silicon tetrachloride to flame hydrolysis in an oxyhydrogen flame and depositing the glass particles generated thereon on a carrier to create a porous glass base material. This is then heated and made into transparent glass to form a glass base material for optical fibers, which is then drawn.

そして、このようにして得られた光ファイバには700
〜1,700mmの全波長にわたって伝送損失の非常に
小さいことが要求されるのであるが、これにはガラスの
中に多量の残量水分が一叶および)120の形で含有さ
れているために伝送損失が大きくなるという問題点があ
る。
The optical fiber obtained in this way has 700
Very low transmission loss is required over the entire wavelength of ~1,700 mm, but this is because the glass contains a large amount of residual moisture in the form of There is a problem that transmission loss increases.

そのため、この光ファイバ用ガラス母材の製造について
は、多孔質ガラス母材を焼結して透明ガラス化する際に
、この雰囲気をヘリウムと塩素を含むものとして多孔質
ガラス母材中の一〇)1イオンを塩素イオンで置換して
水分を含まない光ファイバ用ガラス母材を製造する方法
が提案されている(特開昭50−149356号公報参
照)。
Therefore, in the production of this glass base material for optical fibers, when the porous glass base material is sintered to become transparent glass, the atmosphere is made to contain helium and chlorine. ) A method of manufacturing a water-free glass base material for optical fibers by replacing one ion with chlorine ion has been proposed (see Japanese Patent Laid-Open No. 149356/1983).

(発明が解決しようとする課題) しかし、このような方法で得られた光ファイバ用ガラス
母材から作られる光ファイバは耐水素性かわるく、水素
ガス100%の雰囲気下で耐水素性をしらべると波長1
,520 nmで吸収が生しるという問題点がある。
(Problem to be solved by the invention) However, the optical fiber made from the glass base material for optical fiber obtained by such a method has poor hydrogen resistance, and when examining hydrogen resistance in an atmosphere of 100% hydrogen gas, the wavelength 1
, 520 nm.

(課題を解決するための手段) 本発明はこのような不利を解決した耐水素性光ファイバ
用ガラス母材の製造方法に関するものであり、これは気
体状カラス原料を酸水素火炎バーナーに導入し、この火
炎加水分解で発生したガラス微粒子を担体上に堆積して
多孔質ガラス母材を作り、ついでこれをヘリウム、塩素
および酸素を含む雰囲気中において1.200℃以下の
温度に加熱したのち、ヘリウム雰囲気中において1,2
00℃以上の温度に加熱し、透明ガラス化することを特
徴とするものである。
(Means for Solving the Problems) The present invention relates to a method for manufacturing a hydrogen-resistant glass base material for optical fibers that solves the above-mentioned disadvantages. The glass particles generated by this flame hydrolysis are deposited on a carrier to create a porous glass matrix, which is then heated to a temperature of 1.200°C or less in an atmosphere containing helium, chlorine, and oxygen. 1,2 in the atmosphere
It is characterized in that it is heated to a temperature of 00°C or higher and becomes transparent vitrified.

すなわち、本発明者らは光ファイバの波長1,520n
mにおける水素ガスの吸収を解決する方法について検討
した結果、これは多孔質ガラス母材を透明ガラス化する
ときの反応時の温度、酸素量にもとつく光ファイバ用ガ
ラス母材の構造欠陥にもとづくものであると考え、塩素
による脱水反応を低温で行なうと共に酸素量を変えて多
孔質ガラス母材の脱水処理を行なうこととし、多孔質ガ
ラス母材をヘリウム、塩素および酸素を含む雰囲気にお
いて1,200℃以下というおだやかな脱水反応条件で
行なったのち、ついで酸素の過剰反応を防ぐために酸素
のないヘリウム雰囲気下に1,200 を以上に昇温し
で焼結し、透明ガラス化すればよいということを見出し
、ここに使用する酸素量などについての研究を進めて本
発明を完成せた。
That is, the inventors have determined that the wavelength of the optical fiber is 1,520n.
As a result of considering a method to solve the absorption of hydrogen gas in m, it was found that this is due to structural defects in the glass base material for optical fibers that are based on the temperature and oxygen content during the reaction when converting the porous glass base material into transparent glass. Considering that the dehydration reaction using chlorine is carried out at low temperature and changing the amount of oxygen, the porous glass base material is dehydrated in an atmosphere containing helium, chlorine, and oxygen. After carrying out the dehydration reaction under mild dehydration reaction conditions of 200°C or lower, the material is then sintered at a temperature of 1,200°C or higher in an oxygen-free helium atmosphere to prevent excessive oxygen reaction, resulting in transparent glass. Having discovered this, they conducted research on the amount of oxygen to be used, etc., and completed the present invention.

以下にこれをさらに詳述する。This will be explained in further detail below.

(作用) 本発明は公知の方法で作られた多孔質ガラス母材の透明
ガラス化をヘリウム、塩素および酸素を含む雰囲気下に
1,200℃以下で加熱したのち、ヘリウム雰囲気下に
1,200℃以上で加熱し、透明ガラス化するものであ
る。
(Function) The present invention involves heating transparent vitrification of a porous glass base material made by a known method at 1,200°C or less in an atmosphere containing helium, chlorine, and oxygen, and then heating it at 1,200°C or less in a helium atmosphere. It is heated to a temperature above ℃ and becomes transparent vitrified.

本発明における多孔質ガラス母材の製造は公知のVAD
法、OVD法などの方法で行えばよい。例えば四塩化け
い素などの気体状ガラス原料を酸素ガスなどをキャリヤ
ーガスとして酸水素火炎バーナーに導入し、ここでの火
炎加水分解で発生したガラス微粒子を石英ガラス棒のよ
うな耐熱性担体の端面に軸方法に堆積させて製造すれば
よい。
The production of the porous glass base material in the present invention is carried out using the known VAD method.
This may be carried out by a method such as a method or an OVD method. For example, a gaseous glass raw material such as silicon tetrachloride is introduced into an oxyhydrogen flame burner using oxygen gas as a carrier gas, and the glass fine particles generated by flame hydrolysis are transferred to the end surface of a heat-resistant carrier such as a quartz glass rod. It can be manufactured by depositing it on the shaft.

このようにして得られた多孔質ガラス母材は加熱し、透
明ガラス化することによって光ファイバ用ガラス母材と
されるのであるが、この多孔質ガラス母材は一〇Hおよ
び)120の形で水分を含有するのでこれを除去する必
要がある。そのためこの多孔質ガラス母材は公知のヘリ
ウム、塩素ガスを含む雰囲気中で加熱してこの水分を塩
素イオンで置換する必要があるが、本発明ではこの雰囲
気はこの反応を制御する酸素ガスを添加したヘリウムお
よび塩素からなるものとされる。また、この雰囲気にお
ける加熱は1,200℃以上のような高熱で行なうと欠
陥を生成しやすくなるので1,200℃以下、好ましく
は900〜1,100℃というおだやかな条件で加熱し
て脱水させる必要があるが、このときの塩素量は塩素イ
オンによる脱水のために0.1〜15容量%、好ましく
は3〜lO%とすることがよく、またこの酸素量は0.
02容量%より少ないと水素ガス試験での波長1,52
0nmの光の吸収が発生するし、5,0容量%より多く
しても吸収が増加するので0,02〜5.0容量%の範
囲とすることがよい。
The porous glass base material thus obtained is heated and made into a transparent glass base material to be used as a glass base material for optical fibers. Since it contains water, it is necessary to remove it. Therefore, it is necessary to heat this porous glass base material in a well-known atmosphere containing helium and chlorine gas to replace this moisture with chlorine ions, but in the present invention, this atmosphere is replaced with oxygen gas to control this reaction. It is said to consist of helium and chlorine. In addition, heating in this atmosphere at high temperatures such as 1,200°C or higher tends to cause defects, so dehydration is performed by heating under gentle conditions of 1,200°C or lower, preferably 900 to 1,100°C. Although necessary, the amount of chlorine at this time is preferably 0.1 to 15% by volume, preferably 3 to 10% by volume for dehydration by chlorine ions, and the amount of oxygen is 0.1 to 15% by volume, preferably 3 to 10%.
If it is less than 0.02% by volume, the wavelength in the hydrogen gas test will be 1.52.
Absorption of light with a wavelength of 0 nm occurs, and even if the amount exceeds 5.0% by volume, the absorption increases, so the range is preferably from 0.02 to 5.0% by volume.

また、このような条件で熱処理された多孔質ガラス母材
はついで1,200℃以上の高温に加熱し透明ガラス化
して光ファイバ用ガラス母材とされるのであるが、この
ときの雰囲気は今度は酸素存在下における過剰反応を防
ぐために酸素のないヘリウム雰囲気下で行なう必要があ
り、加熱温度も1.200℃以下では多孔質ガラス母材
の透明ガラス化ができないので1.200℃以上、好ま
しく1,300〜1,700℃で行なう必要がある。
In addition, the porous glass base material heat-treated under these conditions is then heated to a high temperature of 1,200°C or higher to become transparent vitrification and used as a glass base material for optical fibers, but the atmosphere at this time is must be carried out in an oxygen-free helium atmosphere in order to prevent excessive reaction in the presence of oxygen, and the heating temperature is preferably 1.200°C or higher, since transparent vitrification of the porous glass base material cannot be achieved at a heating temperature of 1.200°C or lower. It is necessary to carry out the process at 1,300 to 1,700°C.

このように加熱処理され透明ガラス化して得られる光フ
ァイバ用ガラス母材を用いた光ファイバは塩素ガス雰囲
気中で加熱処理されているので水分を含まないものとさ
れるし、酸素ガスを含む雰囲気中でおだやかに加熱され
ているので耐水素性のすぐれたものとなり、水素ガス1
00%の雰囲気下で耐水素性をしらべても波長1,52
0nmの光の吸収が生しないという有利性が与えられる
Optical fibers using the glass base material for optical fibers obtained through heat treatment and transparent vitrification are heat treated in a chlorine gas atmosphere, so they do not contain moisture, and they do not contain moisture in an atmosphere containing oxygen gas. Since it is heated gently inside, it has excellent hydrogen resistance, and hydrogen gas 1
Even when examining hydrogen resistance in an atmosphere of 0.00%, the wavelength is 1.52.
The advantage is that no absorption of 0 nm light occurs.

(実施例) つきの本発明の実施例をあげる。(Example) Examples of the present invention will be given below.

実施例 コア用石英製同心多重管酸水素火炎バーナーに水素ガス
1.2J27分、酸素ガス3.2j27分を供給して酸
水素火炎を発生させ、このバーナー中心部に酸素カス5
0cc/分と20cc/分をキャリヤーガスとして四塩
化けい素31cc/分と四塩化ゲルマニウム3.5cc
/分を供給し、同様のクラッド用バーナに水素カス8J
2/分、酸素ガス12℃/分を供給して酸水素火炎を発
生させ、このバーナー中心部に酸素ガス300cc/分
をキャリアガスとして四塩化けい素380cc/分を供
給し、この火炎を担体としての直径20mmの30rp
mで回転している石英ガラス棒に当て、火炎加水分解で
発生したガラス微粒子を担体の軸方向に堆積成長させ、
16時間運転して直径80mm、長さ800mm、クラ
ッド/コア比=0.2の多孔質ガラス母材を8本作成し
た。
Example 1.2J27 minutes of hydrogen gas and 3.2J27 minutes of oxygen gas were supplied to a quartz concentric multi-tube oxyhydrogen flame burner for the core to generate an oxyhydrogen flame, and 5 oxygen scum was placed in the center of the burner.
Silicon tetrachloride 31cc/min and germanium tetrachloride 3.5cc with 0cc/min and 20cc/min as carrier gas.
/min, and 8J of hydrogen gas is supplied to a similar cladding burner.
2/min, oxygen gas is supplied at 12°C/min to generate an oxyhydrogen flame, and 380 cc/min of silicon tetrachloride is supplied to the center of the burner using 300 cc/min of oxygen gas as a carrier gas, and this flame is used as a carrier gas. 30rp with a diameter of 20mm as
The glass particles generated by flame hydrolysis are deposited and grown in the axial direction of the carrier by applying it to a quartz glass rod rotating at m.
After operating for 16 hours, eight porous glass preforms with a diameter of 80 mm, a length of 800 mm, and a clad/core ratio of 0.2 were produced.

ついでこの多孔質ガラス母材を合成石英製の加熱炉内で
加熱処理することとし、この炉内の雰囲気を塩素ガス5
容量%、酸素ガスを0.01.0.02.0.1.0.
2.1.0.2.0.5.0.10.0容量%と順次増
加するようにし、残りがヘリウムガスとなるようにし、
1,000℃で1時間加熱したのち、これをヘリウムガ
ス雰囲気とした合成石英製の加熱炉内で1.700℃に
加熱焼結し、透明ガラス化して直径35mm、長さ40
0mmのコア用ガラス母材8木を作り、ついでこれを用
いてロットインチューブ法で8本の光ファイバプリフォ
ームを作った。
Next, this porous glass base material was heat-treated in a synthetic quartz heating furnace, and the atmosphere inside the furnace was changed to 55% chlorine gas.
Volume %, oxygen gas 0.01.0.02.0.1.0.
2.1.0.2.0.5.0.10.0% by volume and the rest is helium gas,
After heating at 1,000°C for 1 hour, this was heated and sintered at 1,700°C in a synthetic quartz heating furnace with a helium gas atmosphere, and was made into transparent glass with a diameter of 35 mm and a length of 40 mm.
Eight pieces of glass base material for the core with a diameter of 0 mm were made, and then eight optical fiber preforms were made using the lot-in-tube method.

つきにこの8本のプリフォームを用いて線引きして直径
125μmの光ファイバーとしたのち、これらを水素ガ
ス100%の容器に入れて24時間放置後、これらの波
長1,520nmにおける伝送損失を測定し、上記の加
熱処理工程における酸素ガス濃度との相関をしらべたと
ころ、第1図に示したとおりの結果が得られた。
Finally, after drawing these eight preforms to make optical fibers with a diameter of 125 μm, they were placed in a container containing 100% hydrogen gas and left for 24 hours, and the transmission loss at a wavelength of 1,520 nm was measured. When the correlation with the oxygen gas concentration in the above heat treatment step was investigated, the results shown in FIG. 1 were obtained.

(発明の効果) 本発明は耐水素性光ファイバ用ガラス母材の製造方法に
関するものであり、これは前記したように公知の方法で
作られた多孔質ガラス母材をヘリウム、塩素および酸素
を含む雰囲気中において1.200℃以下の温度に加熱
したのち、ヘリウム雰囲気中において1.200℃以上
の温度に加熱し、透明ガラス化するものであるが、これ
によれば多孔質ガラス母材が透明ガラス化に先立ってヘ
リウム、塩素および酸素を含む雰囲気中で1,200℃
以下というおだやかな条件で加熱されるので脱水と共に
耐水素性のすぐれたものになるということから、この方
法で作られた光ファイバは耐水素性がよく、波長1,5
20nmの光の吸収がなくなり、この波長での伝送損失
が0.3dB/km以下となるという有利性が与えられ
る。
(Effects of the Invention) The present invention relates to a method for manufacturing a hydrogen-resistant glass base material for optical fibers, and this involves using a porous glass base material made by a known method as described above, containing helium, chlorine, and oxygen. This method involves heating the porous glass base material to a temperature of 1.200°C or lower in an atmosphere, and then heating it to a temperature of 1.200°C or higher in a helium atmosphere to make it transparent. 1,200°C in an atmosphere containing helium, chlorine and oxygen prior to vitrification.
Optical fibers made using this method have good hydrogen resistance and have excellent hydrogen resistance as well as dehydration since they are heated under the following gentle conditions.
The advantage is that there is no absorption of light at 20 nm, and the transmission loss at this wavelength is less than 0.3 dB/km.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で得られた8本の光ファイバ用プリフォ
ームから作られた光ファイバの加熱処理工程における酸
素ガス濃度と波長1,520nmにおける伝送損失との
相関グラフを示したものである。
Figure 1 shows a correlation graph between oxygen gas concentration and transmission loss at a wavelength of 1,520 nm during the heat treatment process of optical fibers made from the eight optical fiber preforms obtained in the example. .

Claims (1)

【特許請求の範囲】 1、気体ガラス原料を酸水素火炎バーナーに導入し、こ
の火炎加水分解で発生したガラス微粒子を担体上に堆積
して多孔質ガラス母材を作り、ついでこれをヘリウム、
塩素および酸素を含む雰囲気中において1,200℃以
下の温度に加熱したのち、ヘリウム雰囲気中において1
,200℃以上の温度に加熱し、透明ガラス化すること
を特徴とする耐水素性光ファイバ用ガラス母材の製造方
法。 2、雰囲気中の酸素の含量が0.02〜5.0%である
請求項1に記載の耐水素性光ファイバ用ガラス母材の製
造方法。
[Claims] 1. A gaseous glass raw material is introduced into an oxyhydrogen flame burner, and glass fine particles generated by this flame hydrolysis are deposited on a carrier to create a porous glass base material, which is then heated with helium,
After heating to a temperature of 1,200℃ or less in an atmosphere containing chlorine and oxygen,
, a method for producing a hydrogen-resistant glass preform for optical fiber, which comprises heating it to a temperature of 200° C. or higher to make it transparent vitrified. 2. The method for producing a hydrogen-resistant glass preform for optical fiber according to claim 1, wherein the content of oxygen in the atmosphere is 0.02 to 5.0%.
JP2923290A 1990-02-08 1990-02-08 Production of glass preform for hydrogen-resistant optical fiber Pending JPH03232732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2923290A JPH03232732A (en) 1990-02-08 1990-02-08 Production of glass preform for hydrogen-resistant optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2923290A JPH03232732A (en) 1990-02-08 1990-02-08 Production of glass preform for hydrogen-resistant optical fiber

Publications (1)

Publication Number Publication Date
JPH03232732A true JPH03232732A (en) 1991-10-16

Family

ID=12270483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2923290A Pending JPH03232732A (en) 1990-02-08 1990-02-08 Production of glass preform for hydrogen-resistant optical fiber

Country Status (1)

Country Link
JP (1) JPH03232732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026438A (en) * 2001-06-26 2003-01-29 Fitel Usa Corp Optical fiber manufacturing method and apparatus using improved oxygen stoichiometry and deuterium exposure
JP2012162443A (en) * 2011-01-20 2012-08-30 Sumitomo Electric Ind Ltd Optical fiber preform, and methods for manufacturing optical fiber and optical fiber preform
US9139466B2 (en) 2011-01-20 2015-09-22 Sumitomo Electric Industries, Ltd. Optical fiber preform, optical fiber, and method of manufacturing optical fiber preform

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026438A (en) * 2001-06-26 2003-01-29 Fitel Usa Corp Optical fiber manufacturing method and apparatus using improved oxygen stoichiometry and deuterium exposure
JP2012162443A (en) * 2011-01-20 2012-08-30 Sumitomo Electric Ind Ltd Optical fiber preform, and methods for manufacturing optical fiber and optical fiber preform
JP2015155370A (en) * 2011-01-20 2015-08-27 住友電気工業株式会社 optical fiber preform and optical fiber
US9139466B2 (en) 2011-01-20 2015-09-22 Sumitomo Electric Industries, Ltd. Optical fiber preform, optical fiber, and method of manufacturing optical fiber preform

Similar Documents

Publication Publication Date Title
CA1047849A (en) Method of making optical waveguides
US4165223A (en) Method of making dry optical waveguides
US6817213B2 (en) Method of fabricating optical fiber preform and method of fabricating optical fiber
EP0626351B1 (en) Process for sintering porous optical fibre preforms
CA1338203C (en) Method for producing glass preform for optical fiber
KR100518058B1 (en) The fabrication of optical fiber preform in mcvd
JPH05350B2 (en)
DK163658B (en) PROCEDURE FOR MANUFACTURING A GLASS FRAME FOR OPTICAL FIBERS
JPS62275035A (en) Production of base material for optical fiber
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JPS599491B2 (en) Method for manufacturing base material for optical fiber
KR100577491B1 (en) A low attenuation optical fiber and method for producing it in mcvd
JPH01286932A (en) Production of optical fiber preform
JP2898705B2 (en) Manufacturing method of optical fiber preform
JPH01111747A (en) Manufacturing method of optical fiber base material
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPH02192426A (en) Manufacturing method for ultra-low loss optical fiber base material
JPH04342427A (en) Production of high-level oh group-containing silica glass
JPS62283838A (en) Production of optical fiber
JPS63315531A (en) Production of optical fiber preform
JPS591218B2 (en) Manufacturing method of glass base material for optical fiber
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JPS63236727A (en) Manufacturing method of optical fiber base material
JPH06127960A (en) Manufacturing method of optical fiber preform