JPS60161791A - Treatment of waste pyrophosphoric acid copper plating solution - Google Patents
Treatment of waste pyrophosphoric acid copper plating solutionInfo
- Publication number
- JPS60161791A JPS60161791A JP1476384A JP1476384A JPS60161791A JP S60161791 A JPS60161791 A JP S60161791A JP 1476384 A JP1476384 A JP 1476384A JP 1476384 A JP1476384 A JP 1476384A JP S60161791 A JPS60161791 A JP S60161791A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- separated
- liquid
- acid
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 34
- 239000010949 copper Substances 0.000 title claims abstract description 34
- 239000002699 waste material Substances 0.000 title claims abstract description 16
- 238000007747 plating Methods 0.000 title claims abstract description 13
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 title abstract 2
- 229940005657 pyrophosphoric acid Drugs 0.000 title abstract 2
- 239000007788 liquid Substances 0.000 claims abstract description 43
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 26
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002253 acid Substances 0.000 claims abstract description 16
- 238000000926 separation method Methods 0.000 claims abstract description 14
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001431 copper ion Inorganic materials 0.000 claims abstract description 6
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 23
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 10
- 238000006479 redox reaction Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 5
- 239000002002 slurry Substances 0.000 abstract description 4
- 230000033228 biological regulation Effects 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract 2
- 229910052751 metal Inorganic materials 0.000 abstract 2
- 238000000151 deposition Methods 0.000 abstract 1
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 238000010979 pH adjustment Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- MTJGVAJYTOXFJH-UHFFFAOYSA-N 3-aminonaphthalene-1,5-disulfonic acid Chemical compound C1=CC=C(S(O)(=O)=O)C2=CC(N)=CC(S(O)(=O)=O)=C21 MTJGVAJYTOXFJH-UHFFFAOYSA-N 0.000 description 1
- 241000784732 Lycaena phlaeas Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- VPKAOUKDMHJLAY-UHFFFAOYSA-J tetrasilver;phosphonato phosphate Chemical compound [Ag+].[Ag+].[Ag+].[Ag+].[O-]P([O-])(=O)OP([O-])([O-])=O VPKAOUKDMHJLAY-UHFFFAOYSA-J 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、電子部品製造事業所精密メッキ事業所等より
生じたピロリン酸銅メツキ廃液に酸を添加して銅含有結
晶物を生成させる。(以下これを酸添加法と称する。)
及び固液分離液の液中にリークした銅イオンは、鉄粉に
より酸化還元反応を行なわせ、金属銅として析出させる
方法(以下これを鉄粉酸化還元法と称する。)によるピ
ロリン酸銅メツキ廃液の処理方法の改良に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION According to the present invention, an acid is added to a copper pyrophosphate plating waste liquid generated from an electronic component manufacturing business, a precision plating business, etc. to generate a copper-containing crystalline substance. (Hereinafter, this will be referred to as the acid addition method.)
Copper ions leaked into the solid-liquid separation liquid are subjected to an oxidation-reduction reaction using iron powder and precipitated as metallic copper (hereinafter referred to as the iron powder oxidation-reduction method). The present invention relates to improvements in processing methods.
従来、ピロリン酸銅メツキ廃液の処理方法は、焼却或い
は稀釈による放流であった0焼却による処理方法は重油
と噴霧混合して燃焼させるが、水分であることからラン
ニングコストに大きく影響を与える0又、施設地域に制
約を受けると共にイニシャルコストの高いものになるo
4?に大気汚染防止装置及び爆発防止装置等副施設を組
み込まなければならない。Conventionally, the treatment method for copper pyrophosphate plating waste liquid was to incinerate it or dilute it and release it.In the zero incineration treatment method, it is sprayed and mixed with heavy oil and burned, but since it is water, it has a large impact on running costs. , the initial cost is high as well as being restricted by the facility area.
4? Sub-facilities such as air pollution prevention equipment and explosion prevention equipment shall be incorporated into the equipment.
以上のことから焼却する方法は、コストの高い処理方法
といえる0次に、稀釈による放流は、廃棄物を処理する
という原点から考えると違法処理であろう〇
本発明は、上述したような従来の処理方法の欠点、問題
点を解決するもので、質的、量的、コスト的に優れた処
理能力を発揮し得るピロリン酸銅メッキ廃液の処理方法
を提するものである。この目的を達する本発明の技術的
構成は、
A、 ピロリン酸銅メツキ廃液KI!を添加して銅含有
結晶物を生成し、これを固液分離し、銅含有結晶物は再
利用もしくは廃棄する。From the above, the incineration method can be said to be a high-cost treatment method, and the dilution and discharging method is illegal from the point of view of waste treatment. The present invention solves the drawbacks and problems of the above treatment methods, and provides a method for treating copper pyrophosphate plating waste liquid that can exhibit superior treatment capabilities in terms of quality, quantity, and cost. The technical configuration of the present invention that achieves this objective is: A. Copper pyrophosphate plating waste liquid KI! is added to produce copper-containing crystals, which are separated into solid and liquid, and the copper-containing crystals are reused or discarded.
B、酸として塩酸又は硫酸を使用する0塩酸を用いた場
合は、pH2,0〜2.7の範囲、硫酸を用いた場合は
pH2,2〜3.0の範囲で、−調整を行うことにより
銅含有結晶物が析出されスラリー状トナル。このスラリ
ーを固液分離すること罠より、分離液中にリーク(1e
ak )する銅イオンを一定範囲以内におさえ
C,IJ−りした銅イオンは、鉄粉にて酸化還元反応を
pH2,5〜3.0の範囲にておこない、金属銅として
析出させ、再び固液分離を行ない金属銅を取り出す。分
離した金属銅は、再利用もしくは廃棄する0固液分離液
は、中和後廃棄する。B. Use hydrochloric acid or sulfuric acid as the acid. If hydrochloric acid is used, the pH should be adjusted to a range of 2.0 to 2.7, and if sulfuric acid is used, the pH should be adjusted to a range of 2.2 to 3.0. Copper-containing crystals are precipitated into slurry-like tonal. When this slurry is separated into solid and liquid, leakage (1e
ak) Copper ions suppressed within a certain range undergo an oxidation-reduction reaction with iron powder in a pH range of 2.5 to 3.0, precipitate as metallic copper, and solidify again. Perform liquid separation and extract metallic copper. The separated metallic copper is reused or discarded.The solid-liquid separated liquid is discarded after neutralization.
上記A、B、Cから成るピロリン酸銅メツキ廃液の処理
方法に存する。The present invention relates to a method for treating copper pyrophosphate plating waste liquid consisting of A, B, and C described above.
(酸)
塩酸による銅含有結晶物の析出は、pH3,5付近で始
まり、低くしていうて声2.7付近でほぼ横ばいとなり
、pi(2,0付近から低くしていくと再溶解がわずか
ながら始まる。(第1図)
硫酸による銅含有結晶物の析出は、pH3,5付近で始
まり、低くしていってpH2,7付近で最高となり、p
l(2,7付近から低くしていくと再溶解が始まるとい
った実験結果を得る。(麺2図)(声調整範囲)
酸添加法では、すべての銅を析出させることは不可能で
ある。つまり、反応性、pH管理面、鉄粉使用微等副資
材のコスト面といりた要望を重視するならば、析出しな
いで分離液中にリークしてしまう銅イオンの濃度を最少
限度におさえた一定範囲以内におさめ彦ければならカい
。よって塩酸にて酸添加法を行うときは、pH2,0〜
2.7の範囲、又硫酸にて酸添加法を行うときは、pH
2,2〜3.0の範囲のpi(調整とするQ
(鉄粉酸化還元反応)
酸添加法後の固液分離液のpHは3.0以下であるOそ
の分離液に対して鉄粉を添加し、酸化還元反応を行うと
、pIIが上昇し、そのために反応性が低下し、ラシニ
ングPストを高めることになる0又、−の上昇が4.0
以上になるとFe の一部が酸化されFe となりs
Fe(OR)aのフロックを形成するようになり、後工
程の固液分離を難しくするといった問題点が発生する。(Acid) Precipitation of copper-containing crystals by hydrochloric acid begins at around pH 3.5, becomes almost flat at around 2.7, and redissolution is slight as the pH is lowered from around 2.0. (Fig. 1) Precipitation of copper-containing crystals by sulfuric acid begins at around pH 3.5, decreases to a maximum at around pH 2.7, and reaches a peak at around pH 2.7.
We obtained experimental results that redissolution begins when the temperature is lowered from around 2.7. (Figure 2) (Voice adjustment range) It is impossible to precipitate all the copper using the acid addition method. In other words, if we prioritize requirements such as reactivity, pH control, and the cost of fine auxiliary materials using iron powder, it is important to minimize the concentration of copper ions that leak into the separation solution without precipitating. As long as the pH is within a certain range, it is fine.Therefore, when performing the acid addition method with hydrochloric acid, the pH should be between 2.0 and 2.0.
pH within the range of 2.7, or when performing the acid addition method with sulfuric acid.
The pH of the solid-liquid separated liquid after the acid addition method is 3.0 or less. When oxidation-reduction reaction is carried out by adding PII, pII increases, which decreases the reactivity and increases the rasining P strike.
When the temperature exceeds a certain amount, a part of Fe is oxidized and becomes Fe.
A problem arises in that flocs of Fe(OR)a are formed, making solid-liquid separation in the subsequent process difficult.
これらの問題点の解決のために鉄粉酸化還元法における
声範囲を実験結果より−2,5〜3.0の範囲に設定す
る。In order to solve these problems, the voice range in the iron powder redox method is set to a range of -2.5 to 3.0 based on experimental results.
こうした本発明による処理方法をフローシート(第3図
)に基づいて説明する。ピロリン酸銀メ、キ廃液A、B
をまずメIF、Ijl整槽1に貯留し、これに酸を添加
して攪拌しつつ…をpH2,0〜2.7(塩酸を用いた
場合)、pi(2,2〜a、o(#C酸を用いた場合)
の範囲に調整する。次Kpl(を調整された液は、脱水
機2に送られる0該当脱水機2では、固液分離が行なわ
れ、脱水スラッチケーキが排出される。The processing method according to the present invention will be explained based on a flow sheet (FIG. 3). Silver pyrophosphate waste liquid A, B
First, it is stored in MeIF, Ijl adjustment tank 1, and acid is added to this and while stirring... pH 2.0 ~ 2.7 (when using hydrochloric acid), pi (2.2 ~ a, o ( #When using C acid)
Adjust to the range of Next, the liquid with Kpl (adjusted) is sent to a dehydrator 2. In the dehydrator 2, solid-liquid separation is performed and a dehydrated slatch cake is discharged.
脱水分離液は、反応槽3に送られる◎反応槽3において
、酸(硫酸または塩酸)にてpH2,5〜3.0の範囲
に調整しつつ、鉄粉を投入し、金属銅を析出さざだ後、
分離装置4にて固液分離する。分離スラッチは、2での
脱水ケーキと併合する。分離液は中和槽5に送られる。The dehydrated separated liquid is sent to reaction tank 3. In reaction tank 3, iron powder is added while adjusting the pH to a range of 2.5 to 3.0 with acid (sulfuric acid or hydrochloric acid) to precipitate metallic copper. After Zada,
Separation device 4 performs solid-liquid separation. The separated slatch merges with the dehydrated cake in 2. The separated liquid is sent to the neutralization tank 5.
中和槽5においては、アルカリにてpi(調整を性力う
。以下(実験例)及び(比較実験例)により本発明を具
体的に説明する0
(実験例)
別嵜1に示す組成を有するA、B事業所から出るピロリ
ン酸銅メツキ廃液をフローシート(第3図)K従ってp
H調整槽に貯留し、これに硫酸を添加しつつ混合攪拌し
、pHを2.5に調整する。(反応時間1時間)
次いで、脱水テスト機に入れ、脱水スラッチケーキと脱
水分離液と固液分離する。In the neutralization tank 5, the PI (adjustment) is carried out with an alkali.The present invention will be specifically explained below (Experimental Example) and (Comparative Experimental Example). The flow sheet (Fig. 3) shows the copper pyrophosphate plating waste liquid discharged from the A and B business establishments.
The mixture is stored in a H adjustment tank, and mixed and stirred while adding sulfuric acid to adjust the pH to 2.5. (Reaction time: 1 hour) Next, the mixture is placed in a dehydration tester, and solid-liquid separation is performed between the dehydrated slatch cake and the dehydrated separated liquid.
(別表1)
脱水分離中の銅含有濃度は350′q/lである〇この
脱水分離液を反応槽に入れ、硫酸にてpi(2,9に調
整しつつ、更に鉄粉0.4f/lを投入し酸化還元反応
を行なう。(反応時間1時間)次に分離装置にて分離ス
ラッチ(金属銅)と分離液とに分離する。分離液成分濃
度は次に示す通りである。このことは、海洋投棄処分を
可能にするといった意味がある。(Appended Table 1) The copper content concentration during dehydration separation is 350'q/l〇This dehydrated separated liquid is put into a reaction tank, and while adjusting the pi (pi) to 2.9 with sulfuric acid, further iron powder 0.4f/l is added. 1 to carry out an oxidation-reduction reaction. (Reaction time: 1 hour) Next, the separated slatch (metallic copper) and separated liquid are separated in a separation device. The component concentrations of the separated liquid are as shown below. This has the meaning of enabling ocean dumping.
濃度: Cd (0,I Pb (2
Zn (5Cu (2
(単位グ/l)
(比較実験例)
pI(調整槽にて本発明における指定pi範囲値を外し
た場合。別表2に示す組成を有するA、B事業所から出
るピロリン酸銅メ、キ廃液を一調整槽に用意し、これに
硫酸を混合攪拌しつつpH3,3に調整した。しかし、
はとんど鋼含有結晶物は析出されなか9た0次いで、脱
水テスト機にて脱水した@脱水分離液中の銅含有濃度は
、
(別表2)
(単位グ/1)
12.000”//lでありた。この脱水分離液中の銅
を金属銅として析出させるために必要な鉄粉量は14
f/lとなる。これは(実験例)で示す鉄粉量0.49
/lと比べかなりのコスト高である0又鉄粉酸化還元液
がスラリー状となり、固液分離が困rI[な状態にもな
ってしまう。本発明における酸添加法の指定−(範囲よ
り低い場合も同様の結果となる。酸添加法において塩酸
を用いた場合は、岨調整槽における本発明の指定p+(
範囲(pH2,0〜2.7)の場合、(実験例)で示す
硫酸添加の場合と同様な結果を得る。又、pH2,7以
上の場合も(比較実験例)で示す硫酸添加の場合と同様
である。しかし、pH2,0以下においては、銅含有結
晶物の生成はあるものの脱水スラッチケーキの再利用と
いう点では水素イオン、塩素イオンなどの残存濃度が高
く再生設備に腐食等の悪影響を及はすことがあげられ、
好ましくない。Concentration: Cd (0,I Pb (2 Zn (5Cu) (2 (unit: g/l) (Comparative experiment example) pI (when the specified pi range value in the present invention is exceeded in the adjustment tank. The composition shown in Attached Table 2 is Copper pyrophosphate waste liquid from factories A and B was prepared in an adjustment tank, and sulfuric acid was mixed and stirred to adjust the pH to 3.3.However,
Most of the time, steel-containing crystals were not precipitated.Next, the copper content concentration in the dehydrated separated liquid was dehydrated using a dehydration test machine. (Appended Table 2) (Unit g/1) 12.000" /l.The amount of iron powder required to precipitate the copper in this dehydrated separated liquid as metallic copper was 14
f/l. This is the amount of iron powder shown in (experimental example) 0.49
The iron powder oxidation-reduction solution, which is considerably more expensive than the oxidation-reduction solution of iron powder, becomes a slurry, making solid-liquid separation difficult. The specification of the acid addition method in the present invention - (Similar results will be obtained if it is lower than the range.If hydrochloric acid is used in the acid addition method, the specification of the present invention in the adjustment tank p + (
In the case of the pH range (pH 2.0 to 2.7), the same results as in the case of adding sulfuric acid shown in (Experimental Example) are obtained. Further, the case where the pH is 2.7 or higher is also the same as the case of adding sulfuric acid shown in (Comparative Experimental Example). However, at pH below 2.0, although copper-containing crystals may be produced, the residual concentration of hydrogen ions, chlorine ions, etc. is high and may have a negative impact on the regeneration equipment, such as corrosion, when it comes to reusing the dehydrated slatch cake. was given,
Undesirable.
以上の前述してきた事柄よシ、本発明の処理法ハ安価な
イニシャルコスト、2ンニングコストが可能で、しかも
規制に適合する安全な処理と銅の再利用とを可能とした
ピロリン酸銅メツキ廃液の処理方法といえる0In addition to the above-mentioned matters, the treatment method of the present invention enables low initial cost and secondary processing cost, as well as safe treatment that complies with regulations and reuse of copper. 0, which can be said to be a processing method for
第1図、第2図は、本発明における該当ピロリン酸銅メ
、キ廃液の処理工程中酸添加法によるー(X軸)と銅リ
ーク濃度(Y軸)の相関関係を示すグラフでおる。
第1図は塩酸、第2図は硫酸を用いた場合であるO
第3図は本発明におけるピロリン酸銅メツキ廃液の処理
方法の一例を示すフローシートであるO特許出願人 増
1)耕 作
4.6 a5 3.’ 2.” 2.’ pH]「11
ト」し
i?、” 2.22,4 2.≦24 j634 PH
1−田よJ−
第 2 図
+14桶正富(布式)
%式%
1、事件の表栄 Bli、幻59!iF−符許滑Y餅7
63万2、発明の兄称 ピロリ:/酸釧メシキ廃5投O
処鯉l法
3補正Aす・る者
事イ孕乙の開イ糸 特寥ケエ顔人
ヰ代裡人
住P/r(s所)
A糸銘蘇) @Figures 1 and 2 are graphs showing the correlation between copper pyrophosphate (X-axis) and copper leak concentration (Y-axis) due to the acid addition method during the treatment process of the corresponding copper pyrophosphate waste liquid in the present invention. . Figure 1 shows the case where hydrochloric acid is used, and Figure 2 shows the case where sulfuric acid is used. Figure 3 is a flow sheet showing an example of the method for treating copper pyrophosphate plating waste liquid in the present invention. 4.6 a5 3. '2. "2.' pH] "11
To”shii? ,” 2.22,4 2.≦24 j634 PH
1-Tayo J- Figure 2 + 14 Oke Masatomi (cloth style) % style% 1. Representation of the incident Bli, illusion 59! iF-Fuyaku Y Mochi 7
630,002, the brother name of the invention: pylori: / 5-throw O
Treatment Carp Law 3 Correction A Su・ru Personji I Pregnancy Otsu's Opening Thread Tokko Kee Face Person ヰ Substitute Human Residence P/r(s Place) A Thread Name Su) @
Claims (1)
ロリン酸銅メツキ廃液に酸を添加して銅含有結晶物を析
出させる。酸としては塩酸又は硫酸を使用する。析出し
た銅含有結晶物は固液分離し取り出す。分離した銅含有
結晶物は再利用もしくは廃棄する。固液分離液は液中に
リークした銅イオンを鉄粉により酸化還元反応を行なわ
せ金属銅として析出させ再び固液分離し取り出す・分離
した金属銅は再利用もしくは廃棄する0固液分離液は中
和後廃棄する。以上の過程を含むことを特徴とするピロ
リン酸銅メツキ廃液の処理方法。Acid is added to copper pyrophosphate plating waste liquid generated from electronic parts manufacturing plants, precision plating plants, etc. to precipitate copper-containing crystals. Hydrochloric acid or sulfuric acid is used as the acid. The precipitated copper-containing crystals are separated into solid and liquid and taken out. The separated copper-containing crystals will be reused or discarded. The solid-liquid separation liquid is made by performing an oxidation-reduction reaction on the copper ions leaked into the liquid using iron powder to precipitate them as metallic copper, which is then separated into solid-liquid again and taken out.The separated metallic copper is reused or disposed of.0The solid-liquid separation liquid is Discard after neutralization. A method for treating copper pyrophosphate plating waste liquid characterized by including the above steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1476384A JPS60161791A (en) | 1984-01-30 | 1984-01-30 | Treatment of waste pyrophosphoric acid copper plating solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1476384A JPS60161791A (en) | 1984-01-30 | 1984-01-30 | Treatment of waste pyrophosphoric acid copper plating solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60161791A true JPS60161791A (en) | 1985-08-23 |
Family
ID=11870111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1476384A Pending JPS60161791A (en) | 1984-01-30 | 1984-01-30 | Treatment of waste pyrophosphoric acid copper plating solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60161791A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997033837A1 (en) * | 1996-03-14 | 1997-09-18 | Chengdu Institute Of Biology, Chinese Academy Of Sciences | A compound functional bacteria for treating various waste water from electroplating process |
-
1984
- 1984-01-30 JP JP1476384A patent/JPS60161791A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997033837A1 (en) * | 1996-03-14 | 1997-09-18 | Chengdu Institute Of Biology, Chinese Academy Of Sciences | A compound functional bacteria for treating various waste water from electroplating process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100200021B1 (en) | Method of treating waste water to remove harmful ion by coagulating sedimentation | |
EP0527148B1 (en) | Composition for treating water contaminated with metallic ions, process for producing the same and its use | |
JP2018079439A (en) | Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions | |
JPS60117B2 (en) | How to treat fluoride-containing water | |
US5460730A (en) | Process and apparatus for treating wastewater from lead battery production | |
US5451327A (en) | Compound and method for treating water containing metal ions and organic and/or inorganic impurities | |
AP980A (en) | Removal of pollutants from effluents with electrochemical treatment. | |
EP0922678A1 (en) | Waste treatment of metal plating solutions | |
JPS60161791A (en) | Treatment of waste pyrophosphoric acid copper plating solution | |
US4073706A (en) | Brine treatment for trace metal removal | |
JPH0679286A (en) | Treatment of selenium-containing waste water | |
JPS59196796A (en) | Treatment of liquid waste | |
US6053963A (en) | Method for treating rotary slag | |
GB1563604A (en) | Purification of sulphuric acid | |
JPS5854629B2 (en) | Method for treating waste liquid containing heavy metal complex salts | |
CA1329005C (en) | Method for precipitation of chromium and/or vanadium from waste sulphuric acid from the titanium dioxide production | |
JPH0369515A (en) | Method for recovering high-purity iron sulfate from waste sulfuric acid pickling solution for stainless steel | |
JPS58151437A (en) | Treatment of manganese ore | |
JPS603869B2 (en) | Heavy metal wastewater treatment method | |
CN108862728A (en) | A kind of method of water treatment technology | |
JP4771284B2 (en) | Method and apparatus for treating selenium-containing wastewater | |
US5376342A (en) | Process for recovering zinc phosphating make-up feed from zinc phosphate sludge | |
JPS63190695A (en) | Treatment method for fluorine-containing wastewater | |
JPH07316679A (en) | Treatment of raw material containing zinc and fluorine | |
JPS63258692A (en) | Treatment of organic sewage |