JPH0369515A - Method for recovering high-purity iron sulfate from waste sulfuric acid pickling solution for stainless steel - Google Patents
Method for recovering high-purity iron sulfate from waste sulfuric acid pickling solution for stainless steelInfo
- Publication number
- JPH0369515A JPH0369515A JP20477689A JP20477689A JPH0369515A JP H0369515 A JPH0369515 A JP H0369515A JP 20477689 A JP20477689 A JP 20477689A JP 20477689 A JP20477689 A JP 20477689A JP H0369515 A JPH0369515 A JP H0369515A
- Authority
- JP
- Japan
- Prior art keywords
- sulfuric acid
- soln
- stainless steel
- concentration
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 title claims abstract description 77
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 title claims abstract description 12
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 12
- 239000010935 stainless steel Substances 0.000 title claims abstract description 12
- 229910000358 iron sulfate Inorganic materials 0.000 title claims abstract description 9
- 239000002699 waste material Substances 0.000 title claims description 21
- 238000005554 pickling Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- 239000000706 filtrate Substances 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 238000009792 diffusion process Methods 0.000 claims abstract description 5
- 239000012452 mother liquor Substances 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 239000007788 liquid Substances 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 9
- 238000000502 dialysis Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 4
- 229910000359 iron(II) sulfate Inorganic materials 0.000 abstract description 3
- 239000000049 pigment Substances 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 2
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 abstract 1
- 230000029219 regulation of pH Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 15
- 239000002253 acid Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000014413 iron hydroxide Nutrition 0.000 description 2
- XBDUTCVQJHJTQZ-UHFFFAOYSA-L iron(2+) sulfate monohydrate Chemical compound O.[Fe+2].[O-]S([O-])(=O)=O XBDUTCVQJHJTQZ-UHFFFAOYSA-L 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 101100324822 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fes-4 gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/36—Regeneration of waste pickling liquors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
本発明は、ステンレス鋼の硫酸酸洗廃液から低Crの高
純度硫酸鉄を回収する方法に関するものである。The present invention relates to a method for recovering low-Cr, high-purity iron sulfate from a waste solution from sulfuric acid pickling of stainless steel.
現在、ステンレス鋼の表面処理法として硫酸による酸洗
処理が行われている。酸洗により鋼材中のFe、Crが
H2SO,に溶解し、これらの濃度が高くなると酸洗速
度が著しく低下するため、系外に排出し新酸と入れ替え
ねばならない。従って、比較的Hz S○4濃度の高い
廃硫酸液が大量に排出されている。
一方、普通鋼の場合の硫酸酸洗廃液は減圧濃縮により水
分を華発せしめ、r r e e−H2SO4濃度を4
5〜60%に高めることにより溶存しているFe5Oa
を硫酸鉄−水塩として析出せしめた上、これをH2SO
4液と分離し、H2S○4液は酸洗槽に戻して再使用す
る方法が行われている。また分離された硫酸鉄−水塩中
にはCrその他の重金属が殆ど含まれていないので、顔
料やフェライト用等の原料として利用されている。(特
公昭50−2879号公報参照)
また別法として、廃硫酸をそのまま、或いは予Va縮若
しくは濃硫酸を添加する等の手段によりH2SO,濃度
を調整した上、これを20℃以下に冷却することにより
FeSO4・7l−I20を析出せしめた後これを分離
し、その分離液は水を添加してH2S Oa濃度を調整
した上、回収酸として繰り返し酸洗に利用されている。
(特公昭47−40629号公報参照)Currently, pickling treatment with sulfuric acid is used as a surface treatment method for stainless steel. Pickling dissolves Fe and Cr in the steel into H2SO, and as their concentrations increase, the pickling speed drops significantly, so they must be discharged from the system and replaced with fresh acid. Therefore, a large amount of waste sulfuric acid solution with a relatively high concentration of Hz S*4 is discharged. On the other hand, in the case of ordinary steel, the waste liquid from sulfuric acid pickling is concentrated under reduced pressure to exude moisture, and the concentration of r.e.e.H2SO4 is reduced to 4.
Dissolved Fe5Oa by increasing to 5-60%
was precipitated as iron sulfate-hydrate salt, and this was heated with H2SO
A method is used in which the H2S○4 liquid is separated from the H2S4 liquid and returned to the pickling tank for reuse. Furthermore, since the separated iron sulfate hydrate contains almost no Cr or other heavy metals, it is used as a raw material for pigments, ferrite, etc. (Refer to Japanese Patent Publication No. 50-2879) Alternatively, the waste sulfuric acid may be used as it is, or the concentration of H2SO may be adjusted by means such as pre-condensation with Va, or addition of concentrated sulfuric acid, and then cooled to below 20°C. After FeSO4.7l-I20 is precipitated by this method, it is separated, and the separated liquid is added with water to adjust the H2SOa concentration, and then used as recovered acid for repeated pickling. (Refer to Special Publication No. 47-40629)
しかるに、ステンレス鋼の硫酸酸洗廃液中にはFeの外
にCrが多量に含まれており、これを前記方法にて処理
する場合は、濃縮法、冷却法の何れの場合においても硫
酸鉄が析出する。この中に含まれるCr量は当初は微量
であるが、時間の経過とともに缶内母液中のCr濃度が
上昇し、これにつれて結晶中に含まれるCr濃度が増大
するばかりでなく、母液を酸洗槽に再利用する場合は酸
洗速度が低下する等の問題があるので、回収酸として再
利用出来ないため回収装置を設置する例は見当たらない
。従って、石灰中和によって処理する方法が行われてい
るが、生成する水酸化鉄中にCrの水酸化物が混入し公
害上からそのままでは廃棄できないため、セメントによ
る固化等不溶性化したり、中和時に空気酸化してフェラ
イト化し無害化した上で廃棄する方法が現在行われてい
る。
そこで、特開昭63−295442号公報に記載されて
いるように、高純度酸化鉄又は水酸化鉄を製造する際の
鉄塩水溶液の効率的精製法として、廃酸に鉄や塩基を添
加しPH3〜7に調整し生成する水酸化物を自然沈降、
濾過、又は遠心分離等により分離除去する方法が提案さ
れている。
この方法の場合、Crとして1100pp以下を含有す
る廃硫酸を鉄や塩基を用いて中和しPHを5.0以上と
し、Crを水酸化物として分離除去した場合濾液中のC
r濃度はioppmに低下する。
ただし、廃硫酸中のCr濃度が数百ppm以上ではP
Hを5.0以上に中和しても残留Crは8oppm以上
となる。PHを6.0以上としても20ppm以上のC
rが残留する。
しかしながら、ステンレス鋼を硫酸にて酸洗する際に排
出される廃硫酸中のCrは4000p p m以上と格
段に高いため、塩基による中和、或いは鉄屑及び塩基併
用による中和では脱Crが有効的且つ充分には行われな
いという問題がある。
本発明はこの問題を解決するためなされたものである。However, the waste solution from sulfuric acid pickling of stainless steel contains a large amount of Cr in addition to Fe, and when this is treated by the above method, iron sulfate is removed in both the concentration method and cooling method. Precipitate. Initially, the amount of Cr contained in this is very small, but as time passes, the Cr concentration in the mother liquor inside the can increases, and as a result, not only does the Cr concentration in the crystals increase, but the mother liquor is pickled. If it is reused in a tank, there are problems such as a decrease in the pickling speed, so it cannot be reused as recovered acid, so there are no examples of installing a recovery device. Therefore, a method of treatment by lime neutralization is used, but since Cr hydroxide is mixed in the iron hydroxide produced and cannot be disposed of as it is due to pollution, it may be hardened with cement or otherwise made insoluble, or neutralized. The current method is to oxidize it in the air to turn it into ferrite, render it harmless, and then dispose of it. Therefore, as described in JP-A No. 63-295442, as an efficient method for purifying an aqueous iron salt solution when producing high-purity iron oxide or iron hydroxide, iron or a base is added to waste acid. Adjust the pH to 3-7 and let the generated hydroxide settle naturally.
A method of separating and removing it by filtration, centrifugation, etc. has been proposed. In the case of this method, waste sulfuric acid containing 1100 pp or less as Cr is neutralized using iron or a base to raise the pH to 5.0 or higher, and when Cr is separated and removed as hydroxide, the carbon in the filtrate is
The r concentration drops to ioppm. However, if the Cr concentration in the waste sulfuric acid is several hundred ppm or more, P
Even if H is neutralized to 5.0 or higher, residual Cr remains at 8 oppm or higher. C of 20 ppm or more even if the pH is 6.0 or more
r remains. However, since the Cr content in the waste sulfuric acid discharged when pickling stainless steel with sulfuric acid is extremely high at over 4000 ppm, it is not possible to remove Cr by neutralizing with a base or a combination of iron scraps and a base. The problem is that it is not carried out effectively and satisfactorily. The present invention has been made to solve this problem.
本発明においては、まずCr濃度の高い廃硫酸を拡散透
析装置にて処理し、遊離硫酸の大部分を除去することに
より残留硫酸濃度数%以下の脱酸液を得る。この脱酸液
に金属鉄又はミルスケールを投入し、これを50〜10
0℃に加熱し、撹拌、混合、振盪等の機械的手段により
固液間の接触作用を強力に行い、置換還元反応を行わし
めCrを金属物として析出させる。これを濾過又は遠心
分離等によって分離除去した後、硫酸を添加しP Hを
2以下に調整し、この調整脱Cr液をそのまま或いは濃
縮によりFeS○4濃度を例えば20%以上にした後、
20’C以下に冷却し硫酸鉄結晶を析出せしめ、これを
母液と分離することによって、低Cr高純度FeS○4
・7H2S○4をステンレス鋼の硫酸酸洗廃液より回収
するものである。In the present invention, waste sulfuric acid with a high Cr concentration is first treated with a diffusion dialysis device to remove most of the free sulfuric acid, thereby obtaining a deoxidized solution with a residual sulfuric acid concentration of several percent or less. Add metallic iron or mill scale to this deoxidizing solution, and add 50 to 10
The mixture is heated to 0° C., and strong solid-liquid contact action is performed by mechanical means such as stirring, mixing, and shaking to cause a substitution-reduction reaction and precipitate Cr as a metal substance. After separating and removing this by filtration or centrifugation, sulfuric acid is added to adjust the pH to 2 or less, and the adjusted Cr-removal solution is used as it is or after concentration is made to have a FeS4 concentration of, for example, 20% or more,
By cooling to below 20'C to precipitate iron sulfate crystals and separating them from the mother liquor, low Cr high purity FeS○4 is produced.
・7H2S○4 is recovered from the waste solution of sulfuric acid pickling of stainless steel.
【作用】
以下に本発明の各工程における作用について詳述する。
廃硫酸を拡散透析装置にかけることにより廃硫酸中のf
ree−HzS○4の大部分を分離除去し、透析廃液側
にFe、Cr等のそのまま取り残されたf r e e
−H2SO4濃度の低い脱酸液を得ることができる。次
いで、これに金属鉄又はミルスケールを添加し、液温を
50〜100℃に加温して撹拌、混合、振盪等の機械的
手段により固液の間の接触作用を促進させ、Crイオン
を添加した金属鉄又はミルスケールと置換、還元し金属
物として析出沈澱させて脱Crを有効に行うものである
。この場合、添加する金属鉄又はごルスケールは充分過
剰にしておくことが好ましい。
主な反応機構は
(])Feの溶解によるP I(の上昇2H’+Fe→
Fe”+H2↑
(2)FeによるCr3+の還元
Cr”+F e →F e”+Cr
が考えられる。
(2)の反応は酸濃度に関係なくPHの低い時にも起こ
るが、硫酸濃度が高いと析出したCrの再溶解が起こる
ので、(1)の反応が進行してPHが上がってからでな
いと実質的に進行しない。従って、第一工程に於ける脱
酸率はP H値で1〜2に近づけることが望ましいが、
脱酸率を上げることは透析装置の膜面積の増加を必要と
し、設備費の上昇につながるので、PH1以下でもよい
。
脱酸液中のCrは金属鉄又はミルスケールによる置換還
元反応より殆ど全部が析出するが、Cr濃度は上記の反
応機構よりして、単にP Hだのでは決定できないが、
P Hの下限は一応4を目安とする。
脱Crされた処理液中には金属鉄又はミルスケール及び
Cr等の沈澱物が含まれているので、これらを濾別した
後、その濾液にHz S Oaを添加してP Hを2以
下に調整する。これは処理液をそのまま放置すると、溶
存中のFe”が酸化されてFe3゛となりFe(OHL
+の沈澱が析出され易いので、これを防止するためであ
る。P H調整液は、これをそのまま10℃以下に冷却
するか、或いは濃縮してFeSO420%以上、好まし
くは30%以上とした上で20℃以下に冷却することに
より、高純度硫酸鉄結晶を析出回収し得られるが、結晶
の析出量を多くしたい場合には10’C以下に冷却する
とよい。
一方、回収液側には廃硫酸中のfree−H2SO4の
大部分が移行しているが、Fe、Cr等はわずか(原液
中濃度の3〜4%)しか含まれていないので、これに補
給硫酸を添加し濃度調整することにより酸洗に再利用し
得るメリットがある。
また第三工程における残留Cr濃度はP H4の場合2
0ppm、PH5の場合lppmとなり、残留CrQ度
20ppmの脱Cr溶l夜から晶析分離したF e S
04 ・7 HzO中のCr含有量はlppm以下、
また残留Cr濃度lppmの脱Cr液から晶析分離した
FeSO4・7H20中のCr含有量は0、lppm以
下になる。[Function] The function of each step of the present invention will be explained in detail below. f in waste sulfuric acid by applying it to a diffusion dialysis device
Most of the ree-HzS○4 is separated and removed, and Fe, Cr, etc. are left as they are on the dialysis waste liquid side.
- A deoxidizing solution with a low concentration of H2SO4 can be obtained. Next, metal iron or mill scale is added to this, the liquid temperature is raised to 50 to 100°C, and the contact action between the solid and liquid is promoted by mechanical means such as stirring, mixing, and shaking to remove Cr ions. It effectively removes Cr by substituting and reducing the added metal iron or mill scale to precipitate it as a metal substance. In this case, it is preferable that the amount of metallic iron or scale to be added be sufficiently excessive. The main reaction mechanism is (]) Increase in P I (2H'+Fe→
Fe"+H2↑ (2) Reduction of Cr3+ by Fe Cr"+F e →F e"+Cr is considered. The reaction (2) occurs even when the pH is low regardless of the acid concentration, but it precipitates when the sulfuric acid concentration is high. Since Cr is redissolved, it will not proceed substantially until the reaction (1) has progressed and the pH has increased.Therefore, the deoxidation rate in the first step is 1 to 2 in terms of pH value. It is desirable to get close to
Increasing the deoxidation rate requires an increase in the membrane area of the dialysis device, leading to an increase in equipment costs, so the pH may be lower than 1. Almost all of the Cr in the deoxidizing solution is precipitated by the substitution-reduction reaction with metallic iron or mill scale, but the Cr concentration cannot be determined simply from P H based on the reaction mechanism described above.
As a guideline, the lower limit of PH should be 4. Since the Cr-removed treatment liquid contains precipitates such as metallic iron or mill scale and Cr, after these are filtered out, Hz SOa is added to the filtrate to reduce the P H to 2 or less. adjust. This is because if the treatment solution is left as it is, the dissolved Fe'' will be oxidized and become Fe3゜Fe(OHL).
This is to prevent + precipitates from being easily deposited. The PH adjustment solution can be cooled as it is to below 10°C, or concentrated to have FeSO4 of 20% or more, preferably 30% or more, and then cooled to below 20°C to precipitate high-purity iron sulfate crystals. Although it can be recovered, if it is desired to increase the amount of crystals precipitated, it is preferable to cool it to 10'C or less. On the other hand, most of the free-H2SO4 in the waste sulfuric acid has migrated to the recovered liquid side, but since it contains only a small amount of Fe, Cr, etc. (3-4% of the concentration in the stock solution), this is replenished. There is an advantage that it can be reused for pickling by adding sulfuric acid and adjusting the concentration. In addition, the residual Cr concentration in the third step is 2 in the case of PH4.
0 ppm, 1 ppm in the case of pH 5, and the Fe S crystallized from the Cr removal solution with a residual CrQ level of 20 ppm.
04 ・7 Cr content in HzO is less than lppm,
Further, the Cr content in FeSO4.7H20 crystallized and separated from the Cr-removed liquid with a residual Cr concentration of 1 ppm is 0.1 ppm or less.
以下、本発明の実施例について述べる。
液組成: f r e e−H□S○a91g/l、F
e90g/l、Cr 6 g//2の廃硫酸260 f
f / hを拡散透析装置(徳山ソーダ株式会社製、T
SD−50−550型)に通液する。一方、これに見合
う量の水260 f / hを通水することにより液組
成:f r e e−H2S○a 22.4g/ CF
e70g/ nCr4.7g/eの脱酸液324 f
fi / hが得られた。
同時に液m威: f ree−H2S○a 83.2
g / E 。
F e 3.5g/ L Cr 0.2g/ flの
回収酸200℃を得た。脱酸液には金属鉄130kgを
加え、液温を85℃に加熱しながらポンプ循環する。5
時間後PHが4にて反応を中止した後、直ちにフィルタ
ープレスにて加圧濾過し316kgの濾液が得られた。
第1鉄の酸化防止のためC0nC−H2O45kgを添
加した。濾液中の残留Crは2oppmであった。
次いでこの液を2等分し、その内の一部158kgを0
℃まで冷却した後、析出した結晶を遠心分離し23kg
のFeSO4・7 H2Oを回収した。結晶中のCr含
有量は0.9PPmであった。
前記濾液の残部158kgをFeSO4濃度30%まで
濃縮した上、これを20℃まで冷却した後、析出した結
晶を遠心分離し31.kgのFeSO4・7H,0を回
収した。結晶中のCr含有量は1.5ppmであった。
一方、回収酸には、Conc−H2O45kg及びH2
O45kgを力Uえることにより、液組成:H2SO,
24%、FeO,2%、Cr0.01%の調整硫酸液3
15kgが得られ、これを再び酸洗用に循環使用した。
実施例で判るように、本発明の方法によれば、ステンレ
ス鋼硫酸酸洗廃液中に6000p p m含まれていた
Crが、PH=4の脱Cr液では20ppmにまで低下
し、その脱Cr率は99.7%である。
ちなみに、前記特開昭63−295442号公報に開示
されている方法と比較すると、同公報における実施例4
では、PH=4.2の場合、脱Cr率は42.3%、P
H=6.2の場合であっても、 脱Cr率は94.3
%であり、本願発明の方法によれば極めて有効に脱Cr
されることが判る。Examples of the present invention will be described below. Liquid composition: fre e-H□S○a91g/l, F
e90g/l, Cr 6 g//2 waste sulfuric acid 260f
f/h using a diffusion dialysis device (manufactured by Tokuyama Soda Co., Ltd., T
SD-50-550 model). On the other hand, by passing a corresponding amount of water at 260 f/h, the liquid composition: fre e-H2S○a 22.4 g/CF
e70g/nCr4.7g/e deoxidizer 324f
fi/h was obtained. At the same time liquid m power: f ree-H2S○a 83.2
g/E. A recovered acid containing 3.5 g/L Fe and 0.2 g/fl Cr was obtained at 200°C. 130 kg of metal iron is added to the deoxidizing liquid, and the liquid is circulated through a pump while being heated to 85°C. 5
After a period of time, the reaction was stopped at pH 4, and immediately filtered under pressure using a filter press to obtain 316 kg of filtrate. 45 kg of C0nC-H2O was added to prevent oxidation of ferrous iron. The residual Cr in the filtrate was 2 oppm. Next, this liquid was divided into two equal parts, and part of it, weighing 158 kg, was
After cooling to ℃, the precipitated crystals were centrifuged and weighed 23 kg.
of FeSO4.7 H2O was recovered. The Cr content in the crystal was 0.9 PPm. After concentrating the remaining 158 kg of the filtrate to a FeSO4 concentration of 30% and cooling it to 20°C, the precipitated crystals were centrifuged. 31. kg of FeSO4.7H,0 was recovered. The Cr content in the crystal was 1.5 ppm. On the other hand, the recovered acid contains 45 kg of Conc-H2O and H2
By applying 45 kg of O, the liquid composition: H2SO,
Adjusted sulfuric acid solution 24%, FeO, 2%, Cr0.01% 3
15 kg was obtained, which was recycled again for pickling. As can be seen from the examples, according to the method of the present invention, 6000 ppm of Cr contained in the stainless steel sulfuric acid pickling waste solution was reduced to 20 ppm in the Cr removal solution at pH=4. The rate is 99.7%. By the way, when compared with the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 63-295442, Example 4 in the same publication
Then, when PH=4.2, the Cr removal rate is 42.3%, P
Even when H=6.2, the Cr removal rate is 94.3
%, and according to the method of the present invention, Cr can be removed extremely effectively.
It turns out that it will be done.
本発明の方法によれば次のような効果がある。
(1)従来、石灰中和法により処理され廃棄処分されて
いたステンレス鋼の硫酸酸洗廃液よりフェライト用、顔
料用として有用でありメリットの高<Cr含有量の低い
高純度硫酸鉄が得られる。
(2)新酸とほぼ同純度の硫酸が回収され酸洗工程にて
再利用することができ、資源の有効利用上、また公害防
止上、極めて有用である。
(3)従来技術に較べ、非常に高い脱Cr率が得られる
。The method of the present invention has the following effects. (1) High-purity iron sulfate with high merits and low Cr content, which is useful for ferrite and pigments, can be obtained from stainless steel sulfuric acid pickling waste, which was conventionally treated by lime neutralization and disposed of. . (2) Sulfuric acid with approximately the same purity as the new acid can be recovered and reused in the pickling process, which is extremely useful for effective use of resources and prevention of pollution. (3) Compared to the conventional technology, a very high Cr removal rate can be obtained.
Claims (2)
r濃度の高い廃硫酸を、拡散透析装置にて処理し、fr
ee−H_2SO_4を除去すると共に、脱酸液を得る
第一工程と、 該脱酸液に金属鉄又はミルスケールを投入し、これを5
0〜100℃に加熱し更に機械的手段により固液間の接
触作用を促進せしめることにより、Crを析出させる第
二工程と、 第二工程にて処理した液を濾過して析出したCrの不純
物を除去した後濾液に硫酸を添加してPHを2以下に調
整する第三工程と、 第三工程にて得たPH調整脱Cr液を冷却し硫酸鉄結晶
を析出せしめこれを母液と分離する第四工程とからなる
、ステンレス鋼の硫酸酸洗廃液より高純度硫酸鉄を回収
する方法。1. C emitted when stainless steel is pickled with sulfuric acid
Waste sulfuric acid with a high r concentration is treated with a diffusion dialysis device, and fr
A first step of removing ee-H_2SO_4 and obtaining a deoxidizing solution; adding metal iron or mill scale to the deoxidizing solution;
A second step in which Cr is precipitated by heating to 0 to 100°C and further promoting contact between solid and liquid by mechanical means; and Cr impurities precipitated by filtering the liquid treated in the second step. A third step of adding sulfuric acid to the filtrate to adjust the pH to 2 or less after removing the A method for recovering high-purity iron sulfate from a waste solution from sulfuric acid pickling of stainless steel, which comprises a fourth step.
SO_4濃度を20%以上にした後、これを冷却し硫酸
鉄結晶を析出せしめ、これを母液と分離する第四工程と
からなる、請求項1記載のステンレス鋼の硫酸酸洗廃液
より高純度硫酸鉄を回収する方法。2. The pH-adjusted deCr solution after the third step is concentrated and Fe
High purity sulfuric acid from the sulfuric acid pickling waste liquid of stainless steel according to claim 1, comprising a fourth step of increasing the SO_4 concentration to 20% or more, cooling it to precipitate iron sulfate crystals, and separating this from the mother liquor. How to recover iron.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20477689A JPH085676B2 (en) | 1989-08-09 | 1989-08-09 | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel |
AU14754/92A AU636532B2 (en) | 1989-08-09 | 1992-04-09 | Remote monitoring system for containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20477689A JPH085676B2 (en) | 1989-08-09 | 1989-08-09 | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0369515A true JPH0369515A (en) | 1991-03-25 |
JPH085676B2 JPH085676B2 (en) | 1996-01-24 |
Family
ID=16496161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20477689A Expired - Lifetime JPH085676B2 (en) | 1989-08-09 | 1989-08-09 | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH085676B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102653437A (en) * | 2011-09-20 | 2012-09-05 | 卢玉柱 | Method for treating yellow sludge obtained in neutralization of steel pickling waste water lime |
CN104961214A (en) * | 2015-06-26 | 2015-10-07 | 开平市开物化工建材有限公司 | Preparing device for polymeric aluminum ferric sulfate |
CN104961216A (en) * | 2015-06-26 | 2015-10-07 | 开平市开物化工建材有限公司 | Solidified polymeric aluminum ferric sulfate preparation device based on low-pressure boiling |
CN113003545A (en) * | 2021-02-23 | 2021-06-22 | 佛山市景嘉机电设备有限公司 | Method for recycling and treating iron-containing mixed acid waste liquid in steel industry |
CN113755852A (en) * | 2021-09-13 | 2021-12-07 | 浙江金洲管道科技股份有限公司 | Treatment system and method for reducing acid consumption and reducing emission of red mud in steel acid pickling and rust removing process |
-
1989
- 1989-08-09 JP JP20477689A patent/JPH085676B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102653437A (en) * | 2011-09-20 | 2012-09-05 | 卢玉柱 | Method for treating yellow sludge obtained in neutralization of steel pickling waste water lime |
CN104961214A (en) * | 2015-06-26 | 2015-10-07 | 开平市开物化工建材有限公司 | Preparing device for polymeric aluminum ferric sulfate |
CN104961216A (en) * | 2015-06-26 | 2015-10-07 | 开平市开物化工建材有限公司 | Solidified polymeric aluminum ferric sulfate preparation device based on low-pressure boiling |
CN113003545A (en) * | 2021-02-23 | 2021-06-22 | 佛山市景嘉机电设备有限公司 | Method for recycling and treating iron-containing mixed acid waste liquid in steel industry |
CN113755852A (en) * | 2021-09-13 | 2021-12-07 | 浙江金洲管道科技股份有限公司 | Treatment system and method for reducing acid consumption and reducing emission of red mud in steel acid pickling and rust removing process |
Also Published As
Publication number | Publication date |
---|---|
JPH085676B2 (en) | 1996-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4216626B2 (en) | Method for recovering nickel sulfate from nickel-containing waste liquid sludge | |
RU1813111C (en) | Process for extracting gallium from industrial solution of sodium aluminate in bayer process | |
JP4216657B2 (en) | Method for recovering nickel sulfate from nickel-containing waste liquid sludge | |
JPH024663B2 (en) | ||
CN108138258B (en) | Method for removing arsenic from arsenic-containing materials | |
US4318788A (en) | Chromate recovery process | |
CN111170499A (en) | Method for recovering nickel sulfate from nickel electroplating waste liquid | |
CA1147970A (en) | Process for cobalt recovery from mixed sulfides | |
JPH0369515A (en) | Method for recovering high-purity iron sulfate from waste sulfuric acid pickling solution for stainless steel | |
KR100481760B1 (en) | Process for removing selenium from a selenium-containing liquid | |
CA1279197C (en) | Cobalt recovery method | |
SU1586509A3 (en) | Method of producing elementary sulfur from gases | |
JP3549560B2 (en) | Method for recovering valuable metals and calcium fluoride from waste solution of pickling process | |
US2266137A (en) | Process of treating manganese silicate ores | |
US2844439A (en) | Production of aluminum sulphate from waste materials | |
US5524780A (en) | Control of regeneration of ammoniacal copper etchant | |
JPH0975954A (en) | Method of removing seleno sulfate ion in selenium-containing waste solution | |
JPS5976593A (en) | Treatment of chemical washing waste liquor containing edta | |
CN1099728A (en) | Impurity removing method from perferrite solution | |
JP7531909B2 (en) | Method for purifying iron(II) chloride | |
JPH06279817A (en) | Sulfur-containing aqueous solution for reduction and neutralization extracted from sulfur-containing slag | |
JP3701319B2 (en) | Method for recovering valuable metals from acidic waste liquid containing Ni | |
US2321218A (en) | Production of sodium sulphate | |
JPH0536511B2 (en) | ||
JPH0513718B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080124 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 14 |