[go: up one dir, main page]

WO1997033837A1 - A compound functional bacteria for treating various waste water from electroplating process - Google Patents

A compound functional bacteria for treating various waste water from electroplating process Download PDF

Info

Publication number
WO1997033837A1
WO1997033837A1 PCT/CN1997/000019 CN9700019W WO9733837A1 WO 1997033837 A1 WO1997033837 A1 WO 1997033837A1 CN 9700019 W CN9700019 W CN 9700019W WO 9733837 A1 WO9733837 A1 WO 9733837A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional bacteria
bacteria
waste water
compound functional
wastewater
Prior art date
Application number
PCT/CN1997/000019
Other languages
French (fr)
Chinese (zh)
Inventor
Fude Li
Original Assignee
Chengdu Institute Of Biology, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Institute Of Biology, Chinese Academy Of Sciences filed Critical Chengdu Institute Of Biology, Chinese Academy Of Sciences
Priority to CA002256652A priority Critical patent/CA2256652C/en
Priority to AU19206/97A priority patent/AU1920697A/en
Publication of WO1997033837A1 publication Critical patent/WO1997033837A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used

Definitions

  • the invention belongs to a functional strain and a new combination for microbial treatment of electroplating wastewater.
  • metal ions such as Cr 6+ , Cr 3+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Pb 2+ , Sn 2+ are present in the electroplating wastewater. These metal ions are extremely harmful to the human body and the environment. It is an important issue that cannot be ignored in environmental protection.
  • AM Marques et al. Reported that the use of Pseudomonas aeruginosa can significantly reduce chromium in the culture medium (Marques, AM et al "1982, Microbios Letters, 21, 143-147). Y.Sag. Et al.
  • Rhizopus arrhizus Cladosporium resinae, Italian Dahe ' Penicillium italicum adsorbs copper ions, and the adsorption rate of Rhizopus rhizopus can reach 1.71% (De Rome and Gadd GM, Appl. Microbial Biotechnol., 1987, 26:84-90).
  • the present invention uses five strains for the first time to treat electroplating wastewater with different types of plating and different concentrations through different combination ratios. Transformation, chelation and flocculation cause metal ions to be collected, separated by solid-liquid, and the wastewater is purified to obtain satisfactory results. Primary purification can reach the emission standard, without causing secondary pollution, low energy consumption, low operating costs, and investment costs that are much lower than the current physical and chemical methods.
  • the present invention proposes a new viewpoint of treating electroplating wastewater with a variety of microorganisms in combination.
  • Desulfobacter sp.CBl.168, Desulfovibrio spp.CB 1.268, Enterobacter cloace sp.CB 1.129, Enterobacter cloaceae CB 1.129 The combination of 1.139 (Desulfotomaculum spp. CB 1.139) and Bacillus CB 1.149 (Bacillus sp. CB 1.149), antagonistic and complementary functions, resistance to metals, conditions for purification of electroplating wastewater, kinetics and purification mechanism. And screened for the use of cheap growth media in production.
  • Source Separated from the sewer, Size: 0.8—1.5 ⁇ 1.8—6 ⁇ .
  • Shape Rod-shaped. Characteristics: Peripheral flagellum movement, no capsule, gram-negative bacteria, no spore formation.
  • Physiological characteristics Production of indole, the presence of lysine and ornithine decarboxylase. Rapid fermentation of sucrose, no use of alginate, no decomposition of pectinate, no production of fatty acids, growth conditions: ⁇ : 6.5-7.5, temperature 25-35'C.
  • Source Separated from electroplating wastewater and sludge. Size: 0.5—0.8x2—4.2 ⁇ m. Shape: Vibrio. Features: Extremely single flagellar, irregular progressive movement, no spores and capsules. Gram-negative bacteria. Physiological characteristics: Incomplete oxidation of lactate to acetate, can use soluble starch, glucose, sucrose, H 2 + C0 2 , ethanol, Formate and the like are the sole carbon sources. Growth conditions: optimal pH7, optimal temperature 30 ° C.
  • Source Separated from sewer. Size: 1.1-1.5x2.0— 6.0 ⁇ perennialShape: Rod-shaped. Features: Movement with perennial whip 3 ⁇ 4, with capsule. Physiological characteristics: Can use citrate and acetate as the sole carbon source, for gelatin Slow liquefaction. Growth conditions: anaerobic growth, pH 6-8, temperature 20-40 ° C.
  • Source Separated from electroplating wastewater. Size: 0.3—1.5x3.0—6.0 ⁇ . Shape: Straight or slightly curved Bacillus. Features: Peripheral flagellum movement, spore production, Gram-negative bacteria. Physiological characteristics: Utilize lactate, pyruvate, glucose and ethanol. Growth conditions: anaerobic growth, ⁇ 6—7.5, temperature 30'C—37 ° C.
  • Source Separated from sewer. Size: 0.3—2.2x1.2—7.0 ⁇ . Shape: Bacillus. Features: Lateral flagellum movement, spore production, Gram-positive bacteria. Physiological characteristics: Thin colonies on nutrient agar, and more on glucose agar. Fermenting glucose. Growth conditions: Strong anaerobic growth, ⁇ 6-7, temperature 25'C-35 ° C.
  • the composite functional bacteria for wastewater treatment of the present invention referred to as CB composite functional bacteria, is a combination of the above five strains according to a certain ratio.
  • chromium and other metals in the wastewater is in the range of 1-3000mg / L.
  • the composition ratio of Desulfobacterium CB 1.168, Desulfovibrio CB 1.268, Enterobacter cloacae CB 1.129, Desulfovlus enterobacter CB 1.139, and Bacillus CB 1.149 For 1-30: 2—20: 1—15: 0.5—27: 1_34.
  • a large-scale electroplating plant discharges 67-175 tons of electroplating wastewater per day, with many plating species and complex wastewater components, including total Cr2.59- 864.36mg / L, Cr 6+ 2.17 ⁇ 693.74mg / L, Cd 2+ 1.00 ⁇ 15.54mg / L. Cu 2+ 10.00 ⁇ 15.26mg / L, Zn 2+ 8.30-43.85mg / L, Ni 2+ 10.00 ⁇ 12.95mg / L.
  • the composite functional bacteria of CB 1.168: CB1.268: CBU29: CBU39: CB1.149 10: 3: 1: 5: 2 were used in the project, and a new and practical biological reaction was designed in the process
  • the reactor has a reaction temperature of 25'C—45 1C, which ensures that heavy metal wastewater can be treated efficiently, stably and reliably. Randomly monitored by environmental protection legal monitoring station.
  • the BOD, COD, SS, PH, and chroma of the effluent are all lower than the national GB8978-88 comprehensive wastewater discharge standard.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The invention relates to a compound functional bacteria for treatment waste water from electroplating processes, which is composed of Desulfobacter sp. CB1. 168, Desulfovibrio spp. CB1. 268, Enterobacter cloace sp. CB1. 129, Desulfotomaculum spp. CB1. 139 and Bacillus sp. CB1. 149. Depending upon its oxidation-reduction, absorption, flocculation, enzymic reaction for metal ions, various waste water from electroplation plant can be treated by the compound functional bacteria with their different combination proportion. During the reaction, the operation is carried out under the temperature range between 25 and 40 °C, pH value from 5.0 to 7.5, the detention time under 5 hours. The cheaper industrial culture medium is used for the growth of the compound functional bacteria, so that they have a good growth.

Description

治理各种电镀废水的复合功能菌 发明领域  Compound functional bacteria for treating various electroplating wastewater
本发明属于微生物治理电镀废水的功能菌种和新的组合。  The invention belongs to a functional strain and a new combination for microbial treatment of electroplating wastewater.
发明背景 Background of the invention
电镀废水中存在大量的 Cr6+, Cr3+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, Sn2+等金属 离子, 这些金属离子对人体和环境危害极大, 对其进行处理, 是环境保护中不容忽视的 重要课题。 A large amount of metal ions such as Cr 6+ , Cr 3+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Pb 2+ , Sn 2+ are present in the electroplating wastewater. These metal ions are extremely harmful to the human body and the environment. It is an important issue that cannot be ignored in environmental protection.
多年来, 对电镀废水的处理, 大多采用化学法, 如离子交换法, 沉淀法, 电解法, 氧化-还原法, 表面活性剂法, 铁氧体法, 活性炭吸附法, 气浮法等等。 六十年代初, 人 们开始了对微生物法处理电镀废水的研究。 罗曼恩柯 (Romanenks)等曾用脱色杆菌 (Bac. Dechroniticans)厌氧处理含铬废水, 3天内每克干生物量可将 2.1克 K2Cr04中的 Cr6+还原 为 Cr3+( Patent specification (11)1475369, The patent office,London)。 H.C. 谢尔波克雷诺夫 等用脱色杆菌 (Aeromonas Dechromaticans KC - 11) KC - 1 1菌株, 以天然气或乙烷作碳 源, 净化 500ml袼液 (24.0mg Cr6+/L), 其净化效率与活性污泥一样, 且可缩短净化时间, 降低费用 1.1 一 1.5倍 ( Serpokrylov, N.S., et al., 1985, USSR. SU 119802)。 马格斯 (A.M. Marques) 等,报导了用铜绿假单孢菌 (Pseudomonas aeruginosa)可使培养基中的铬大量减 少 ( Marques, A.M. et al" 1982, Microbios Letters, 21 , 143 - 147)。沙革 (Y.Sag.)等研究了干 燥的生枝动胶菌 (Zooglea mmigera)在 pH2、 25 °C条件下,对 Cr6+的吸附率高达 20% ( Sag, Y. and utsal, Τ·. 1989, Biotechnology Letters, 1 1 (2), 145― 148)。 罗姆 (De.Rome)和戈地 (Godd)用少根根霉 (Rhizopus arrhizus),枝孢 (Cladosporium resinae),意大禾 'J青霉(Penicillium italicum)吸附铜离子, 其中少根根霉干菌吸附率可达到 1.71% ( De Rome and Gadd GM, Appl. Microbial Biotechnol., 1987, 26:84 - 90)。 巴哈达地 (Baharduddin)报道了从河流底泥 中分离到对 Mo6+有还原和吸附作用的菌株阴沟肠杆菌 (Enterbacter doace), 经固定化后用 于矿山废水的小型处理, 效果明显优于化学法 ( Baharruddin Ghani, 1993, Appl. and Environ. Microbiol., Vol 59. No 4, 1 176― 1 180)。占立特 (Jennett)等提出了一种用活的小球 藻淀粉核 (Chlorella pyrenoidosa)细胞处理电镀含 Cd2+废水的工艺,来自培养池的活细胞悬 液与调节好 pH值的废水快速混合后 ,经砂滤池滤掉菌体 ,金属污染物即被除去 (Jennet J.C. et al.. 1979, Proc. Intern. Conf. Management and Control of Heavy Metals in the Environment. CEP Consultants LTD, Edinburgh, U.K., 210— 217)。 孙国玉等用铬酸盐还原 菌 81001号菌株加活性污泥处理电镀含袼废水有一定的效果 ( 孙国玉, 沈世泽等, 海洋 科学, Vol 9, No 2, 1985)。 但这些研究仅限于单一菌株对单一金属废水的处理, 而且, 仅限于实验室批试的研究。 For many years, chemical methods have been used to treat electroplating wastewater, such as ion exchange, precipitation, electrolytic, oxidation-reduction, surfactant, ferrite, activated carbon adsorption, air flotation, and so on. In the early 1960s, people began to study the treatment of electroplating wastewater by microbial method. Romanenks and others used Bac. Dechroniticans to treat chromium-containing wastewater anaerobically. In 3 days, 2.1 g of K 2 Cr0 4 in Cr 6+ can be reduced to Cr 3+ per gram of dry biomass (Patent specification (11) 1475369, The patent office, London). HC Shelbo Krenov et al. Used Aeromonas Dechromaticans KC-11 KC-11 strain to purify 500ml mash (24.0mg Cr 6+ / L) with natural gas or ethane as a carbon source, and its purification efficiency and activity Like sludge, it can shorten the purification time and reduce the cost by 1.1 to 1.5 times (Serpokrylov, NS, et al., 1985, USSR. SU 119802). AM Marques et al. Reported that the use of Pseudomonas aeruginosa can significantly reduce chromium in the culture medium (Marques, AM et al "1982, Microbios Letters, 21, 143-147). Y.Sag. Et al. Studied the dry zoglea mmigera's adsorption rate of Cr 6+ up to 20% at pH 2 and 25 ° C (Sag, Y. and utsal, Τ ·. 1989, Biotechnology Letters, 1 1 (2), 145-148). De.Rome and Godd used Rhizopus arrhizus, Cladosporium resinae, Italian Dahe ' Penicillium italicum adsorbs copper ions, and the adsorption rate of Rhizopus rhizopus can reach 1.71% (De Rome and Gadd GM, Appl. Microbial Biotechnol., 1987, 26:84-90). Bahadadi ( Baharduddin) reported that Enterbacter doace, a strain that reduces and adsorbs Mo 6+ , was isolated from river sediments. It was used for small-scale treatment of mining wastewater after immobilization, and the effect was significantly better than chemical method. Ghani, 1993, Appl. And Environ. Microbiol., Vol 59. No 4, 1 176-1 180). Proposed by Jennett et al. A process for treating electroplated Cd 2+ wastewater with living Chlorella pyrenoidosa cells was prepared. The living cell suspension from the culture tank was quickly mixed with the pH-adjusted wastewater and filtered through a sand filter. The bacteria are removed, and metal contaminants are removed (Jennet JC et al .. 1979, Proc. Intern. Conf. Management and Control of Heavy Metals in the Environment. CEP Consultants LTD, Edinburgh, UK, 210-217). Sun Guoyu et al. Used chromate-reducing bacteria strain 81001 and activated sludge to treat electroplating radon-containing wastewater with certain effects (Sun Guoyu, Shen Shize et al., Marine Science, Vol 9, No 2, 1985). However, these studies are limited to the treatment of single metal wastewater by a single strain, and are limited to studies approved in the laboratory.
发明目的 Object of the invention
鉴于上述在技术和研究方面存在的不足, 本发明首次采用五种菌株, 通过不同的组 合比例, 处理镀种、 浓度不同的电镀废水, 依靠菌和其代谢产物以及还原酶对金属离子 的吸附、 转化、 螯合和絮凝作用, 使金属离子被沉集, 经固液分离, 废水被净化, 获得 满意的结果。 一次净化即可达到排放标准, 不造成二次污染, 能耗小, 运行费低, 投资 成本大大低于现行理化法。  In view of the above-mentioned shortcomings in technology and research, the present invention uses five strains for the first time to treat electroplating wastewater with different types of plating and different concentrations through different combination ratios. Transformation, chelation and flocculation cause metal ions to be collected, separated by solid-liquid, and the wastewater is purified to obtain satisfactory results. Primary purification can reach the emission standard, without causing secondary pollution, low energy consumption, low operating costs, and investment costs that are much lower than the current physical and chemical methods.
发明技术方案 Invention technical solution
本发明根据微生物的特征和电镀废水的特点, 提出了以多种微生物组合处理电镀废 水的新观点。 详细地研究了脱硫杆菌 CB 1.168(Desulfobacter sp.CBl .168)、 脱硫弧菌 CB 1.268(Desulfovibrio spp. CB 1.268)、 阴沟肠扞菌 CB 1.129(Enterobacter cloace sp. CB 1.129)、 脱硫肠状菌 CB 1.139(Desulfotomaculum spp. CB 1.139)和芽孢杆菌 CB 1.149(Bacillus sp. CB 1.149)的组合, 拮抗和互补功能, 对金属的抗性, 净化电镀废水 的条件, 动力学和净化机制。 并筛选了在生产上使用廉价生长培养基。 这几种菌均可在 食物废水中生长, 生长温度: 25— 4(KC , 生长时间: 24h。 本发明的废水治理复合功 能菌各菌株均已保藏于 "中国微生物菌种保藏管理委员会普通微生物中心 (China General Microbiological Culture Collection Center,(CGMCC))" 。 保藏的微生物编号为 CGMCC No.0258。 保藏日期: 1996年 11月 26日。  According to the characteristics of microorganisms and the characteristics of electroplating wastewater, the present invention proposes a new viewpoint of treating electroplating wastewater with a variety of microorganisms in combination. Desulfobacter sp.CBl.168, Desulfovibrio spp.CB 1.268, Enterobacter cloace sp.CB 1.129, Enterobacter cloaceae CB 1.129 The combination of 1.139 (Desulfotomaculum spp. CB 1.139) and Bacillus CB 1.149 (Bacillus sp. CB 1.149), antagonistic and complementary functions, resistance to metals, conditions for purification of electroplating wastewater, kinetics and purification mechanism. And screened for the use of cheap growth media in production. These kinds of bacteria can be grown in food waste water, the growth temperature is 25-4 (KC, growth time: 24h. Each strain of the composite fungus for wastewater treatment of the present invention has been deposited in the "Ordinary Microorganisms of the China Microbial Species Collection Management Committee" China General Microbiological Culture Collection Center (CGMCC) ". The deposited microorganism number is CGMCC No. 0258. Deposited date: November 26, 1996.
脱硫杆菌 CB 1.168(Desulfobacter sp.CB 1.168)  Desulfobacter sp.CB 1.168
来源: 从下水道中分离获得, 大小: 0.8— 1.5χ1.8— 6μιη。 形状: 杆状。 特性: 以周生鞭毛运动, 无荚膜, 革兰氏阴性菌, 不形成孢子。 生理特征: 产生吲哚, 有赖氨 酸和鸟氨酸脱羧酶存在。 迅速发酵蔗糖, 不利用藻朊酸盐, 不分解果胶酸盐, 不产生脂 肪酸, 生长条件: ρΗ6.5— 7.5 , 温度 25— 35 'C。  Source: Separated from the sewer, Size: 0.8—1.5 × 1.8—6μιη. Shape: Rod-shaped. Characteristics: Peripheral flagellum movement, no capsule, gram-negative bacteria, no spore formation. Physiological characteristics: Production of indole, the presence of lysine and ornithine decarboxylase. Rapid fermentation of sucrose, no use of alginate, no decomposition of pectinate, no production of fatty acids, growth conditions: ρ : 6.5-7.5, temperature 25-35'C.
脱硫弧菌 CB 1.268(Desulfovibrio spp. CB 1.268)  Desulfovibrio spp. CB 1.268
来源: 从电镀废水和污泥中分离获得。 大小: 0.5— 0.8x2— 4.2μπι。 形状: 弧形杆 菌。 特性: 极生单鞭毛, 作无规则渐进式运动, 无芽孢和荚膜。 革兰氏阴性菌。 生理特 性: 不完全氧化乳酸盐到乙酸盐, 能利用可溶性淀粉、 葡萄糖、 蔗糖、 H2+C02、 乙醇、 甲酸盐等为唯一碳源。 生长条件: 最佳 PH7 , 最适温度 30 °C。 Source: Separated from electroplating wastewater and sludge. Size: 0.5—0.8x2—4.2μm. Shape: Vibrio. Features: Extremely single flagellar, irregular progressive movement, no spores and capsules. Gram-negative bacteria. Physiological characteristics: Incomplete oxidation of lactate to acetate, can use soluble starch, glucose, sucrose, H 2 + C0 2 , ethanol, Formate and the like are the sole carbon sources. Growth conditions: optimal pH7, optimal temperature 30 ° C.
阴沟肠杆菌 CB 1.129(Enterobacter cloace sp. CB 1.129)  Enterobacter cloace sp. CB 1.129
来源: 从下水道中分离获得。 大小: 1.1一 1.5x2.0— 6.0μηι„ 形状: 杆状。 特性: 以周生鞭¾运动, 有荚膜。 生理特性: 能利用柠檬酸盐和醋酸盐做作为唯一碳源, 对明 胶液化缓慢。 生长条件: 厌氧生长, ΡΗ6— 8 , 温度 20— 40 °C。  Source: Separated from sewer. Size: 1.1-1.5x2.0— 6.0μηι „Shape: Rod-shaped. Features: Movement with perennial whip ¾, with capsule. Physiological characteristics: Can use citrate and acetate as the sole carbon source, for gelatin Slow liquefaction. Growth conditions: anaerobic growth, pH 6-8, temperature 20-40 ° C.
脱硫肠状菌 CB 1.139(Desulfotomaculum spp. CB 1 .139)  Desulfotomaculum spp. CB 1.139
来源: 从电镀废水分离获得。 大小: 0.3— 1.5x3.0— 6.0μηι。 形状: 直或微弯的杆 菌。 特性: 周生鞭毛运动, 产孢子, 革兰氏阴性菌。 生理特性: 利用乳酸盐、 丙酮酸盐、 葡萄糖和乙醇。 生长条件: 厌氧生长, ρΗ6— 7.5 , 温度 30 'C— 37 °C。  Source: Separated from electroplating wastewater. Size: 0.3—1.5x3.0—6.0μηι. Shape: Straight or slightly curved Bacillus. Features: Peripheral flagellum movement, spore production, Gram-negative bacteria. Physiological characteristics: Utilize lactate, pyruvate, glucose and ethanol. Growth conditions: anaerobic growth, ρΗ6—7.5, temperature 30'C—37 ° C.
芽孢杆菌 CB 1.149(Bacillus sp. CB 1.149)  Bacillus sp. CB 1.149
来源: 从下水道中分离获得。 大小: 0.3— 2.2x1.2 一 7.0μιη。 形状: 杆菌。 特性: 侧生鞭毛运动, 产生孢子, 革兰氏阳性菌。 生理特性: 在营养洋菜上菌落薄, 在葡萄糖 洋菜上量多。 发酵葡萄糖。 生长条件: 厌氧生长旺盛, ρΗ6— 7 , 温度 25 'C— 35 °C。  Source: Separated from sewer. Size: 0.3—2.2x1.2—7.0μιη. Shape: Bacillus. Features: Lateral flagellum movement, spore production, Gram-positive bacteria. Physiological characteristics: Thin colonies on nutrient agar, and more on glucose agar. Fermenting glucose. Growth conditions: Strong anaerobic growth, ρΗ6-7, temperature 25'C-35 ° C.
本发明的废水治理复合功能菌, 简称 CB复合功能菌, 是由上述五种菌株按照一定 比例组合而成。  The composite functional bacteria for wastewater treatment of the present invention, referred to as CB composite functional bacteria, is a combination of the above five strains according to a certain ratio.
根据废水中的金属种类、 组成、 含量的不同, 配制不同的菌液比例处理电镀废水。 废水中铬等金属含量在 1― 3000mg/L范围内,脱硫杆菌 CB 1.168 ,脱硫弧菌 CB 1 .268 , 阴沟肠扞菌 CB 1.129 , 脱硫肠状菌 CB 1.139, 和芽孢杆菌 CB 1.149的组成比例为 1― 30 : 2— 20 : 1— 15: 0.5— 27 : 1 _ 34 。  According to the metal species, composition, and content in the wastewater, different bacterial liquid ratios are prepared to treat electroplating wastewater. The content of chromium and other metals in the wastewater is in the range of 1-3000mg / L. The composition ratio of Desulfobacterium CB 1.168, Desulfovibrio CB 1.268, Enterobacter cloacae CB 1.129, Desulfovlus enterobacter CB 1.139, and Bacillus CB 1.149 For 1-30: 2—20: 1—15: 0.5—27: 1_34.
实施例 Examples
实例 1 Example 1
某小型电镀厂, 日排放高浓度铬废水 1 吨, Cr6+浓度 1000 ― 3000mg/L , 经由 CB 1.168:CB1.268:CB1.129:CB 1.139:CB1.149=1 : 12: 10:5: 1 的复合功能菌处理, 由环保法定监 测单位成都市环境监测中心站到现场连续取样,用国家"污水综合排放标准" ( GB8978— 88 ) 的表 4中所规定的 "污水分析和采样方法" 监测。 A small electroplating plant discharges 1 ton of high-concentration chromium wastewater daily with a Cr 6+ concentration of 1000 ― 3000mg / L, via CB 1.168: CB1.268: CB1.129: CB 1.139: CB1.149 = 1: 12: 10: 5 : 1 for the treatment of composite functional bacteria, from the environmental protection legal monitoring unit Chengdu Environmental Monitoring Center Station to the site continuous sampling, using the "Sewage Analysis and Sampling Method" (GB8978-88) in Table 4 of the "sewage analysis and sampling method""Monitoring.
监测结果如下: 日期 进水 出水 The monitoring results are as follows: Date Inflow Water Outflow
94.12.12 Cr6+(mg/L) 1329.18 0.03 总 Cr(mg/L) 1342.16 0.12 94.12.12 Cr 6+ (mg / L) 1329.18 0.03 Total Cr (mg / L) 1342.16 0.12
pH 3.23 7.21  pH 3.23 7.21
94.12.13 Cr6+(mg/L) 2658.36 0.31 94.12.13 Cr 6+ (mg / L) 2658.36 0.31
总 Cr(mg/L) 2848.53 0.53  Total Cr (mg / L) 2848.53 0.53
pH 3.62 7.43  pH 3.62 7.43
94.12.22 Cr6+(mg/L) 1 188.45 未检出 94.12.22 Cr 6+ (mg / L) 1 188.45 not detected
总 Cr(mg/L) 1329.20 0.13  Total Cr (mg / L) 1329.20 0.13
pH 2.93 7.86 实例 2  pH 2.93 7.86 Example 2
某大型电镀厂,日排放电镀废水 67— 175吨,镀种多,废水成分复杂,含总 Cr2.59— 864.36mg/L, Cr6+2.17― 693.74mg/L, Cd2+1.00― 15.54mg/L. Cu2+10.00― 15.26mg/L, Zn2+8.30 - 43.85mg/L, Ni2+ 10.00― 12.95mg/L。 A large-scale electroplating plant discharges 67-175 tons of electroplating wastewater per day, with many plating species and complex wastewater components, including total Cr2.59- 864.36mg / L, Cr 6+ 2.17― 693.74mg / L, Cd 2+ 1.00― 15.54mg / L. Cu 2+ 10.00― 15.26mg / L, Zn 2+ 8.30-43.85mg / L, Ni 2+ 10.00― 12.95mg / L.
根 据 以 上 废 水 水 质 特 性 , 工 程 中 采 用 了 CB 1.168:CB1.268:CBU29:CBU39:CB1.149=10:3:1 :5:2的复合功能菌,并在工艺上设计了新 型实用的生物反应器, 反应温度 25 'C— 45 1C , 保证了重金属废水被高效稳定可靠地治 理。 经环保法定监测站随机取样监测。  According to the above-mentioned wastewater quality characteristics, the composite functional bacteria of CB 1.168: CB1.268: CBU29: CBU39: CB1.149 = 10: 3: 1: 5: 2 were used in the project, and a new and practical biological reaction was designed in the process The reactor has a reaction temperature of 25'C—45 1C, which ensures that heavy metal wastewater can be treated efficiently, stably and reliably. Randomly monitored by environmental protection legal monitoring station.
出水监测结果如下: The effluent monitoring results are as follows:
总 Cr: 低于 0.72 mg/L Total Cr: less than 0.72 mg / L
Cr6+: 低于 0.09 mg/L Cr 6+ : less than 0.09 mg / L
Ni2+: 低于 0.25 mg/L Ni 2+ : less than 0.25 mg / L
Cu2+: 低于 0.72 mg/L Cu 2+ : less than 0.72 mg / L
Zn2+: 低于 0.92 mg/L Zn 2+ : less than 0.92 mg / L
Cd2+: 低于 0.10 mg L Cd 2+ : less than 0.10 mg L
Pb2+: 低于 0.01 mg/L Pb 2+ : less than 0.01 mg / L
出水的 BOD , COD, SS, PH, 色度等指标均低于国家 GB8978 - 88污水综合 排放标准。  The BOD, COD, SS, PH, and chroma of the effluent are all lower than the national GB8978-88 comprehensive wastewater discharge standard.

Claims

权 利 要 求 Rights request
1 . 治理电镀废水的 CB 复合功能菌, 其特征在于该 CB 复合功能菌是由脱硫杆蔺 CB 1.168; 脱硫弧菌 CB 1.268; 阴沟肠杆菌 CB 1.129; 脱硫肠状菌 CB 1.139和芽孢杆 菌 CB U49等细菌组成。 1. A CB composite functional bacteria for treating electroplating wastewater, characterized in that the CB composite functional bacteria are desulfurizing rod CB 1.168; Desulfovibrio CB 1.268; Enterobacter cloacae CB 1.129; Enterobacter cloacae CB 1.139 and Bacillus CB U49 And other bacteria.
2 . 按照权利要求 1所述的治理电镀废水的复合功能菌,其特征是生长条件为厌氧生 长, 温度 15— 45 'C , pH4 - 9 , 生长时间 10— 24小时。  2. The composite functional bacteria for treating electroplating wastewater according to claim 1, characterized in that the growth conditions are anaerobic growth, temperature 15-45'C, pH 4-9, and growth time 10-24 hours.
3 . 按照权利要求 1或 2所述的治理电镀废水的复合功能菌, 其特征是: 与电镀废水 的反应条件为: 温度 25 _ 40 °C , pH 5.0— 7.5 , 作用滞留时间 <5小时。  3. The composite functional bacteria for treating electroplating wastewater according to claim 1 or 2, characterized in that the reaction conditions with electroplating wastewater are: temperature 25_40 ° C, pH 5.0-7.5, and residence time <5 hours.
4 . 按照权利要求 1 , 2或 3所述的治理电镀废水的复合功能菌, 其特征是: 该复合 功能菌和相关的菌按一定比例组成的特有小生态体系, 废水中铬等金属含量在 1 一 3000mg/L范围内; CB 1.168, CB 1.268 , CB 1.129 , CB 1.139 , 和 CB 1.149的组成 比为 1一 30: 2 - 20: 1 - 15: 0.5— 27: 1— 34。 4. The composite functional bacteria for treating electroplating wastewater according to claim 1, 2 or 3, characterized in that the composite functional bacteria and related bacteria are composed of a unique small ecosystem composed of a certain proportion, and the content of chromium and other metals in the wastewater is between The composition ratio of CB 1.168, CB 1.268, CB 1.129, CB 1.139, and CB 1.149 is 1-30: 2-20: 1-15: 0.5-27: 1-34.
PCT/CN1997/000019 1996-03-14 1997-03-13 A compound functional bacteria for treating various waste water from electroplating process WO1997033837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002256652A CA2256652C (en) 1996-03-14 1997-03-13 Compositions of bacteria for treating electroplating waste water
AU19206/97A AU1920697A (en) 1996-03-14 1997-03-13 A compound functional bacteria for treating various waste water from electroplating process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 96117479 CN1079083C (en) 1996-03-14 1996-03-14 Compound functional bacteria for treatment of various electroplating wastes
CN96117479.X 1996-03-14

Publications (1)

Publication Number Publication Date
WO1997033837A1 true WO1997033837A1 (en) 1997-09-18

Family

ID=5124327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1997/000019 WO1997033837A1 (en) 1996-03-14 1997-03-13 A compound functional bacteria for treating various waste water from electroplating process

Country Status (4)

Country Link
CN (1) CN1079083C (en)
AU (1) AU1920697A (en)
CA (1) CA2256652C (en)
WO (1) WO1997033837A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250197A (en) * 2020-10-26 2021-01-22 佛山经纬纳科环境科技有限公司 Method for treating copper-containing chromium-containing industrial wastewater by using bacterial detoxification
CN116477772A (en) * 2023-05-11 2023-07-25 盐城工学院 Method for removing chromium and desulfurizing bacillus cereus in water and application thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325387C (en) * 2005-01-28 2007-07-11 湖南大学 Method for adsorbing cndmium-contained inindustrial waste water using mushroom culture medium waste material
CN100584771C (en) * 2007-02-13 2010-01-27 中国科学院成都生物研究所 A method for treating heavy metal wastewater
CN101293719B (en) * 2007-04-26 2011-01-05 厦门市威士邦膜科技有限公司 Recovery processing technique for organic waste water of plating pretreatment
CN101434919B (en) * 2007-11-13 2010-11-10 北京有色金属研究总院 A strain of sulfate reduction bacteria and process for using the same for treating acidic mine wastewater with straw as carbon nitrogen source
CN101745528B (en) * 2008-11-28 2012-01-04 中国科学院成都生物研究所 Treatment method of soil contaminated by uranium or cesium
CN101560041B (en) * 2009-05-21 2011-08-17 浙江工商大学 Electroplating wastewater treatment method combining biochemical method and decomplexation method
CN102676423B (en) * 2012-03-20 2013-05-29 河南省农业科学院 Reducing chromium ion Bacillus thuringiensis YB-03 and its cultivation method and application
CN103232951B (en) * 2013-02-27 2014-12-10 中国科学院重庆绿色智能技术研究院 Enterobacter gergoviae and its use in bioflocculation
CN103275891B (en) * 2013-05-06 2014-08-13 浙江大学 Endophyte and application thereof
CN103667112B (en) * 2013-11-13 2016-05-04 华南理工大学 A kind of for the composite flora of electroplating wastewater and preparation method thereof of degrading
CN106582551A (en) * 2016-11-10 2017-04-26 梅庆波 Preparation method of high-efficiency composite adsorbent for low-concentration chromium-containing wastewater
RU2699627C2 (en) * 2017-12-08 2019-09-06 Общество С Ограниченной Ответственностью "Газпром Трансгаз Краснодар" Method for intensifying biological waste water treatment processes using activated sludge as nutrient medium for em-biopreparations
CN108977395B (en) * 2018-07-31 2022-03-22 李昕 Preparation method of biological nano material for repairing hexavalent chromium pollution in soil through passivation and solidification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161791A (en) * 1984-01-30 1985-08-23 Kosaku Masuda Treatment of waste pyrophosphoric acid copper plating solution
AU8112387A (en) * 1986-11-26 1988-06-02 Radian Corporation Process for wastewater treatment
JPH01107897A (en) * 1987-10-22 1989-04-25 Nippon Steel Corp Biochemical treatment of waste water associated with iron and steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161791A (en) * 1984-01-30 1985-08-23 Kosaku Masuda Treatment of waste pyrophosphoric acid copper plating solution
AU8112387A (en) * 1986-11-26 1988-06-02 Radian Corporation Process for wastewater treatment
JPH01107897A (en) * 1987-10-22 1989-04-25 Nippon Steel Corp Biochemical treatment of waste water associated with iron and steel

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOTECHNOLOGY LETTERS, Vol. 14, No. 7, issued July 1992, WONG P.K., KWOK S.C., "Accumulation of Nickel Ion (Ni2+) by Immobilized of Enterobacter Sp.", pages 629-634. *
HUANJING KEXUE, Vol. 14(6), issued 30 December 1993, WANG PIN, LI FUDE, LIU DAIJIANG, "Study on Removing Hexavalent Chromium by Sulfate-Reducing Bacteria (SRIV)", pages 1-6. *
RECENT ADV. BIOTECHNOL. APPL. BIOL., issued 1988, WONG P.K., CHOI C.Y., "Accumulation of Nickel(Ni2+) by an Enterobacter Sp. From the Secondarily Treated Sewage Effluent". *
WATER SCIENCE AND TECHNOLOGY, Vol. 25, No. 11, issued February 1992, OHTAKE H. et al., "New Biological Method for Detoxification and Removal of Hexavalent Chromium", pages 395-402. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250197A (en) * 2020-10-26 2021-01-22 佛山经纬纳科环境科技有限公司 Method for treating copper-containing chromium-containing industrial wastewater by using bacterial detoxification
CN116477772A (en) * 2023-05-11 2023-07-25 盐城工学院 Method for removing chromium and desulfurizing bacillus cereus in water and application thereof
CN116477772B (en) * 2023-05-11 2023-11-14 盐城工学院 Methods and uses of Bacillus cereus for chromium removal and desulfurization in water

Also Published As

Publication number Publication date
CN1160023A (en) 1997-09-24
AU1920697A (en) 1997-10-01
CA2256652C (en) 2007-03-20
CA2256652A1 (en) 1997-09-18
CN1079083C (en) 2002-02-13

Similar Documents

Publication Publication Date Title
Al-Dhabi et al. Removal of nitrogen from wastewater of date processing industries using a Saudi Arabian mesophilic bacterium, Stenotrophomonas maltophilia Al-Dhabi-17 in sequencing batch reactor
Qin et al. Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin
WO2021077453A1 (en) Pseudomonas stutzeri, composite microbial inoculum prepared using the pseudomonas stutzeri, and use of the composite microbial inoculum
WO1997033837A1 (en) A compound functional bacteria for treating various waste water from electroplating process
JP7062322B2 (en) Use in the treatment of membrane concentrates of Pseudomonas balealica and its debris leachate
Chandra et al. Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent by Typha angustata L.
CN106565060B (en) A kind of treatment method of kumquat candied fruit processing wastewater with high salt and high organic matter
Elangovan et al. Performance evaluation of various bioreactors for the removal of Cr (VI) and organic matter from industrial effluent
Cherni et al. Mixed culture of Lactococcus lactis and Kluyveromyces marxianus isolated from kefir grains for pollutants load removal from Jebel Chakir leachate
CN110157639A (en) Preparation method and application of a kind of high-salt-tolerant denitrifying bacteria and its bacterial agent
CN114058553A (en) Composite microbial inoculum for degrading COD in wastewater and preparation method and application thereof
CN106115931B (en) Synergistic Removal of Sulfate and Cd(Ⅱ) Wastewater by Sponge Iron and Microorganisms
Anupong et al. Sustainable bioremediation approach to treat the sago industry effluents and evaluate the possibility of yielded biomass as a single cell protein (SCP) using cyanide tolerant Streptomyces tritici D5
CN109576189B (en) Composite microbial inoculum for black and odorous water body and preparation method and application thereof
CN111286478A (en) Grease degradation composite bacterial agent and preparation method and application thereof
CN113249273B (en) Salt-tolerant bacillus subtilis and application thereof in high-salt ammonia nitrogen wastewater treatment
CN1559937A (en) Method for treating high-concentration hazardous waste chromium waste liquid by using efficient functional bacteria
Cui et al. Simultaneous removal of Cr (VI) and phenol in consortium culture of Bacillus sp. and Pseudomonas putida Migula (CCTCC AB92019)
CN108410754B (en) High-efficiency JM (JM) bacteria technology for treating high-salt heavy-metal degradation-resistant organic wastewater and resisting bacteria and deodorizing
CN112300961B (en) Quinoline degrading strain and application thereof in quinoline-containing wastewater
CN109052624A (en) A kind of method and device of movable purifying sewage and black and odorous water
CN111004744B (en) Phosphorus removal strain and application thereof
CN110938567B (en) A kind of Bacillus subtilis, microbial inoculum and application thereof
CN106115936A (en) A kind of method removing high concentration chrome wastewater pollutant
CN116396912B (en) Pyrethroid pesticide intermediate degrading bacterium, microbial inoculum and wastewater treatment method and treatment device thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2256652

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2256652

Country of ref document: CA

NENP Non-entry into the national phase

Ref document number: 97532152

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase