[go: up one dir, main page]

JPS6015552A - Output adjustment of oxygen concentration detecting element - Google Patents

Output adjustment of oxygen concentration detecting element

Info

Publication number
JPS6015552A
JPS6015552A JP58124208A JP12420883A JPS6015552A JP S6015552 A JPS6015552 A JP S6015552A JP 58124208 A JP58124208 A JP 58124208A JP 12420883 A JP12420883 A JP 12420883A JP S6015552 A JPS6015552 A JP S6015552A
Authority
JP
Japan
Prior art keywords
output
cell
cut
diffusion
ceramic plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58124208A
Other languages
Japanese (ja)
Other versions
JPH0560054B2 (en
Inventor
Shigenori Sakurai
桜井 茂徳
Takashi Kamo
加茂 尚
Shiro Kimura
木村 史郎
Mari Okazaki
真理 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58124208A priority Critical patent/JPS6015552A/en
Publication of JPS6015552A publication Critical patent/JPS6015552A/en
Publication of JPH0560054B2 publication Critical patent/JPH0560054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain a limit current type element having accurate output in good yield, by a method wherein an oxygen concn. detecting element is assembled in a configuration capable of obtaining output and, thereafter, the terminal part of said element containing gas diffusion orifices or a gas diffusion layer is cut off in a dimension capable of obtaining required output. CONSTITUTION:For example, a cathode 2 and an anode 3 are formed at positions respectively opposed to the front and back surfaces of a solid electrolyte cell 1. A heater 6, an opening 5' corresponding to the cathode 2, a ceramic plate 5 having a slit coming to a long diffusion slot 8 continued to said opening 5' are provided on the cell 1 and a heat resistant ceramic plate 4 is subsequently superposed and connected to said cell 1. A ceramic plate having an opening 7' at a position corresponding to the anode 3 is connected to the under surface of the cell 1 to perform the assembling of an element. In the next step, the limit current value of the element is at first measured in the atmosphere and the element is cut off in an arbitrary length of l1mm. as shown by the broken line B to measure a limit current value while a cut-off length lx for obtaining an effective diffusion orifice 8 required in showing required output is subsequently calculated to cut the element along an one-dotted chain line C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明d、ガス雰囲気中の@素濃度を検出するだめの限
界電流式酸素濃度検出素子の出力調整方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention d relates to a method for adjusting the output of a limiting current type oxygen concentration detection element for detecting @ element concentration in a gas atmosphere.

〔従来技術〕[Prior art]

自動車等の内燃機関の空燃比制御や排気ガス浄化のため
に、またボイラーの燃焼状態制御のために酸素濃度検出
器が使用されている。この酸素濃度検出器には種々のも
のが知られているが、そのうちの一つとして限界電流式
酸素濃度検出器か開発されている。この限界電流式酸素
濃度検出器は酸素イオン透過性固体電解質の両面に電極
を設けて素子本体となし、この素子本体の両電極間に一
定の電圧を印加してやると一方の電極(陰極)側から他
方の電極(陽極) gillに酸素イオンが透過するの
で、その際少くとも一方の電極から入る(または出る)
’el素イオンiを制限してやると被測定ガス中のば素
濃度に 一応じて両電極間に限界電流が流れることを利
用したものである。この限界電流式e素a度検出器にお
いて、素子本体の一方の電極面への酸素の拡散速度を律
速させる方法としては、例えは円板状の固体電解質セル
の両−面に形成された電極面上にプラズマ溶射して直接
多孔質セラミックコーティング層を形成するとか、また
セラミック叛に細孔を開けた拡散板を電極面上に配置す
る方法によっている。
Oxygen concentration detectors are used to control the air-fuel ratio and purify exhaust gas in internal combustion engines such as automobiles, and to control the combustion state of boilers. Various oxygen concentration detectors are known, one of which has been developed as a limiting current type oxygen concentration detector. This limiting current type oxygen concentration detector has electrodes on both sides of an oxygen ion-permeable solid electrolyte to form the element body, and when a constant voltage is applied between both electrodes of the element body, one electrode (cathode) side Since oxygen ions permeate through the other electrode (anode) gill, at least one of the electrodes enters (or exits).
This method takes advantage of the fact that when the element ion i is limited, a limiting current flows between the two electrodes depending on the concentration of boron in the gas to be measured. In this limiting current type e-element detector, a method for controlling the diffusion rate of oxygen to one electrode surface of the element body is, for example, using electrodes formed on both sides of a disk-shaped solid electrolyte cell. This method involves directly forming a porous ceramic coating layer on the surface by plasma spraying, or by arranging a diffuser plate with pores formed in a ceramic film on the electrode surface.

しかしながら、上記セラミックコーティング層による拡
散層も、また拡散孔をあけた拡散板も、これらを形成す
るだめの各工程およびその後の各工程で生じるバラツキ
のために、最終的に検出素子の形に組み込んだ段階では
出力にかな)大きなバラツキが生じていた。そのため、
従来よ多出力に差のない素子を製造する方法がめられて
いた。
However, the diffusion layer made of the ceramic coating layer and the diffusion plate with diffusion holes are not ultimately incorporated into the shape of the detection element due to variations that occur in each process of forming them and each subsequent process. At that stage, there were large variations in the output. Therefore,
Conventionally, methods of manufacturing devices with no difference in output have been considered.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の要望に応えるだめのもので、出力が
得られる形に零子を組み付けた後、容易にFli望の出
力を得ることができる限界電流式酸素濃度検出素子の出
力調整方法を提供せんとするものである。
The present invention is intended to meet the above-mentioned conventional demands, and provides a method for adjusting the output of a limiting current type oxygen concentration detection element, which allows the desired output to be easily obtained after assembling the zero element in a form that provides the output. This is what we intend to provide.

〔発明の構成〕[Structure of the invention]

本発明の限界電流式酸素濃度検出素子の出力調整方法は
、素子を出力が得られる形に組付けた後、充分な長さに
形成した拡散孔または拡散層を含む素子端部を、所要の
出力が得られるように切シ落すことを特徴とする。
The method for adjusting the output of the limiting current type oxygen concentration detection element of the present invention is to assemble the element in a form that provides an output, and then adjust the end of the element containing the diffusion hole or diffusion layer formed to a sufficient length to the required length. It is characterized by cutting off so that output can be obtained.

限界電流式酸素濃度検出器は、上記したようにジルコニ
アなどの固体電解質セルの表裏両面に互いに対応させて
白金等からなる通気性薄膜状の電極を設けて素子本体と
なし、この素子本体の両電極間に電圧を印加すると陰電
極側から陽電極側に酸素イオンが透過し両電極間に電流
が流れるが、透過する酸素イオン量を制限してやると、
成る値までは電圧の増加に比例して電流も増加するがそ
れ以上は電圧を増しても電流が増加しない現象をとらえ
、このときの電流値(限界電流値)を測定して酸素濃度
を検出するものである。
As mentioned above, the limiting current type oxygen concentration detector is constructed by providing the element body with air-permeable thin film electrodes made of platinum or the like in correspondence with each other on the front and back sides of a solid electrolyte cell such as zirconia. When a voltage is applied between the electrodes, oxygen ions permeate from the negative electrode side to the positive electrode side, and a current flows between the two electrodes. However, if the amount of oxygen ions that permeate is limited,
This method captures the phenomenon in which the current increases in proportion to the increase in voltage up to a value of It is something to do.

この限界電流値(出力)は、次式l: iz父L ” CI) (但し、Lは拡散孔の深さまたは拡散層の厚さを示す) で表わされる関係にあることが知られている。This limiting current value (output) is calculated by the following formula: iz father L” CI) (However, L indicates the depth of the diffusion hole or the thickness of the diffusion layer.) It is known that there is a relationship expressed by

出カニtは、拡散孔または拡散層を通って陰電極面に達
する酸素量に比例する。すなわち、酸素量が多ければ出
力も大きくなる。なお、拡散層も結局は細い拡散孔の集
多であると考えられる。しかして、この拡散孔を通るガ
ス量Qは、拡散孔を第6図に示すような細い管と考えた
とき、その面積Sに比例するがその長さL′に比例する
ため、 QCC8/L’ で表わされ、QCC4zであるため、上記式■の関係と
なる。
The output t is proportional to the amount of oxygen that reaches the cathode surface through the diffusion holes or the diffusion layer. In other words, the greater the amount of oxygen, the greater the output. Note that the diffusion layer is also considered to be a collection of thin diffusion holes. Therefore, when considering the diffusion hole as a thin tube as shown in Fig. 6, the amount of gas passing through the diffusion hole Q is proportional to its area S, but also proportional to its length L', so QCC8/L ' Since it is QCC4z, the relationship is as shown in the above equation (2).

上記において面積Sを一定として拡散孔の長さL’ (
またはL)を短くしてやると、それに伴って拡散孔内を
通過するガス量は大きくなるため、出力を変えることが
できる。本発明は、この知見をもとに完成されたもので
ある。
In the above, when the area S is constant, the length L' of the diffusion hole (
Alternatively, if L) is shortened, the amount of gas passing through the diffusion hole increases accordingly, so the output can be changed. The present invention was completed based on this knowledge.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

第1実施例として、第1図および第2図に示すものは、
本発明の代表的な実施例で平板状に形成した検出素子の
例である。
As a first embodiment, what is shown in FIGS. 1 and 2 is as follows.
This is an example of a detection element formed into a flat plate according to a typical embodiment of the present invention.

第2図は検出素子の構成を示すだめの分解斜視図で、1
はプレート状に成形された固体電解質セルで、この表裏
両面にはそれぞれ対応させた位置に対応させた面積で陰
電極2と陽電極3が形成されて素子本体を構成している
。セル1の上部に位置する5は、ヒータ6付の耐熱性セ
ラミック板で、セル1の電極に対応させて開口させた窓
5′から端部に達する長い拡散孔8となるスリットが設
けられている。このヒータ6付セラミツク板は、その上
部に示される耐熱性セラミック板4と重ね合せて貼合せ
ることによシセラミックヒータを構成する。セル1の下
の7は、同様に電極に対応する部位に窓7′を有する耐
熱性セラミック板である。
Figure 2 is an exploded perspective view showing the configuration of the detection element.
1 is a solid electrolyte cell formed into a plate shape, and a negative electrode 2 and a positive electrode 3 are formed on both the front and back surfaces of the cell in corresponding positions and areas to constitute the device body. The numeral 5 located at the top of the cell 1 is a heat-resistant ceramic plate with a heater 6, and is provided with a slit that becomes a long diffusion hole 8 that extends from a window 5' opening corresponding to the electrode of the cell 1 to the end. There is. This ceramic plate with heater 6 constitutes a ceramic heater by laminating and laminating it with a heat-resistant ceramic plate 4 shown above. 7 below the cell 1 is a heat-resistant ceramic plate that similarly has a window 7' at a portion corresponding to the electrode.

これらセラミック板4とヒータ6付セラミツク板5とか
らなるセラミックヒータ、セル1およびセラミック板7
を、例えば800℃程度の軟化点を有するガラスを接着
剤として一体的に貼合わせて、第2図に示すような板状
検出素子をイ々トる。
A ceramic heater consisting of these ceramic plates 4 and ceramic plates 5 with heaters 6, a cell 1, and a ceramic plate 7
are bonded together using glass having a softening point of about 800° C., for example, as an adhesive to form a plate-shaped detection element as shown in FIG.

なお、上記においてセル1社、酸化インドリウム8壬ル
チを添加した酸化ジルコニウム粉末を用い常法にしたが
って圧粉成形し、約1600℃で焼結して作る。また、
セラミック板4,5゜7はセル1と同等の熱膨張率を有
するセラミツり粉末を用い、セル1と同様にして作るこ
とができる。ヒータ6は白金−ロジウム等の粉末を有機
溶剤と混練したペーストをシルクスクリーン印刷などに
よって印刷して形成する。
In addition, in the above process, zirconium oxide powder made by Cell 1 Co., Ltd. and indium oxide containing 800 g of ruthi is compacted according to a conventional method and sintered at about 1600°C. Also,
The ceramic plates 4, 5.7 can be made in the same manner as the cell 1 using ceramic powder having the same coefficient of thermal expansion as the cell 1. The heater 6 is formed by printing a paste obtained by kneading powder such as platinum-rhodium with an organic solvent using silk screen printing or the like.

上記のようにして組み付けた検出素子Sを、第1図およ
び第2図に示すように拡散孔8が開口する端を所定量切
シ落して出力を調整する。
The output of the detection element S assembled as described above is adjusted by cutting off a predetermined amount at the end where the diffusion hole 8 opens, as shown in FIGS. 1 and 2.

この切シ落し量は次のようにしてめる。The amount of cut off is determined as follows.

まずでき上った素子について、例えは大気中での限界電
流値(出力) CAm人)を測定する。
First, for the completed element, the limiting current value (output) (CAm) in the atmosphere, for example, is measured.

次に、この素子端部を破線Bで示すように拡散孔開口端
から任意の長さt5 mm切シ落した後、出力(Bm人
)を測定する。
Next, the end of this element is cut off by an arbitrary length t5 mm from the opening end of the diffusion hole as shown by the broken line B, and then the output (Bm) is measured.

限界電流値itは前記したように拡散孔の深深さLとI
 L(X L−’の関係にあるため、切シ落ししたあと
の素子の有効拡散孔Lx(mm)は次式■:(Lz+4
 ) B 0.−1−(If)Lx A よ請求まる。
As mentioned above, the limiting current value it is determined by the depth L and I of the diffusion hole.
Since the relationship is L(X L-', the effective diffusion hole Lx (mm) of the element after cutting is calculated by the following formula: (Lz+4
) B 0. -1-(If)Lx A is requested.

要求出力(限界電流値)をam人とすると、更に切シ落
す長さ1Xは、上記式■と同様に、となシ、との式から となシ、式■と式■から、次式■: で表わされ、この式(■)をとくことによってめられる
。図中、一点鎖線Cは目的とする検出素子を得るだめの
切断位置を示す。
Assuming that the required output (limiting current value) is am people, the length 1X to be cut further can be calculated by using the following formula from the formulas of Tonashi and Tonashi, formulas ■ and formulas, similar to the above formula ■. ■: It is expressed by and can be determined by solving this equation (■). In the figure, a dashed-dotted line C indicates the cutting position to obtain the intended detection element.

同様にして、本発明の方法によシ、第3図ないし第5図
に示すような限界電流式酸素濃度検出素子の出力を調整
することができる。
Similarly, the method of the present invention can adjust the output of a limiting current type oxygen concentration detecting element as shown in FIGS. 3 to 5.

第3図は本発明の第2実施例を示す断面図で、一端が閉
止した円筒状に成形した固体電解質セル1の外側に陰電
極2、内側に陽電極3を設けた素子本体を、一端部に拡
散層として多孔質のセラミックフィルター9を内蔵する
円筒状のセラミックハウジング10内に装着して検出素
子とした例を示し、上記第1実施例と同様に線B。
FIG. 3 is a cross-sectional view showing a second embodiment of the present invention, in which a solid electrolyte cell 1 formed into a cylindrical shape with one end closed is provided with a negative electrode 2 on the outside and a positive electrode 3 on the inside. An example is shown in which a detection element is mounted in a cylindrical ceramic housing 10 containing a porous ceramic filter 9 as a diffusion layer, and line B is similar to the first embodiment.

Cにしたがって素子のフィルタ−9側端部を切シ落して
出力を調整する。
Cut off the end of the element on the filter 9 side according to step C to adjust the output.

第4図は第3実施例で、第2実施例と同様の形のセル1
の内側に陰電極2、外側に陽電極3を設はガスの拡散律
速のために、細い拡散孔8を廟するセラミック細管12
を設けた例である。
FIG. 4 shows a third embodiment, in which the cell 1 has the same shape as the second embodiment.
A ceramic capillary tube 12 with a negative electrode 2 on the inside and a positive electrode 3 on the outside has a narrow diffusion hole 8 to control the rate of gas diffusion.
This is an example where .

このセラミック細管12を切断して出力を調整する。な
お、11は支持体を示す。
This ceramic capillary tube 12 is cut to adjust the output. In addition, 11 shows a support body.

第5図は、第4実施例で第3図の第2実施例 lでセラ
ミックフィルターを用いている代シに拡散孔8を設たセ
ラミック成形体13を用いた例である。同様に、拡散孔
8の開口側端部から切り落して出力を調整する。なお、
第3図および第5図において、6はニクロム線などのヒ
ータ(発熱体)を示す。
FIG. 5 shows an example in which a ceramic molded body 13 provided with diffusion holes 8 is used in place of the ceramic filter used in the second embodiment 1 of FIG. 3 in the fourth embodiment. Similarly, the output is adjusted by cutting off the opening side end of the diffusion hole 8. In addition,
In FIGS. 3 and 5, 6 indicates a heater (heating element) such as a nichrome wire.

(効果] 本発明は上記したように完全な素子の形に製造した後出
力を調整することができ、しかも調整法が簡単でかつ目
的とする出力を有する検出素子を容易に得ることができ
る。そのため、従来の如く例えば7ラズマ溶射するため
のセラミックの材質、粉粒度などをきびしく管理すると
か、また素子組み付けの工程を不必要に厳重に管理する
などの必要がなくなるなどの効果をも併有する。また、
従来の方法では、得られた素子が所定の出力を有しない
ときは、不良品として使用できなかったが、本発明方法
によればそのような無駄も無くすることかできる。
(Effects) As described above, according to the present invention, the output can be adjusted after manufacturing a complete element, and the adjustment method is simple, and a detection element having the desired output can be easily obtained. Therefore, it also eliminates the need to strictly control the ceramic material, particle size, etc. for 7-lasma spraying, or to unnecessarily strictly control the element assembly process, as in the past. .Also,
In the conventional method, if the obtained device did not have a predetermined output, it could not be used as a defective product, but according to the method of the present invention, such waste can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す検出素子の分解層斜
視図、 第2図は第1実施例の検出素子の斜視図、第3図、第4
図および第5図は本発明の他の実施例を示す検出素子の
断面図、 第6図はガス拡散孔の模式図である。 図中、 1・・・・・・・・・固体電解質セル 2.3・・・・・・電極 4.5,7・・・・・・ セラミック板6・・・・・・
・・・ ヒータ 8・・・・・・・・・拡散孔 9・・・・・・・・・セラミックフィルター特許出願人
 トヨタ自動車株式会社 代理人 弁理士 萼 優 美 (ほか1名) 牙1図 牙2図 牙3図 牙4図 牙5図 才6図
FIG. 1 is an exploded layer perspective view of a detection element showing a first embodiment of the present invention. FIG. 2 is a perspective view of a detection element of the first embodiment.
5 and 5 are cross-sectional views of a detection element showing other embodiments of the present invention, and FIG. 6 is a schematic diagram of gas diffusion holes. In the figure, 1... Solid electrolyte cell 2.3... Electrode 4.5, 7... Ceramic plate 6...
... Heater 8 ... Diffusion hole 9 ... Ceramic filter Patent applicant Toyota Motor Corporation representative Patent attorney Yumi Sakai (and one other person) Fang 1 Fang 2 Fig. Fang 3 Fig. Fang 4 Fig. Fang 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 素子を出力が得られる形に組み付けた後、拡散孔または
拡散層を含む素子端部を所要出力を得るために切り落す
ことを特徴とする限界電流式ば集設度検出素子の出力調
整方法。
A method for adjusting the output of a limiting current type concentration detection element, which comprises assembling the element in a form that provides an output, and then cutting off an end of the element including a diffusion hole or a diffusion layer in order to obtain a required output.
JP58124208A 1983-07-08 1983-07-08 Output adjustment of oxygen concentration detecting element Granted JPS6015552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124208A JPS6015552A (en) 1983-07-08 1983-07-08 Output adjustment of oxygen concentration detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124208A JPS6015552A (en) 1983-07-08 1983-07-08 Output adjustment of oxygen concentration detecting element

Publications (2)

Publication Number Publication Date
JPS6015552A true JPS6015552A (en) 1985-01-26
JPH0560054B2 JPH0560054B2 (en) 1993-09-01

Family

ID=14879663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124208A Granted JPS6015552A (en) 1983-07-08 1983-07-08 Output adjustment of oxygen concentration detecting element

Country Status (1)

Country Link
JP (1) JPS6015552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685964A (en) * 1995-01-19 1997-11-11 Nippondenso Co., Ltd. Oxygen concentration sensor element
JP2002082091A (en) * 2000-06-20 2002-03-22 Denso Corp Adjusting method of output characteristic of gas sensor element
JP2010112717A (en) * 2008-11-04 2010-05-20 Denso Corp Method for manufacturing gas sensor element, gas sensor element manufactured using the same and gas sensor having gas sensor element built therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272286A (en) * 1975-12-12 1977-06-16 Toyoda Chuo Kenkyusho Kk Oxygen concentration analyzer
JPS5893862U (en) * 1981-12-21 1983-06-25 日本特殊陶業株式会社 oxygen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5272286A (en) * 1975-12-12 1977-06-16 Toyoda Chuo Kenkyusho Kk Oxygen concentration analyzer
JPS5893862U (en) * 1981-12-21 1983-06-25 日本特殊陶業株式会社 oxygen sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685964A (en) * 1995-01-19 1997-11-11 Nippondenso Co., Ltd. Oxygen concentration sensor element
JP2002082091A (en) * 2000-06-20 2002-03-22 Denso Corp Adjusting method of output characteristic of gas sensor element
JP4569034B2 (en) * 2000-06-20 2010-10-27 株式会社デンソー Method for adjusting output characteristics of gas sensor element
JP2010112717A (en) * 2008-11-04 2010-05-20 Denso Corp Method for manufacturing gas sensor element, gas sensor element manufactured using the same and gas sensor having gas sensor element built therein

Also Published As

Publication number Publication date
JPH0560054B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
US4859307A (en) Electrochemical gas sensor, and method for manufacturing the same
JPH0221545B2 (en)
JP2873250B2 (en) Sensor element for limiting current sensor for measuring lambda values of gas mixtures
JPS60128349A (en) Air fuel ratio detector
JPS61256251A (en) Electrochemical element
JP3832437B2 (en) Gas sensor element
US6569303B1 (en) Method of adjusting output of gas sensor
JPS6015552A (en) Output adjustment of oxygen concentration detecting element
JP4603757B2 (en) Sensor element
JP2947929B2 (en) Sensor element for limiting current sensor for measuring lambda values of gas mixtures
JPH0697222B2 (en) Gas sensor
JPH0353578B2 (en)
JPS6013256A (en) Oxygen concentration detector
JPH0536212Y2 (en)
JPH0234605Y2 (en)
JPH079082Y2 (en) Oxygen concentration sensor
JPH0542623B2 (en)
JP2643409B2 (en) Limit current type oxygen sensor
JPS5819554A (en) Oxygen concentration detector
JPH03277959A (en) Gas-concentration sensor
JPH056659B2 (en)
JPS6157846A (en) Air fuel ratio sensor
JPH04289449A (en) Sensor element of oxygen sensor
JP3067258B2 (en) Oxygen sensor
JPS60231151A (en) Oxygen sensor