JPS6157846A - Air fuel ratio sensor - Google Patents
Air fuel ratio sensorInfo
- Publication number
- JPS6157846A JPS6157846A JP59181299A JP18129984A JPS6157846A JP S6157846 A JPS6157846 A JP S6157846A JP 59181299 A JP59181299 A JP 59181299A JP 18129984 A JP18129984 A JP 18129984A JP S6157846 A JPS6157846 A JP S6157846A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- fuel ratio
- air
- measured
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/417—Systems using cells, i.e. more than one cell and probes with solid electrolytes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4065—Circuit arrangements specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、燃焼排ガス中の酸素濃度に基いて空気と燃
料との比すなわち空燃比を検出するのに利用される空燃
比センサに関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an air-fuel ratio sensor used to detect the ratio of air to fuel, that is, the air-fuel ratio, based on the oxygen concentration in combustion exhaust gas. be.
(従来技術)
従来、この種の空燃比センサとしては、例えば第12図
に示す構成を有するものがあった(特開昭58−148
946号公報)。この空燃比センサ1は、アルミナ(A
u203)等よりなる緻密質絶縁基板2の表面に、白金
等よりなる第1電極3と第2電極4とを並べて設け、両
電極3,4の上に、チタニア(T i O2)等よりな
る遷移金属酸化物5、アルミナ(AJL203)等より
なる多孔質絶縁層6、白金等よりなる第3電極7、部分
安定化ジルコニア(Zr02−Cao)等よりなる多孔
質酸素イオン伝導性固体電解質8、白金等よりなる第4
電極2、多孔質保護層10を順次積層した構成を有し、
第1電極3と第2電極4との間に抵抗計11を接続する
と共に、第3電極7と第4電極2との間に電流源12を
接続して、前記第3電極7、第4電極2、固体電解質8
および電流源12で酸素ポンプを構成させて使用するも
のである。(Prior Art) Conventionally, as this type of air-fuel ratio sensor, there was one having the configuration shown in FIG.
Publication No. 946). This air-fuel ratio sensor 1 is made of alumina (A
A first electrode 3 and a second electrode 4 made of platinum or the like are provided side by side on the surface of a dense insulating substrate 2 made of a material such as U203), and on both electrodes 3 and 4, a material made of titania (T i O2) or the like is provided. A porous insulating layer 6 made of transition metal oxide 5, alumina (AJL203), etc., a third electrode 7 made of platinum, etc., a porous oxygen ion conductive solid electrolyte 8 made of partially stabilized zirconia (Zr02-Cao), etc. The fourth made of platinum etc.
It has a structure in which an electrode 2 and a porous protective layer 10 are sequentially laminated,
A resistance meter 11 is connected between the first electrode 3 and the second electrode 4, and a current source 12 is connected between the third electrode 7 and the fourth electrode 2. Electrode 2, solid electrolyte 8
The current source 12 constitutes an oxygen pump for use.
このような構成の空燃比センサ1において、第3電極7
と第4電極2との間に電流を流さない場合(第13図に
おいてI−0の場合)には、多孔質保護層10→第4電
極9→多孔質固体電解質8→第3電極7→多孔質絶縁層
6を通って遷移金属酸化物5に到達した被測定ガス中の
酸素濃度に応じて、第13図にI=Oの線で示すように
、理論空燃比(A/F=14.8付近)で前記遷移金属
醇化物5の電気抵抗が急激に変化し、この抵抗変化が第
1電極3と第2電極4とを介して抵抗計11により取り
出されて空燃比変化が検出される。In the air-fuel ratio sensor 1 having such a configuration, the third electrode 7
When no current is passed between and the fourth electrode 2 (in the case of I-0 in FIG. 13), the porous protective layer 10 → the fourth electrode 9 → the porous solid electrolyte 8 → the third electrode 7 → Depending on the oxygen concentration in the gas to be measured that has passed through the porous insulating layer 6 and reached the transition metal oxide 5, the stoichiometric air-fuel ratio (A/F=14 .8), the electrical resistance of the transition metal moltenide 5 changes rapidly, and this resistance change is picked up by the resistance meter 11 via the first electrode 3 and the second electrode 4, and the air-fuel ratio change is detected. Ru.
また、酸素ポンプを作動させて第4電極2から第3電極
7の方向へ電流を流した場合(第13図においてI>O
の場合)には、固体電解質8内で第3電極7から第4電
極2の方向へ酸素イオンの移動を生じて第3電極7にお
いて酸素が消費されるため、前記多孔質保護層10等を
経て遷移金属酸化物5に到達する被測定ガス中の酸素分
圧が低下することとなるので、第13図にI>Oの領域
で示すように、被測定ガス中の酸素濃度が理論空燃比よ
りも大きいときに遷移金属酸化物5の電気抵抗が急激に
変化する特性が得られ、リーン側の空燃比を検出するセ
ンサとして用いることができる。一方、前記とは反対に
第3電極7から第4電極2の方向へ電流を流した場合(
第13図においてI<Oの場合)には、第3電極7にお
いて酸素が発生するため、第13図にI<Oの領域で示
すように、遷移金属酸化物5はリッチ側において電気抵
抗が急激に変化する特性となる。Furthermore, when the oxygen pump is activated and a current flows from the fourth electrode 2 to the third electrode 7 (I>O in FIG. 13),
), oxygen ions move from the third electrode 7 to the fourth electrode 2 within the solid electrolyte 8 and oxygen is consumed at the third electrode 7. Since the oxygen partial pressure in the gas to be measured that reaches the transition metal oxide 5 decreases, the oxygen concentration in the gas to be measured reaches the stoichiometric air-fuel ratio, as shown in the region I>O in FIG. When the transition metal oxide 5 is larger than , the electrical resistance of the transition metal oxide 5 changes rapidly, and it can be used as a sensor for detecting a lean air-fuel ratio. On the other hand, when the current is passed in the direction from the third electrode 7 to the fourth electrode 2, contrary to the above (
In the case of I<O in FIG. 13), oxygen is generated at the third electrode 7, so the transition metal oxide 5 has an electrical resistance on the rich side as shown in the region of I<O in FIG. Characteristics that change rapidly.
このようにして、第12図に示す空燃比センサ1では、
電流Iの有無および方向によって、理論空燃比(A/F
−約14 、8)およびリーン側(A/F>約14.8
)、リッチ側(A/F<約14 、8)の空燃比を検出
することができるという利点を有している。In this way, the air-fuel ratio sensor 1 shown in FIG.
The stoichiometric air-fuel ratio (A/F
- approx. 14,8) and lean side (A/F > approx. 14.8)
), it has the advantage of being able to detect the air-fuel ratio on the rich side (A/F<approximately 14,8).
ところが、第12図に示す空燃比センサ1では、多層構
造であるため各層における細孔のコントロールが難しく
、全体としてのばらつきが大きくなるという欠点を有し
、また各層における細孔に目づまりを生じるなどして特
性の経時劣化をきたしやすいという欠点を有していた。However, since the air-fuel ratio sensor 1 shown in FIG. 12 has a multilayer structure, it is difficult to control the pores in each layer, resulting in large variations as a whole, and the pores in each layer may become clogged. However, it has the disadvantage that its characteristics tend to deteriorate over time.
また、この空燃比センサ1では、雰囲気温度が一定して
いる場合には第13図に示した特性が得られるものの、
遷移金属酸化物5の抵抗値は、この遷移金属酸化物5に
到達する被測定ガス中の酸素分圧によって変化するだけ
でなく、第14図に示す(ただし、I=Oの場合を例示
)ように、温度によっても大きく変化するため、遷移金
属酸化物5の抵抗変化から直ちに空燃比を検知すること
はできないという問題点をも有している。In addition, although this air-fuel ratio sensor 1 can obtain the characteristics shown in FIG. 13 when the ambient temperature is constant,
The resistance value of the transition metal oxide 5 not only changes depending on the oxygen partial pressure in the gas to be measured that reaches the transition metal oxide 5, but also as shown in FIG. 14 (however, the case where I=O is illustrated). As such, there is a problem in that the air-fuel ratio cannot be immediately detected from the resistance change of the transition metal oxide 5 because it changes greatly depending on the temperature.
(発明の目的)
この発明は、上述した従来の問題点に着目してなされた
もので、多層構造でないため特性のばらつきが著しく小
さく、また従来のようにガス拡散層の目づまりによる特
性の経時劣化もほとんどなく、しかも被測定雰囲気の温
度変化に影響されることなく精度のよい空燃比検出を行
うことができる空燃比センサを提供することを目的とし
ている。(Objective of the Invention) The present invention was made by focusing on the above-mentioned conventional problems, and because it does not have a multilayer structure, the variation in characteristics is extremely small. It is an object of the present invention to provide an air-fuel ratio sensor that has almost no deterioration and can detect air-fuel ratios with high accuracy without being affected by temperature changes in the atmosphere to be measured.
(発明の構成)
この発明による空燃比センサは、電気絶縁体の表面に遷
移金属酸化物の酸素濃度変化による抵抗変化を利用した
酸素センサを一対設け、前記一対の酸素センサのうちの
一方を被測定雰囲気と連通しかつ他方を固体電解質の酸
素イオン伝導を利用した酸素ポンプによって酸素濃度が
制御される制御雰囲気と接触させると共に、両酸素セン
サを直列に接続して電源に接続し、両酸素センサの中間
点電位により空燃比を検出する構成としたことを特徴と
している。(Structure of the Invention) The air-fuel ratio sensor according to the present invention includes a pair of oxygen sensors that utilize resistance changes caused by changes in oxygen concentration of transition metal oxides on the surface of an electrical insulator, and one of the pair of oxygen sensors is covered. Both oxygen sensors are connected in series and connected to a power source, with the other being in communication with the measurement atmosphere and the other being in contact with a controlled atmosphere in which the oxygen concentration is controlled by an oxygen pump that uses oxygen ion conduction in a solid electrolyte. The air-fuel ratio is characterized by being configured to detect the air-fuel ratio based on the midpoint potential of .
この発明による空燃比センサを構成する一対の酸素セン
サは、それぞれ遷移金属酸化物の酸素濃度変化による抵
抗変化を利用したものであるが、この遷移金属酸化物の
材質および該遷移金属酸化物と共に酸素センサを形成す
る電極の材質ならびに形成方法等は特に限定されず、従
来より採用ないしは試みられている種々の材料および形
成手段等の中から適宜選定されうるものである。また、
上記一対の酸素センサは、電気絶縁体の表裏面に設けた
り、同一面上に設けたりすることができる。A pair of oxygen sensors constituting the air-fuel ratio sensor according to the present invention each utilizes a resistance change due to a change in oxygen concentration of a transition metal oxide. The material and forming method of the electrode forming the sensor are not particularly limited, and may be appropriately selected from various materials and forming methods that have been employed or attempted in the past. Also,
The pair of oxygen sensors may be provided on the front and back surfaces of the electrical insulator, or may be provided on the same surface.
また、同じくこの発明による空燃比センサを構成する酸
素ポンプは、固体電解質の酸素イオン伝導を利用したも
のであるが、この酸素イオン伝導性固体電解質の材質お
よび該固体電解質と共に酸素ポンプを形成する一対の電
極の材質ならびにこれらの形成方法等は特に限定されず
、従来より採用ないしは試みられている種々の材料およ
び形成手段等の中から適宜選定されうるものである。Further, the oxygen pump constituting the air-fuel ratio sensor according to the present invention utilizes the oxygen ion conduction of a solid electrolyte, and the material of the oxygen ion conductive solid electrolyte and the pair forming the oxygen pump together with the solid electrolyte are The material of the electrode and the method of forming the same are not particularly limited, and may be appropriately selected from various materials and forming methods that have been conventionally employed or attempted.
そして、この発明による空燃比センサでは、前記一対の
酸素センサのうちの一方を、被測定雰囲気と連通しかつ
他方を前記酸素ポンプによって酸素濃度が制御される制
御雰囲気と接触させた構成としているが、この制御雰囲
気は、単純な空間から形成したり、多数の微小空間を有
する多孔質ガス拡散層から形成したりすることができる
。In the air-fuel ratio sensor according to the present invention, one of the pair of oxygen sensors is in communication with the atmosphere to be measured, and the other is in contact with a controlled atmosphere in which the oxygen concentration is controlled by the oxygen pump. , this controlled atmosphere can be formed from a simple space or from a porous gas diffusion layer with a large number of microspaces.
さらにまた、この発明による空燃比センサでは必要に応
じて発熱体を設けることも望ましい。Furthermore, in the air-fuel ratio sensor according to the present invention, it is also desirable to provide a heating element as necessary.
(実施例)
第1図はこの発明の一実施例による空燃比センサを示す
模型的断面説明図であって、この空燃比センサ21は、
板状をなす電気絶縁体22の表裏両面に、それぞれ遷移
金属酸化物23.33の酸素濃度変化による抵抗変化を
一対の電極24゜25および34.35により検出する
ようにした第1酸素センサ26および第2酸素センサ3
6を設け、前記第1酸素センサ26の一方の電極24と
前記第2酸素センサ36の一方の電極35とを前記電気
絶縁板22に設けた貫通孔22aを介して電気的に接続
すると共に、前記両醇素センサ26.36のうちの一方
の第1酸素センサ26側における電気絶縁体22の表面
に、枠体41をはさんで酸素イオン伝導性固体電解質4
2を設けて、前記電気絶縁体22と固体電解質42との
間で制御雰囲気空間43を形成し、前記固体電解質42
の表裏面に一対の電極44.45を設けて固体電解質4
2の酸素イオン伝導を利用した酸素ポンプ46を形成し
、この酸素ポンプ46の中心部に小孔47を設けて前記
制御雰囲気空間43を被測定雰囲気と連通させた構成を
有するものである。(Embodiment) FIG. 1 is a schematic cross-sectional view showing an air-fuel ratio sensor according to an embodiment of the present invention, and this air-fuel ratio sensor 21 includes:
A first oxygen sensor 26 is provided on both the front and back surfaces of the plate-shaped electrical insulator 22, and is configured to detect resistance changes due to oxygen concentration changes in the transition metal oxides 23, 33 using a pair of electrodes 24, 25 and 34, 35, respectively. and second oxygen sensor 3
6, electrically connecting one electrode 24 of the first oxygen sensor 26 and one electrode 35 of the second oxygen sensor 36 through a through hole 22a provided in the electrically insulating plate 22, An oxygen ion conductive solid electrolyte 4 is placed on the surface of the electric insulator 22 on the first oxygen sensor 26 side of one of the two solute sensors 26 and 36, with a frame 41 in between.
2 to form a controlled atmosphere space 43 between the electrical insulator 22 and the solid electrolyte 42;
A pair of electrodes 44 and 45 are provided on the front and back surfaces of the solid electrolyte 4.
The oxygen pump 46 utilizes the oxygen ion conduction of No. 2, and a small hole 47 is provided in the center of the oxygen pump 46 to communicate the controlled atmosphere space 43 with the atmosphere to be measured.
第2図は第1図に示す構成の空燃比センサ21を製作す
る要領を示す図であって、例えば、アルミナ等よりなる
セラミックグリーンシートを所定の大きさに切り出した
未焼成の電気絶縁体22を用意し、この電気絶縁体22
の」−面側に、例えば、白金よりなるペーストを用いて
第1酸素センサ26側の電極24.25および電極リー
ド部27を形成して乾燥すると共に、上記電気絶縁体2
2の下面側に、同じく白金よりなるペーストを用いて第
2酸素センサ36側の電極34.35を形成して乾燥し
、電気絶縁体22に形成した貫通孔22a、22b内に
も上記白金ペーストを流し込んで、焼成後に前記両電極
24.35および電極リード部27間で電気的な導通が
得られるようにすると共に、貫通孔22bを介して電極
34への電気的な接続が可能となるようにする。そして
、前記第1酸素センサ26側の一対の電極24゜25上
に、例えばチタニア(T i 02 )ペーストよりな
る遷移金属酸化物23を積層して乾燥すると共に、第2
酸素センサ36側の一対の電極34.35」二に同じく
チタニアペースi・よりなる遷移金属酸化物33を積層
して乾燥する。FIG. 2 is a diagram showing the procedure for manufacturing the air-fuel ratio sensor 21 having the configuration shown in FIG. Prepare this electrical insulator 22
The electrodes 24 and 25 on the first oxygen sensor 26 side and the electrode lead part 27 are formed on the negative side of the electrical insulator 2 using a paste made of platinum, for example, and dried.
2, electrodes 34 and 35 on the second oxygen sensor 36 side are formed using a paste made of platinum and dried, and the platinum paste is also applied to the through holes 22a and 22b formed in the electrical insulator 22. is poured so that electrical continuity can be obtained between the electrodes 24, 35 and the electrode lead portion 27 after firing, and electrical connection to the electrode 34 is made possible via the through hole 22b. Make it. Then, a transition metal oxide 23 made of, for example, titania (T i 02 ) paste is layered and dried on the pair of electrodes 24 and 25 on the first oxygen sensor 26 side.
A transition metal oxide 33 also made of titania paste i is laminated on the pair of electrodes 34 and 35'' on the oxygen sensor 36 side and dried.
次に、前記電気絶縁体22のうち前記遷移金属酸化物2
3側の回りに、例えばアルミナより形成したコ字形の枠
体41を載せると共に、前記電気絶縁体22のうち前記
電極リード部27側に、前記貫通孔22b、電極リード
部27および電極25の先端に例えば白金リード線54
.57および55の先端をそれぞれ置いた状態にして例
えばアルミナ等よりなる電気絶縁板(スペーサ)48を
載せる。Next, the transition metal oxide 2 of the electrical insulator 22 is
A U-shaped frame 41 made of alumina, for example, is placed around the third side, and the through hole 22b, the electrode lead portion 27 and the tip of the electrode 25 are placed on the electrode lead portion 27 side of the electrical insulator 22. For example, platinum lead wire 54
.. An electrically insulating plate (spacer) 48 made of, for example, alumina is placed with the tips of 57 and 55 placed respectively.
次いで、例えば5モル%Y2O3−95モル%ZrO2
固体電解質よりなるグリーンシートを所定の大きさに切
り出し、小孔47を形成するための貫通孔47bおよび
電気的接続を得るための貫通孔42a、42bを形成し
ておく。そして、このグリーンシート状の固体電解質4
2の」二下面に、例えば白金ペーストを用いて酸素ポン
プ用電極44.45を積層し、それぞれに電極リード部
44a、45aを形成すると共に、前記小孔47を得る
ための貫通孔47a、47cを形成しておく。Then, for example, 5 mol% Y2O3-95 mol% ZrO2
A green sheet made of solid electrolyte is cut to a predetermined size, and a through hole 47b for forming a small hole 47 and through holes 42a and 42b for obtaining electrical connection are formed in advance. Then, this green sheet-like solid electrolyte 4
Oxygen pump electrodes 44 and 45 are laminated on the lower surface of No. 2 using platinum paste, for example, and electrode lead portions 44a and 45a are formed thereon, as well as through holes 47a and 47c for obtaining the small hole 47, respectively. Form it.
次に、前記電気絶縁板(スペーサ)48の上に、前記貫
通孔42 a 、 42 bに対応させた間隔で白金リ
ード線64.65の先端を置いた状態で前記固体電解質
42を重ね合わせ、再貫通孔42 a 、 42 bに
白金ペーストを落し込んで両電極44.45とリード線
64.65との間での電気的な接続が確実になされるよ
うにする。Next, the solid electrolyte 42 is superimposed on the electrically insulating plate (spacer) 48 with the tips of the platinum lead wires 64 and 65 placed at intervals corresponding to the through holes 42 a and 42 b, Platinum paste is poured into the re-through holes 42a and 42b to ensure electrical connection between both electrodes 44.45 and lead wires 64.65.
続いて、このようにして得た積層体を例えば1400〜
1500℃で焼成する。Subsequently, the laminate thus obtained is heated to a temperature of, for example, 1400~
Fire at 1500°C.
なお、発熱体を設ける場合には、例えばアルミナグリー
ンシートからなる電気絶縁基盤60の上に、例えば白金
ペーストを用いて発熱体61を積層して乾燥し、前記発
熱体62の両端にリード線62.63を固定したのち1
400〜1500 ’(!で焼成し、その後前記酸素セ
ンサ側電気絶縁体22と発熱体側電気絶縁基板60とを
耐熱性の接着剤で固定する。When providing a heating element, a heating element 61 is laminated using platinum paste, for example, on an electrically insulating substrate 60 made of, for example, an alumina green sheet, dried, and lead wires 62 are connected to both ends of the heating element 62. After fixing .63, 1
The oxygen sensor side electric insulator 22 and the heating element side electric insulating substrate 60 are then fixed with a heat-resistant adhesive.
第3図は上記した第1図に示す構造の空燃比センサ21
の結線例を示す図であって、第1酸素センサ26の一方
の電極25と第2酸素センサ36の一方の電極34との
間にリード線55.54を介して定電圧源61を接続す
ると共に、第2酎素センサ36の両電極34.35の間
に電圧測定器62を接続し、さらに前記酸素ポンプ46
の両電極44.45の間にリード線64.65を介して
酸素ポンプ用電流源63を接続したものである。Figure 3 shows an air-fuel ratio sensor 21 having the structure shown in Figure 1 above.
FIG. 3 is a diagram showing an example of the wiring connection, in which a constant voltage source 61 is connected between one electrode 25 of the first oxygen sensor 26 and one electrode 34 of the second oxygen sensor 36 via lead wires 55 and 54. At the same time, a voltage measuring device 62 is connected between both electrodes 34 and 35 of the second stimulant sensor 36, and the oxygen pump 46
An oxygen pump current source 63 is connected between both electrodes 44, 45 via lead wires 64, 65.
また、第4図は第3図の第1酸素センサ26と第2酸素
センサ36との等何回路であり、第1酩素センサ26の
電極24.25間における遷移金属酸化物23の抵抗を
R1、第2酸素センサ36の電極34.35間における
遷移金属酸化物33の抵抗をR2として示し、さらに定
電圧源61の電圧をVc、電圧測定器62による測定電
圧をVsとして示している。このような関係において測
定電圧Vsは
なる式で表わされる。ここで、抵抗値R2はり−ン側で
はほとんど変化せず、基準抵抗に準じて扱える。また、
抵抗R1をリッチの状態にしておくと空燃比によって抵
抗値が変化する。したがって、酸素ポンプ46で制御雰
囲気空間43をり・ンチ雰囲気にしておくと良い。FIG. 4 shows a similar circuit between the first oxygen sensor 26 and the second oxygen sensor 36 in FIG. 3, and shows the resistance of the transition metal oxide 23 between the electrodes 24 and 25 of the first oxygen sensor R1 and the resistance of the transition metal oxide 33 between the electrodes 34 and 35 of the second oxygen sensor 36 are shown as R2, the voltage of the constant voltage source 61 is shown as Vc, and the voltage measured by the voltage measuring device 62 is shown as Vs. In such a relationship, the measured voltage Vs is expressed by the following equation. Here, the resistance value R2 hardly changes on the spring side and can be handled in accordance with the reference resistance. Also,
When the resistance R1 is kept in a rich state, the resistance value changes depending on the air-fuel ratio. Therefore, it is preferable to keep the controlled atmosphere space 43 in a warm atmosphere using the oxygen pump 46.
ところで、両酸素センサ26.36は同じ遷移金属醇化
物23.33で構成されているため同じ温度依存性をも
っており、したがって−に温式中のR1/R2の比は一
定となるのでK111定電圧Vsで示される酸素センサ
出力は温度によって変化しない。By the way, since both oxygen sensors 26.36 are composed of the same transition metal moltenide 23.33, they have the same temperature dependence.Therefore, the ratio of R1/R2 in the -temperature type is constant, so the K111 constant voltage The oxygen sensor output, denoted Vs, does not change with temperature.
そこで、酸素イオン伝導性固体電解質43と一対の電極
44.45とで構成される酸素ポンプ46に対してポン
プ電流源63から電流を供給し、例えば電極45から電
極44の方向にポンプ電流Ipを流すと、電極44から
電極45に向けて酸素イオンが流れるので、制御雰囲気
空間43内の酸素が排出される。ここで、制御雰囲気空
間43内に流れ込む燃焼排ガスは小孔47によって制限
されるので、制御雰囲気空間43内の酸素濃度は燃焼排
ガス中の酸素濃度よりも低くなる。したがって、ポンプ
電流Ipを流すことによって第1酸素センサ26の抵抗
R1の値は小さくなるため、測定電圧Vsは大きくなる
。Therefore, a current is supplied from a pump current source 63 to an oxygen pump 46 composed of an oxygen ion conductive solid electrolyte 43 and a pair of electrodes 44 and 45, and a pump current Ip is applied in the direction from the electrode 45 to the electrode 44, for example. When flowing, oxygen ions flow from the electrode 44 toward the electrode 45, so that the oxygen in the controlled atmosphere space 43 is exhausted. Here, since the combustion exhaust gas flowing into the controlled atmosphere space 43 is restricted by the small holes 47, the oxygen concentration in the controlled atmosphere space 43 is lower than the oxygen concentration in the combustion exhaust gas. Therefore, by flowing the pump current Ip, the value of the resistance R1 of the first oxygen sensor 26 becomes smaller, and therefore the measured voltage Vs becomes larger.
反対に、酸素ポンプ46において電極44から電極45
の方向にポンプ電流Ipを流すと、制御雰囲気空間43
内の酸素濃度は燃焼排ガス中の酸素濃度よりも、高くな
るので、第1酸素センサ26の抵抗R1の値は大きくな
るため、測定電圧Vsは小さくなる。Conversely, in the oxygen pump 46, the electrode 44 to the electrode 45
When the pump current Ip is passed in the direction of the controlled atmosphere space 43
Since the oxygen concentration in the combustion exhaust gas becomes higher than the oxygen concentration in the combustion exhaust gas, the value of the resistance R1 of the first oxygen sensor 26 becomes large, and the measured voltage Vs becomes small.
そこで、この空燃比センサ21の出力Vsが一定となる
ようなポンプ電流Ipを求めるために、前記空燃比セン
サ21の出力を第5図に示すようにR−V変換回路71
(第4図)を経て差動増幅器72に入力し、この差動増
幅器72で基準電圧発生回路73からの基準電圧と比較
して差動増幅させ、この差動増幅器72の出力よりポン
プ電流源63からのポンプ電流を変えて酸素ポンプ46
に供給し、電流検出回路75で上記ポンプ電流を測定す
ると、第7図に示すような当量比−ポンプ電流特性が得
られ、ポンプ電流を検出することによって当醐比を検知
することができる。Therefore, in order to obtain the pump current Ip such that the output Vs of the air-fuel ratio sensor 21 is constant, the output of the air-fuel ratio sensor 21 is converted to the R-V conversion circuit 71 as shown in FIG.
(FIG. 4), the differential amplifier 72 compares the reference voltage with the reference voltage from the reference voltage generation circuit 73, and differentially amplifies it. Oxygen pump 46 by changing the pump current from 63
When the pump current is measured by the current detection circuit 75, an equivalence ratio-pump current characteristic as shown in FIG. 7 is obtained, and the equivalence ratio can be detected by detecting the pump current.
そして、この場合においてより具体的には第6図に示す
ような回路を用いることができる。第6図は第1図に示
した空燃比センサ21の出力Vsが一定となるようなポ
ンプ電流IPを求めることによって空燃比を検出する場
合の回路構成の一例を示す図である。図に示す回路構成
においては、差動増幅器72の一方に基準電圧発生回路
73から基準電圧を入力すると共に、差動増幅器72の
他方には前記第1酸素センサ26の遷移金属酸化物23
と第1酸素センサ36の遷移金属酸化物33とを電気的
に直列に接続して電圧Vを印加することにより前記遷移
金属酸化物23の雰囲気による抵抗値変化を電圧変化に
変換した電圧を抵抗R3を介して入力する。また、差動
増幅器72の出力は抵抗R4を介して酸素ポンプ46の
一方の電極45に接続され、同ポンプ46の他方の電極
42はポンプ電流IPの変化として例えばエンジンの空
燃比制御回路に入力される。In this case, more specifically, a circuit as shown in FIG. 6 can be used. FIG. 6 is a diagram showing an example of a circuit configuration for detecting the air-fuel ratio by determining the pump current IP such that the output Vs of the air-fuel ratio sensor 21 shown in FIG. 1 is constant. In the circuit configuration shown in the figure, a reference voltage is input from a reference voltage generation circuit 73 to one side of the differential amplifier 72, and the transition metal oxide 23 of the first oxygen sensor 26 is input to the other side of the differential amplifier 72.
and the transition metal oxide 33 of the first oxygen sensor 36 are electrically connected in series and a voltage V is applied to convert the resistance value change due to the atmosphere of the transition metal oxide 23 into a voltage change. Input via R3. Further, the output of the differential amplifier 72 is connected to one electrode 45 of the oxygen pump 46 via a resistor R4, and the other electrode 42 of the pump 46 is input as a change in pump current IP to, for example, the air-fuel ratio control circuit of the engine. be done.
このような回路構成において、例えば被測定ガス中の酸
素濃度が高く(すなわち空気過剰のり−ン雰囲気)なっ
て遷移金属酸化物23の抵抗R1が大きくなると、差動
増幅器51の一方に入力される電圧は低くなって基準電
圧よりも小さくなり、この結果差動増幅器51の出力が
正側に大となり、一方の電極45から他方の電極42へ
と流れるポンプ電流が大きくなる。反対に、被測定ガス
中の酸素濃度が低く(すなわち燃料過剰のリッチ雰囲気
)なって遷移金属酸化物23の抵抗値R1が小さくなる
と、差動増幅器51の一方に入力される電圧は高くなっ
て基準電圧よりも大きくなり、差動増幅器51の出力が
反転して電極42から電極45へと流れるポンプ電流が
大きくなり、その結果、第7図に示したような特性が得
られ、このポンプ電流Ipによって空燃比が検知できる
と共に自動車エンジンの燃焼制御を行うことができる。In such a circuit configuration, for example, when the oxygen concentration in the gas to be measured becomes high (i.e., an atmosphere with excess air) and the resistance R1 of the transition metal oxide 23 becomes large, the oxygen is input to one side of the differential amplifier 51. The voltage becomes lower and smaller than the reference voltage, and as a result, the output of the differential amplifier 51 increases to the positive side, and the pump current flowing from one electrode 45 to the other electrode 42 increases. On the other hand, when the oxygen concentration in the gas to be measured becomes low (that is, a rich atmosphere with excess fuel) and the resistance value R1 of the transition metal oxide 23 becomes small, the voltage input to one side of the differential amplifier 51 becomes high. becomes larger than the reference voltage, the output of the differential amplifier 51 is inverted, and the pump current flowing from the electrode 42 to the electrode 45 becomes larger.As a result, the characteristics shown in FIG. 7 are obtained, and this pump current The air-fuel ratio can be detected by Ip, and combustion control of the automobile engine can be performed.
第8図は従来の空燃比センサ1とこの発明による空燃比
センサ21の特性比較を行った結果の一例を示す図であ
り、プロパン燃焼装置を使用し、排ガス温度600℃、
センサ温度700 ’Oとし、各センサ10個について
特性を評価した。第8図に示すように、この発明による
空燃比センサ21では、線21a、21bの間であった
のに対し、従来の空燃比センサ11では、線11a、l
lbの間にあってかなりばらつきの大きいことが認めら
れた。FIG. 8 is a diagram showing an example of the results of comparing the characteristics of the conventional air-fuel ratio sensor 1 and the air-fuel ratio sensor 21 according to the present invention.
The sensor temperature was set at 700'O, and the characteristics of each 10 sensors were evaluated. As shown in FIG. 8, in the air-fuel ratio sensor 21 according to the present invention, the range is between the lines 21a and 21b, whereas in the conventional air-fuel ratio sensor 11, the range is between the lines 11a and 11b.
It was observed that there was considerable variation between lbs.
第9図はこの発明の他の実施例を示す図であって、第1
図に示す空燃比センサ21では酸素ポンプ46を構成す
る一対の電極44.45と酸素イオン伝導性固体電解質
42の部分に、制御雰囲気43内に燃焼排ガスを流入さ
せる小孔47を設けているが、第9図の空燃比センサ2
1では、前記酸素ポンプ46とは離れた枠体41の部分
に前記と同じ作用を有する小孔47を設けた構成を有す
るものである。FIG. 9 is a diagram showing another embodiment of the present invention, in which the first
In the air-fuel ratio sensor 21 shown in the figure, a small hole 47 through which combustion exhaust gas flows into a controlled atmosphere 43 is provided in a pair of electrodes 44, 45 and an oxygen ion conductive solid electrolyte 42 that constitute an oxygen pump 46. , air-fuel ratio sensor 2 in FIG.
1 has a structure in which a small hole 47 having the same effect as the above is provided in a portion of the frame 41 that is remote from the oxygen pump 46.
第10図はこの発明のさらに他の実施例を示すもので、
第1O図に示す空燃比センサ21では、第1図の空燃比
センサ21を構成する枠体41を、酸素ポンプ46を構
成する酸素イオン伝導性固体電解質42で一体に形成し
、電気絶縁体22の第2酸素センサ36側に発熱体61
を設けてこの発熱体61および第2酸素センサ36を多
孔質保護層67で被覆した構成を有するものである。FIG. 10 shows still another embodiment of the invention,
In the air-fuel ratio sensor 21 shown in FIG. 1O, the frame 41 configuring the air-fuel ratio sensor 21 in FIG. A heating element 61 is placed on the second oxygen sensor 36 side of the
The heating element 61 and the second oxygen sensor 36 are covered with a porous protective layer 67.
第11図はこの発明のさらに他の実施例を示す図であっ
て、この空燃比センサ21は、第1酸素センサ26およ
び第2酸素センサ36を設けた電気絶縁体22の一端を
支持体78で支持させると共に、酸素ポンプ46を構成
する固体電解質42の一端を同じく上記支持体78で支
持させ、前記電気絶縁体22と固体電解質42とを制御
雰囲気空間43を介して接近させた状態にして、前記制
御雰囲気空間43をスリット72を介して被測定雰囲気
と連通させた構成を有するものである。このような構成
としたときでも前記実施例と同様の作用効果を得ること
ができる。FIG. 11 is a diagram showing still another embodiment of the present invention, in which the air-fuel ratio sensor 21 is configured such that one end of an electrical insulator 22 provided with a first oxygen sensor 26 and a second oxygen sensor 36 is attached to a support 78. At the same time, one end of the solid electrolyte 42 constituting the oxygen pump 46 is also supported by the support 78, and the electric insulator 22 and the solid electrolyte 42 are brought close to each other via the controlled atmosphere space 43. , has a configuration in which the controlled atmosphere space 43 is communicated with the atmosphere to be measured via a slit 72. Even with such a configuration, the same effects as in the embodiment described above can be obtained.
(発明の効果)
以上説明してきたように、この発明による空燃比センサ
では、電気絶縁体の表面に遷移金属酸化物の酸素濃度変
化による抵抗変化を利用した酸素センサを一対設け、前
記一対の酸素センサのうちの一方を被測定雰囲気と連通
しかつ他方を固体電解質の酸素イオン伝導を利用した酸
素ポンプによって酸素濃度が制御される制御雰囲気と接
触させると共に、両酸素センサを直列に接続して電源に
接続し、両酸素センサの中間点電位により空燃比を検出
する描成としたから、多層構造でないため空燃比検出特
性のばらつきが著しく小さく、燃焼排ガスの拡散による
目詰まりで特性が変化するというおそれも非常に小さく
、雰囲気の温度変化によって出力特性が変化しないため
安定した空燃比の検出が可能であり、精度のよい空燃比
制御を行うことができるという著大なる効果を奏するも
のである。(Effects of the Invention) As explained above, in the air-fuel ratio sensor according to the present invention, a pair of oxygen sensors are provided on the surface of an electrical insulator that utilize resistance changes due to changes in oxygen concentration of transition metal oxides, and One of the sensors is connected to the atmosphere to be measured, and the other is brought into contact with a controlled atmosphere in which the oxygen concentration is controlled by an oxygen pump that utilizes oxygen ion conduction in a solid electrolyte, and both oxygen sensors are connected in series to provide a power source. Since the sensor is connected to the sensor and the air-fuel ratio is detected by the midpoint potential of both oxygen sensors, the variation in the air-fuel ratio detection characteristics is extremely small because it does not have a multilayer structure, and the characteristics change due to clogging caused by the diffusion of combustion exhaust gas. The risk is very small, and the output characteristics do not change due to changes in ambient temperature, so it is possible to detect a stable air-fuel ratio, and it has the great effect of allowing highly accurate air-fuel ratio control.
第1図はこの発明の一実施例による空燃比センサの模型
的断面説明図、952図は第1図の空燃比センサの製作
要領を・示す分解斜視説明図、第3図は第1図の空燃比
センサの結線例を示す説明図、第4図は第3図に示す結
線の等価回路図、第5図は第1図の空燃比センサの出力
を制御する系統図、第6図は空燃比センサの出力を制御
する回路の一例を示す説明図、第7図は第5図および第
6図の出力制御によって得られる当量比とポンプ命流と
の関係を示す説明図、第8図は従来の空燃比センサとこ
の発明の一実施例による空燃比センサの評価結果を示す
グラフ、第9図、第10図および第11図はいずれもこ
の発明の他の実施例による空燃比センサの模型的断面説
明図、第12図は従来の空燃比センサの模型的断面説明
図、第13図は第12図の空燃比センサの出力特性を示
す説明図、第14図は第13図の空燃比センサの温度特
性を示す説明図である。
21・・・空燃比センサ、
22・・・電気絶縁体、
23・・・遷移金属酸化物、
24.25・・・電極、
26・・・第1酸素センサ、
33・・・遷移金属酸化物、
34.35・・・電極、
36・・・第2酸素センサ、
42・・・酸素イオン伝導性固体電解質、43・・・制
御雰囲気空間、
44.45・・・電極、
46・・・酸素ポンプ、
47・・・小孔(被測定雰囲気との連通部)、77・・
・スリット(被測定雰囲気との連通部)。
特許出願人 日産自動車株式会社
代理人弁理士 小 塩 豊
(di) コ3;ヨ11シ。ど−・て;−拳!(℃t
U) ’4:!し。してさV
第12図
1\ / /9y”
特開昭G1−57846(10)
第14図FIG. 1 is a schematic cross-sectional view of an air-fuel ratio sensor according to an embodiment of the present invention, FIG. 952 is an exploded perspective view showing the manufacturing procedure of the air-fuel ratio sensor of FIG. An explanatory diagram showing a wiring example of the air-fuel ratio sensor, Fig. 4 is an equivalent circuit diagram of the wiring shown in Fig. 3, Fig. 5 is a system diagram for controlling the output of the air-fuel ratio sensor shown in Fig. 1, and Fig. 6 is a diagram showing the air-fuel ratio sensor. FIG. 7 is an explanatory diagram showing an example of a circuit that controls the output of the fuel ratio sensor. FIG. 7 is an explanatory diagram showing the relationship between the equivalence ratio and pump life flow obtained by the output control in FIGS. 5 and 6. FIG. Graphs showing the evaluation results of the conventional air-fuel ratio sensor and the air-fuel ratio sensor according to one embodiment of the present invention, and FIGS. 9, 10, and 11 are all models of the air-fuel ratio sensor according to another embodiment of the present invention. FIG. 12 is a schematic cross-sectional diagram of a conventional air-fuel ratio sensor, FIG. 13 is an explanatory diagram showing the output characteristics of the air-fuel ratio sensor of FIG. 12, and FIG. 14 is a schematic cross-sectional diagram of a conventional air-fuel ratio sensor. FIG. 2 is an explanatory diagram showing temperature characteristics of a sensor. 21... Air-fuel ratio sensor, 22... Electric insulator, 23... Transition metal oxide, 24.25... Electrode, 26... First oxygen sensor, 33... Transition metal oxide , 34.35... Electrode, 36... Second oxygen sensor, 42... Oxygen ion conductive solid electrolyte, 43... Controlled atmosphere space, 44.45... Electrode, 46... Oxygen Pump, 47... Small hole (communicating part with the atmosphere to be measured), 77...
-Slit (communicating part with the atmosphere to be measured). Patent Applicant: Nissan Motor Co., Ltd. Representative Patent Attorney Yutaka Oshio (di) 3; 11. Fist! (℃t
U) '4:! death. Shisa V Fig. 12 1\ / /9y” JP-A-1-57846 (10) Fig. 14
Claims (1)
化による抵抗変化を利用した酸素センサを一対設け、前
記一対の酸素センサのうちの一方を被測定雰囲気と連通
しかつ他方を固体電解質の酸素イオン伝導を利用した酸
素ポンプによって酸素濃度が制御される制御雰囲気と接
触させると共に、両酸素センサを直列に接続して電源に
接続し、両酸素センサの中間点電位により空燃比を検出
する構成としたことを特徴とする空燃比センサ。(1) A pair of oxygen sensors that utilize resistance changes due to changes in oxygen concentration of transition metal oxides are provided on the surface of an electrical insulator, one of the pair of oxygen sensors is communicated with the atmosphere to be measured, and the other is connected to a solid electrolyte. At the same time, both oxygen sensors are connected in series and connected to a power source, and the air-fuel ratio is detected by the midpoint potential of both oxygen sensors. An air-fuel ratio sensor characterized by having the following configuration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59181299A JPS6157846A (en) | 1984-08-29 | 1984-08-29 | Air fuel ratio sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59181299A JPS6157846A (en) | 1984-08-29 | 1984-08-29 | Air fuel ratio sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6157846A true JPS6157846A (en) | 1986-03-24 |
Family
ID=16098250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59181299A Pending JPS6157846A (en) | 1984-08-29 | 1984-08-29 | Air fuel ratio sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6157846A (en) |
-
1984
- 1984-08-29 JP JP59181299A patent/JPS6157846A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2669699B2 (en) | Air-fuel ratio sensor | |
JPS6138414B2 (en) | ||
JP3090479B2 (en) | Gas sensor | |
US7045047B2 (en) | Gas sensor element | |
JPH0646189B2 (en) | Oxygen concentration sensor | |
JPS58148946A (en) | Detector for air fuel ratio | |
US4629549A (en) | Oxygen sensor | |
JPH0414305B2 (en) | ||
JPH05126793A (en) | Oxygen concentration detector | |
JPH11166911A (en) | Air-fuel ratio sensor | |
JPS6157846A (en) | Air fuel ratio sensor | |
JPS60236056A (en) | Air-fuel ratio sensor | |
JPS60192251A (en) | Manufacture of oxygen sensor | |
JPS6111653A (en) | Air-fuel ratio detector | |
JPH0536212Y2 (en) | ||
JPH0612528Y2 (en) | Electrochemical device | |
JPH0668482B2 (en) | Air-fuel ratio sensor | |
JPS60231151A (en) | Oxygen sensor | |
JPS60131452A (en) | Air fuel ratio sensor | |
JPS6015170Y2 (en) | Oxygen concentration detection element | |
JPS61108955A (en) | Oxygen sensor | |
JPS61209352A (en) | Electrochemical apparatus and its preparation | |
JPS6110757A (en) | Air/fuel ratio sensor | |
JPS60231159A (en) | Oxygen concentration measuring apparatus | |
JPS6141959A (en) | Air fuel ratio sensor |