[go: up one dir, main page]

JPS6015128B2 - Manufacturing method of voltage nonlinear resistor element - Google Patents

Manufacturing method of voltage nonlinear resistor element

Info

Publication number
JPS6015128B2
JPS6015128B2 JP55056578A JP5657880A JPS6015128B2 JP S6015128 B2 JPS6015128 B2 JP S6015128B2 JP 55056578 A JP55056578 A JP 55056578A JP 5657880 A JP5657880 A JP 5657880A JP S6015128 B2 JPS6015128 B2 JP S6015128B2
Authority
JP
Japan
Prior art keywords
firing
manufacturing
nonlinear resistor
voltage nonlinear
element body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55056578A
Other languages
Japanese (ja)
Other versions
JPS56153705A (en
Inventor
信行 吉岡
方紀 羽場
秀夫 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP55056578A priority Critical patent/JPS6015128B2/en
Priority to SE8101532A priority patent/SE455143B/en
Priority to AU68469/81A priority patent/AU527861B2/en
Priority to CH1830/81A priority patent/CH650096A5/en
Priority to DE3110750A priority patent/DE3110750A1/en
Publication of JPS56153705A publication Critical patent/JPS56153705A/en
Publication of JPS6015128B2 publication Critical patent/JPS6015128B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明はZn○を主成分とする電圧非直線抵抗体素子の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a voltage nonlinear resistor element containing Zn○ as a main component.

従来この種のZn○を主成分とする電圧非直線抵抗素子
(以下素子と呼ぶ)の側面絶縁方法は、焼成後素子側面
にヱポキシ系有機物を塗布して絶縁するか、或いは素子
の焼成前に種々の無機化合物を素子側面に塗布後焼成し
、焼成後ガラス質または結晶質の絶縁物となる絶縁被膜
体を形成させて絶縁していた。
Conventional methods for insulating the side surfaces of this type of voltage nonlinear resistance element (hereinafter referred to as element) whose main component is Zn○ include applying an epoxy-based organic substance to the side surface of the element after firing, or insulating it before firing the element. Various inorganic compounds were applied to the side surfaces of the device and then fired, and after firing, an insulating coating was formed which became a glassy or crystalline insulator for insulation.

しかし、前者の方法においては、塗布するェポキシ系有
機物と素子本体との密着性が悪く、このため、素子に水
分が吸着され特性劣化が大きく短波尾耐量も弱くなる欠
点がある。
However, the former method has the disadvantage that the adhesion between the applied epoxy-based organic material and the element body is poor, and as a result, moisture is adsorbed to the element, resulting in significant deterioration of characteristics and weakening of short-wave tail resistance.

また素子本体とェポキシ樹脂との間に熱膨張の差がある
ため、熱衝撃で素子側面に被覆されたェポキシ樹脂にク
ラックが入り劣化の原因となる欠点がある。後者の方法
においては、焼成時に素子本体と側面絶縁剤の収縮率を
一致させる必要がある。このため1次焼成して或る程度
圧縮成形素子を収縮させ、しかる後に、無機化合物又は
それらの混合物を一次焼成済みの素子側面に塗布して本
焼成し、無機質絶縁側面被膜を形成させている。この場
合、2回に分けて焼成する必要がある。しかし、一次焼
成によって全収縮を行なわせることは素子の電気特性上
好ましくないので、無機化合物から形成される側面絶縁
材と素子の収縮率を出来るだけ一致させねばならない。
更に焼成中Bi203が素子本体から蒸発する現象があ
る。このため秦体の非直線性を担うBj203の粒界層
濃度の不均一が生じ、且つBi203の液相による液相
競結であるため、Zn桃泣子の粒成長速度にばらつきが
生じ電圧非直線性が低下する欠点がある。また両者の方
法とも側面絶縁膜を必要厚に均一にするためには、相当
の技術と装置を要する欠点がある。
Furthermore, since there is a difference in thermal expansion between the element body and the epoxy resin, there is a drawback that the epoxy resin coated on the side surfaces of the element cracks due to thermal shock, causing deterioration. In the latter method, it is necessary to match the shrinkage rates of the element body and the side insulating material during firing. For this purpose, the compression molded element is first fired to shrink the element to some extent, and then an inorganic compound or a mixture thereof is applied to the side surface of the element which has been fired for the first time, and the main firing is performed to form an inorganic insulating side film. . In this case, it is necessary to perform the baking twice. However, since it is not preferable for the electrical properties of the device to cause full shrinkage through primary firing, the shrinkage rate of the side insulating material made of an inorganic compound and that of the device must be matched as much as possible.
Furthermore, there is a phenomenon in which Bi203 evaporates from the element body during firing. This causes non-uniformity in the grain boundary layer concentration of Bj203, which is responsible for the nonlinearity of the Qin body, and liquid phase competition due to the liquid phase of Bi203 causes variations in the grain growth rate of Zn peach crystals, resulting in voltage fluctuation. There is a drawback that linearity decreases. Furthermore, both methods have the disadvantage that considerable technology and equipment are required to make the side insulating film uniform to the required thickness.

本発明の目的は上記の欠点に鑑み、繊密で均一な結晶粒
を有し、素子本体との密着性の良い絶縁被膜体を形成し
、且つ素子特性劣化が少なく、電圧非直線特性が低下す
ることのない電圧非直線抵抗体素子の製造方法を提供す
るにある。
In view of the above-mentioned drawbacks, the object of the present invention is to form an insulating film having dense and uniform crystal grains and good adhesion to the element body, and to reduce the deterioration of the element characteristics and reduce the voltage non-linear characteristics. An object of the present invention is to provide a method for manufacturing a voltage nonlinear resistor element without any steps.

本発明により上記の目的は、焼成に用いる容器内にアン
チモン酸化物、ビスマス酸化物、及びシリコン酸化物を
入れ、同容器内にZn○を主成分とする成形体を入れて
同時に焼成することにより達成される。
According to the present invention, the above object can be achieved by placing antimony oxide, bismuth oxide, and silicon oxide in a container used for firing, and placing a molded body containing Zn○ as a main component in the same container and firing at the same time. achieved.

以下、本発明の一実施例を図面に従って説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の電圧非直線抵抗体素子の製
造方法を適用した一実施例である。
FIGS. 1 and 2 show an embodiment to which the method of manufacturing a voltage nonlinear resistor element of the present invention is applied.

第1図では、アルミナ質の鞘(焼成用容器)12の底に
耐熱性セラミック材から成る台座14が載置されている
。この台座14の上に敷粉16の層を介して、Zn○を
主成分として圧縮成形した黍体18を設置する。敷粉1
6は台座14と秦体18の熔着を防ぐものである。また
鞘12の内側面には素体18に側面絶縁被膜を形成させ
るための塗布剤20が塗布されている。鞘12の上部に
は鞘12と同質性の蓋22が設けられている。台座14
の材質はアルミナ質又は酸化亜鉛系焼結板等が良く、特
に酸化亜鉛系焼結板は素体の主成分と同質なので暁結さ
れた素子の特性を損ねる恐れがなく望ましい。敷粉16
はアルミナ費やZn○素子の造粉末分又はZn○素子を
仮競して砕いた粉等が用いられている。Znd素子の成
分に類似又は同質のものが台座の場合よりも強く要求さ
れる。なお台座14に素体18と同質系のものを用いた
場合は敷粉16がなくても良い。また側面絶縁被膜を形
成させる塗布剤2川ま鞘12の内面の一部又は全面及び
蓋22の底面に塗布しても良い。第2図では、鞘12及
び蓋22と同質の補助部材24が鞘12の内側面に沿っ
て立設され、この補助部材24の内面(又は内面と外面
の両面)に塗布剤20が塗布されている。
In FIG. 1, a pedestal 14 made of a heat-resistant ceramic material is placed on the bottom of an alumina sheath (firing container) 12. On this pedestal 14, a millet body 18 which is compression-molded and mainly composed of Zn◯ is placed with a layer of bedding powder 16 interposed therebetween. Bedding powder 1
6 prevents the pedestal 14 and the body 18 from being welded together. Further, a coating agent 20 is applied to the inner surface of the sheath 12 to form a side insulation coating on the element body 18. The top of the sheath 12 is provided with a lid 22 that is homogeneous to the sheath 12. Pedestal 14
The material is preferably alumina or a zinc oxide sintered plate. In particular, a zinc oxide sintered plate is desirable since it is the same as the main component of the element body and does not impair the properties of the sintered element. Bed powder 16
For example, alumina powder, powdered powder of Zn○ elements, or powder obtained by pre-pulverizing Zn○ elements is used. A component similar or the same as that of the Znd element is required more strongly than in the case of the pedestal. Note that if the pedestal 14 is made of the same material as the base body 18, the bedding powder 16 may be omitted. Further, the coating agent for forming the side insulation coating may be applied to a part or the entire inner surface of the sheath 12 and the bottom surface of the lid 22. In FIG. 2, an auxiliary member 24 of the same quality as the sheath 12 and lid 22 is placed upright along the inner surface of the sheath 12, and a coating agent 20 is applied to the inner surface (or both the inner and outer surfaces) of the auxiliary member 24. ing.

素体18の上面は敷粉26及び遮蔽部材28でマスクさ
れ、絶縁被膜が形成されないようにしてある。尚、塗布
剤は鞘12または補助部材24に塗布するだけでなく、
要は素子18の近傍に配置するだけで目的は十分に達成
されるのである。この第2図の実施例に示した補助部村
24は、焼成用容器への出入等に耐える程度の機械的強
度3を持ち、また、多数回焼成による熱変形等の恐れが
少ないため薄肉のものが使用され比較的安価である。
The upper surface of the element body 18 is masked with a bedding powder 26 and a shielding member 28 to prevent formation of an insulating film. Note that the coating agent is not only applied to the sheath 12 or the auxiliary member 24, but also
In short, the purpose can be sufficiently achieved simply by arranging it near the element 18. The auxiliary part 24 shown in the embodiment of FIG. 2 has a mechanical strength 3 sufficient to withstand being put in and out of the firing container, and is thin-walled because there is little risk of thermal deformation due to multiple firings. It is relatively inexpensive.

このため、多数回使用により補助部村24の材質が変化
し、形成される側面絶縁被膜特性が低下したならば簡単
に交換することができる。更4に比較的高価な鞘12及
び蓋22は塗布剤20を塗布されないので材質変化を来
たすことが減少し、多数回の焼成に使用できるため、鞘
の内容積が大きく、小さな径の素子を複数個焼成する際
には第2図に示した実施例が適している。本発明の電圧
非直線抵抗体素子の製造方法を次に示す。
Therefore, if the material of the auxiliary part 24 changes due to repeated use and the properties of the formed side insulation coating deteriorate, it can be easily replaced. Furthermore, since the comparatively expensive sheath 12 and lid 22 are not coated with the coating agent 20, material changes are reduced and can be used for multiple firings, so the internal volume of the sheath is large and small diameter elements can be used. The embodiment shown in FIG. 2 is suitable when firing a plurality of pieces. A method for manufacturing the voltage nonlinear resistor element of the present invention will be described below.

先ず素体1 8は、Zn○(91重量%)にSb203
,Bi203,Co203,Cr203,Mn02,S
i02等合計(9重量%)の混合物を加え、充分混合し
た後適当な形状に圧縮成形する。例えば直径4仇仰ぐ、
厚さ約3比肋の円柱形にして成形体とする。塗布剤は出
発原料として、Bi203(5〜6の重量%)、Sb2
03(5〜6の重量%)及びSi02(1〜3の重量%
)となるように秤量後、水により十分に緑式混合して得
られたスラリーとしたものである。この塗布剤を前記第
1図及び第2図に示した焼成用容器の鞘12の内側面や
補助部材24に塗布して乾燥させる。その後Zn○を主
成分とした素子1 8を鞘1 2に入れ蓋22をしてほ
ぼ密閉状態とする。この密閉状態で100000〜14
00こ○(素子の電気特性の点からは1100qo〜1
30000が好ましい)の温度範囲で焼成すると、鞘1
2内の塗布した前記混合物あるいはそれらが反応して生
成される化合物の一部が蒸発且つ飛散し、容器内はこれ
らの金属酸化物の雰囲気となり、素体18表面のZn○
、添加混合物等と気−固相反応をし素体18の表面に高
抵抗の絶縁被膜が形成される。上記の気−固相反応にお
いて、容器内に塗布されたBi203,SQ03,Si
02のうちSQ03は57000でSQ04に変態し9
20qo付近で昇華し始め1000oo以上では非常に
活発となる。
First, the element body 18 is made of Zn○ (91% by weight) and Sb203.
, Bi203, Co203, Cr203, Mn02, S
A mixture of i02 and the like (9% by weight) is added, thoroughly mixed, and then compression molded into a suitable shape. For example, look up 4 times in diameter.
The molded product is shaped into a cylinder with a thickness of about 3 centimeters. The coating agent contains Bi203 (5-6% by weight), Sb2 as starting materials.
03 (5-6 wt%) and Si02 (1-3 wt%
) and then thoroughly mixed with water to form a slurry. This coating agent is applied to the inner surface of the sheath 12 and the auxiliary member 24 of the firing container shown in FIGS. 1 and 2 and dried. Thereafter, the element 18 whose main component is Zn○ is placed in the sheath 12 and covered with a lid 22 to make it almost airtight. 100,000 to 14 in this sealed state
00ko○ (from the point of view of the electrical characteristics of the element, 1100qo~1
When fired at a temperature range of 30,000 ℃ (preferably
Part of the applied mixture in the container 2 or the compound produced by their reaction evaporates and scatters, and the inside of the container becomes an atmosphere of these metal oxides.
A high-resistance insulating film is formed on the surface of the element body 18 through a gas-solid phase reaction with the additive mixture and the like. In the above gas-solid phase reaction, Bi203, SQ03, Si coated inside the container
Of 02, SQ03 metamorphosed into SQ04 at 57,000 and became 9
Sublimation begins around 20 qo and becomes very active above 1000 qo.

またBi203は820つ0で融解し容器は10000
0以上でアンチモン酸化物とビスマス酸化物の高濃度な
雰囲気が充満する。なお、Si02は融点が他の物質よ
りもはるかに高く、蒸気圧も低いが、SQ03の昇華及
びBi203の蒸発等により、これらに伴なわれて飛散
し、素体18の表面に到達して反応すると考えられてい
る。一方泰体18は80000〜1000ooの温度領
域で体積比で約40%収縮しZn0の他Z〜Si04,
Zn2Bi3SQ04(パイロクロア)、Zn2.8S
b。.的(スピネル)、Bi203,14Si203・
Cr203等の結晶層が形成される。素体表面ではそれ
に含まれるBj203が加熱温度の上昇と共に蒸発し始
めるが、焼成容器内に発生したBi203の雰囲気によ
りその蒸発量はかなり抑制される。また雰囲気中のSQ
04,Bi203,Si02は素体と反応しその表面に
Z山.33Sい.町04,Z&Si04が形成され始め
る。1000oo以上では素体の側面に形成されたZn
2.3ぶb小6704とZn2Si04及び未反応のS
b204,Si02が、素体内から拡散してくるZn2
十と反応してZn2.3Sb岬704,Zn2Si04
,Bi203を形成する。
Also, Bi203 melts at 820 points and the container is at 10,000 points.
When the temperature is 0 or more, an atmosphere with a high concentration of antimony oxide and bismuth oxide is filled. Although Si02 has a much higher melting point and a lower vapor pressure than other substances, it scatters due to the sublimation of SQ03 and the evaporation of Bi203, reaches the surface of the element body 18, and reacts. It is believed that. On the other hand, in the temperature range of 80,000 to 1,000 oo, Thai body 18 contracts by about 40% in volume ratio, and in addition to Zn0, Z~Si04,
Zn2Bi3SQ04 (pyrochlore), Zn2.8S
b. .. Target (spinel), Bi203, 14Si203・
A crystal layer of Cr203 or the like is formed. On the surface of the element body, Bj203 contained therein begins to evaporate as the heating temperature rises, but the amount of evaporation is considerably suppressed by the Bi203 atmosphere generated within the firing container. Also SQ in the atmosphere
04, Bi203, and Si02 react with the element and form Z mountains on its surface. 33S. Town 04, Z & Si04 begins to be formed. At 1000 oo or more, Zn formed on the side of the element body
2.3bub small 6704 and Zn2Si04 and unreacted S
b204, Si02 is Zn2 diffusing from inside the element body.
Zn2.3Sb Misaki 704, Zn2Si04 reacts with ten
, Bi203 are formed.

これらの化合物は素体18と共に暁結される。焼結中B
j203は液相 夕で存在するため素体と形成されつつ
ある絶縁被膜相との焼結反応を均一に促進する働きがあ
る。このため、ピンホールのない繊密で均一の結晶粒を
もつ40〜50rの厚の絶縁被膜が形成される。結局素
体側面に形成される被膜はZnぶi04,Z山.33S
〇.Z的04の結晶相である。第3図は上記のように素
子表面に形成された絶縁被膜の状態をX線マイクロアナ
ラィザで調べた結果である。
These compounds are crystallized together with the element body 18. Sintering B
Since J203 exists in a liquid phase, it has the function of uniformly promoting the sintering reaction between the element body and the insulating coating phase that is being formed. As a result, an insulating film with a thickness of 40 to 50 r is formed, having minute and uniform crystal grains without pinholes. In the end, the coating formed on the side surface of the element body is Znbu i04, Z mountain. 33S
〇. This is the crystal phase of Z-04. FIG. 3 shows the results of examining the state of the insulating film formed on the surface of the element as described above using an X-ray microanalyzer.

同図a,bは2次電子像でありbはaの2倍の拡大像で
ある。同図c,d,e,f,Zg,hはそれぞれSb,
Si,Bj,Zn,Mn,Coの特性X線像である。図
と第5図から絶縁被膜はZ&.3Sb。6704,Zn
ぶj04が主成分で形成されており、その厚みは約40
〜50ムであることが判明した。
Figures a and b are secondary electron images, and b is an enlarged image twice that of a. In the same figure, c, d, e, f, Zg, h are respectively Sb,
These are characteristic X-ray images of Si, Bj, Zn, Mn, and Co. From the figure and Fig. 5, the insulation coating is Z&. 3Sb. 6704,Zn
The main component is Buj04, and its thickness is approximately 40 mm.
It was found to be ~50 μm.

2第4図A,
Bは本実施例にて焼成した素子のx線マイクロァナラィ
ザの線分折結果を示したものである。但し、図上右上に
示した例えばNo・ZnlOKはフルスケールが亜鉛の
10kcps(キロカウントパーセコンド)を表わして
いる。同図Aの側面絶縁被膜部ロには、Sb,Znが多
くMnが少なく、ZnとMnは素体1中から被膜中へ拡
散して来て固溶していることがわかる。同図Bから被膜
中にSiとBiが存在していることがわかる。なおmは
モールド部を示している。その厚みは約40〜50仏で
ある。素子側面に形成されたスピネルは素子中に存在す
るCo,Mn,Crを園熔し、Zn2Si04はCo,
Mnを固落していることから焼成中に表面に形成された
スピンネル及びZn2Si04と素体が十分反応してい
ることがわかる。また第5図に示す被膜のX線回折図か
ら明らかなように、絶縁被膜はZn2.33Sい.67
04(スピネル),Zn2Si04が主成分で形成され
ている、図中Spはスピネル(Zn2.3Sb船704
)を示し、公は珪酸亜鉛(Znぶi04)を示している
2Figure 4A,
B shows the results of line analysis using an x-ray microanalyzer of the element fired in this example. However, for example, No.ZnlOK shown in the upper right of the figure represents a full scale of 10 kcps (kilocount per second) of zinc. It can be seen that in the side insulating coating portion (b) of FIG. It can be seen from Figure B that Si and Bi are present in the film. Note that m indicates a mold portion. Its thickness is about 40-50 Buddhas. The spinel formed on the side of the element melts Co, Mn, and Cr present in the element, and Zn2Si04 melts Co, Mn, and Cr present in the element.
It can be seen that the spinel and Zn2Si04 formed on the surface during firing are sufficiently reacting with the element body since Mn is solidified. Furthermore, as is clear from the X-ray diffraction diagram of the coating shown in FIG. 5, the insulating coating is made of Zn2.33S. 67
04 (spinel), Zn2Si04 is the main component, Sp in the figure is spinel (Zn2.3Sb ship 704
), and the official one is zinc silicate (Znbui04).

第6図はSQ03とBi203とSi02の混合比を変
えて素体を焼成炉で製造した場合の素子の有する電気特
性を示したものである。
FIG. 6 shows the electrical characteristics of elements when the element bodies were manufactured in a firing furnace with different mixing ratios of SQ03, Bi203, and Si02.

図中×は△VimA/VimA及び0は放電耐量(4×
10rS 2回)を示している。Bi203,Sj02
の量が増加していくと放電耐量が低下することがわかる
。本実施例によれば、SQ03,Bi203,及びSi
02の混合物を塗布剤として嫁成用容器内に塗布し、S
Q03とBi203の雰囲気の中でZn○素体を焼成し
て素子を製造することによって、Zの素体からBi20
3が蒸発しにくいので、放電耐量等の電気特性が良好な
非直線電圧電流特性を有する電圧非直線抵抗体素子を製
造する効果がある。
In the figure, × indicates △VimA/VimA, and 0 indicates discharge withstand capacity (4×
10rS twice). Bi203, Sj02
It can be seen that the discharge withstand capacity decreases as the amount of . According to this embodiment, SQ03, Bi203, and Si
Apply the mixture of 02 as a coating agent into the container for marriage, and
By manufacturing a device by firing the Zn○ element body in an atmosphere of Q03 and Bi203, Bi20 is removed from the Z element body.
Since 3 is difficult to evaporate, it is effective in manufacturing a voltage non-linear resistor element having non-linear voltage-current characteristics with good electrical characteristics such as discharge withstand capacity.

Bi203の雰囲気が絶縁体形成を促進するため、素子
焼成温度範囲で高抵抗な絶縁層を簡単に素子側面に形成
させる効果がある。この絶縁層はェポキシ樹脂をコーテ
ィングした場合に比較して耐コロナ性、耐アーク性等の
素子の電気的諸特性が優れ無機側面剤を塗布して焼成し
たものと同等の特性のものを製造し得る効果がある。ま
たZnO素体からBj203の飛散を抑制するため、均
質な素子を製造する効果がある。従って秦体と絶縁被膜
体との密着性が良くピソホールのない繊密で均一な結晶
粒を持つ絶0縁被膜体を得る効果がある。金属酸化物の
雰囲気中でZnq素体18を素子焼成温度範囲で焼成す
るだけでよいので無機側面剤を塗布する方法に比べ、素
体と無機側面剤との収縮率を考慮する必要が少なく、高
抵抗な側面絶縁体が容易に得られるタ効果がある。また
素体の仮塚工程を省くことができるため製造工程を簡略
化する効果がありコスト低減に寄与する効果がある。以
上の説明から明らかなように本発明によれば、ビスマス
酸化物、アンチモン酸化物及びシリoコンの酸化物の混
合雰気中にてZn○素体を焼成することにより、繊密で
均一な結晶粒を有し、素子本体との密着性の良い絶縁層
を形成し、且つ素子の特性劣化が少なく電圧非直線性が
増加し、更に他の電気特性も向上する電圧非直線抵抗体
素子がタ得られるのである。
Since the Bi203 atmosphere promotes the formation of an insulator, it has the effect of easily forming a high-resistance insulating layer on the side surface of the device within the device firing temperature range. This insulating layer has better electrical properties such as corona resistance and arc resistance than when coated with epoxy resin, and has the same properties as those coated with an inorganic side coating and fired. There are benefits to be gained. Further, since scattering of Bj203 from the ZnO element body is suppressed, it is effective to manufacture a homogeneous element. Therefore, there is an effect of obtaining an insulating coating having good adhesion between the grain body and the insulating coating and having dense and uniform crystal grains free of pithoholes. Since it is only necessary to sinter the Znq element body 18 in a metal oxide atmosphere within the element firing temperature range, there is less need to consider the shrinkage rate of the element body and the inorganic surfacing agent compared to a method in which an inorganic surfacing agent is applied. This has the effect of making it easy to obtain a high-resistance side insulator. Furthermore, since the temporary mounding process of the element body can be omitted, the manufacturing process can be simplified, which contributes to cost reduction. As is clear from the above description, according to the present invention, by firing a Zn○ element body in a mixed atmosphere of bismuth oxide, antimony oxide, and silicon oxide, a dense and uniform A voltage nonlinear resistor element that has crystal grains, forms an insulating layer with good adhesion to the element body, has little deterioration of element characteristics, increases voltage nonlinearity, and also improves other electrical characteristics. You can get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である電圧非直線抵抗体素子
の製造方法を適用した説明図、第2図は本発明の一実施
例である電圧非直線抵抗体素子の0製造方法を適用した
他の説明図、第3図はX線マイクロアナライザーによる
形成絶縁層の状態図で、同図a,bは2次電子像、同図
c,d,e,f,g,hはそれぞれSb,Si,Bi,
Zn,Mn及びCoの特性X線像、第4図A及び同図B
はx線マィクロァナラィザーの線分析図、第5図は絶縁
被膜のX線回折図、第6図はSb203,Bi203及
びSi02の混合比の変化と、素子の電気特性との関係
図である。 12・・・鞘、18・・・素体、20・・・塗布剤、2
2・・・蓋、24・・・補助部材。 第1図 第2図 第3図 第3図 第4図 第5図 第4図 第6図
FIG. 1 is an explanatory diagram of a method for manufacturing a voltage nonlinear resistor element, which is an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a method for manufacturing a voltage nonlinear resistor element, which is an embodiment of the present invention. Other applied explanatory diagrams, Fig. 3, are state diagrams of the insulating layer formed by an X-ray microanalyzer, a and b in the same figure are secondary electron images, and c, d, e, f, g, and h in the same figure are respectively Sb, Si, Bi,
Characteristic X-ray images of Zn, Mn and Co, Figures 4A and 4B
is a line analysis diagram of an x-ray microanalyzer, Figure 5 is an X-ray diffraction diagram of an insulating coating, and Figure 6 is a diagram of the relationship between changes in the mixing ratio of Sb203, Bi203, and Si02 and the electrical characteristics of the element. be. 12...Sheath, 18...Body, 20...Linting agent, 2
2... Lid, 24... Auxiliary member. Figure 1 Figure 2 Figure 3 Figure 3 Figure 4 Figure 5 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 酸化亜鉛を含む電圧非直線抵抗体の焼成時において
、容器内にアンチモン酸化物、ビスマス酸化物及びシリ
コン酸化物を配置し、前記焼成と同時に気−固相反応に
より側面絶縁被膜を形成するようにしたことを特徴とす
る電圧非直線抵抗体素子の製造方法。
1. When firing a voltage nonlinear resistor containing zinc oxide, antimony oxide, bismuth oxide, and silicon oxide are placed in a container, and at the same time as the firing, a side insulating film is formed by a gas-solid reaction. A method of manufacturing a voltage nonlinear resistor element, characterized in that:
JP55056578A 1980-03-19 1980-04-28 Manufacturing method of voltage nonlinear resistor element Expired JPS6015128B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55056578A JPS6015128B2 (en) 1980-04-28 1980-04-28 Manufacturing method of voltage nonlinear resistor element
SE8101532A SE455143B (en) 1980-03-19 1981-03-11 SET TO MAKE A NON-LINES, VOLTAGE-DEPENDENT RESISTOR
AU68469/81A AU527861B2 (en) 1980-03-19 1981-03-18 Voltage dependent resistor
CH1830/81A CH650096A5 (en) 1980-03-19 1981-03-18 Method for fabricating a resistor having a non-linear voltage dependence
DE3110750A DE3110750A1 (en) 1980-03-19 1981-03-19 Process for producing a nonlinear voltage-dependent resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55056578A JPS6015128B2 (en) 1980-04-28 1980-04-28 Manufacturing method of voltage nonlinear resistor element

Publications (2)

Publication Number Publication Date
JPS56153705A JPS56153705A (en) 1981-11-27
JPS6015128B2 true JPS6015128B2 (en) 1985-04-17

Family

ID=13031031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55056578A Expired JPS6015128B2 (en) 1980-03-19 1980-04-28 Manufacturing method of voltage nonlinear resistor element

Country Status (1)

Country Link
JP (1) JPS6015128B2 (en)

Also Published As

Publication number Publication date
JPS56153705A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
US4031498A (en) Non-linear voltage-dependent resistor
US4692735A (en) Nonlinear voltage dependent resistor and method for manufacturing thereof
JPS6015128B2 (en) Manufacturing method of voltage nonlinear resistor element
USRE31437E (en) Resistance material
US4374160A (en) Method of making a non-linear voltage-dependent resistor
JPS6015126B2 (en) Manufacturing method of voltage nonlinear resistor element
JPS6253922B2 (en)
US4129774A (en) Filling materials for heating elements
JPS6156845B2 (en)
JPS6015125B2 (en) Firing method for voltage nonlinear resistance element
US4269898A (en) Resistance material
JPS6248881B2 (en)
JPS6161523B2 (en)
JPS6156844B2 (en)
JPS6320004B2 (en)
JPS6161687B2 (en)
JPS6025008B2 (en) Firing method for voltage nonlinear resistor element
JPS6236610B2 (en)
US4301042A (en) Resistance material
JPS59172201A (en) Method of forming insulating film of voltage nonlinear resistor element
JPH09213506A (en) Manufacture of voltage non-linear resistor
CA1151317A (en) Method of making a non-linear voltage-dependent resistor
JP2619129B2 (en) Method for manufacturing voltage non-linear resistor and sagger used for the same
JPS6236609B2 (en)
JPH0935909A (en) Manufacture of nonlinear resistor