[go: up one dir, main page]

JPS6015126B2 - Manufacturing method of voltage nonlinear resistor element - Google Patents

Manufacturing method of voltage nonlinear resistor element

Info

Publication number
JPS6015126B2
JPS6015126B2 JP55041777A JP4177780A JPS6015126B2 JP S6015126 B2 JPS6015126 B2 JP S6015126B2 JP 55041777 A JP55041777 A JP 55041777A JP 4177780 A JP4177780 A JP 4177780A JP S6015126 B2 JPS6015126 B2 JP S6015126B2
Authority
JP
Japan
Prior art keywords
firing
nonlinear resistor
voltage nonlinear
manufacturing
resistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55041777A
Other languages
Japanese (ja)
Other versions
JPS56138901A (en
Inventor
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP55041777A priority Critical patent/JPS6015126B2/en
Priority to SE8101532A priority patent/SE455143B/en
Priority to AU68469/81A priority patent/AU527861B2/en
Priority to CH1830/81A priority patent/CH650096A5/en
Priority to DE3110750A priority patent/DE3110750A1/en
Publication of JPS56138901A publication Critical patent/JPS56138901A/en
Publication of JPS6015126B2 publication Critical patent/JPS6015126B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明はZn○を主成分とする電圧非直線抵抗体素子の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a voltage nonlinear resistor element containing Zn○ as a main component.

従来この種のZn○を主成分とする電圧非直線抵抗体素
子(以下素子と呼ぶ)の側面絶縁方法は、焼成後素子側
面にェポキシ系有機物を塗布して絶縁するか、或いは素
子の焼成前に種々の無機化合物を素子側面に塗布後焼成
し、焼成後ガラス質または結晶質の絶縁物となる絶縁被
膜体を形成させて絶縁していた。
Conventionally, the side insulation methods for this type of voltage nonlinear resistor element (hereinafter referred to as an element) mainly composed of Zn○ include applying an epoxy-based organic material to the side surface of the element after firing to insulate it, or applying insulation before firing the element. Various inorganic compounds were applied to the sides of the device and fired, and after firing, an insulating coating was formed that became a glassy or crystalline insulator for insulation.

しかし、前者の方法においては、塗布するェポキシ系有
機物と素子本体との密着性が悪く、このため、素子に水
分が吸着され特性劣化が大きく短波尾耐量も弱くなる欠
点がある。
However, the former method has the disadvantage that the adhesion between the applied epoxy-based organic material and the element body is poor, and as a result, moisture is adsorbed to the element, resulting in significant deterioration of characteristics and weakening of short-wave tail resistance.

また素子本体とェポキシ樹脂との間に熱膨張の差がある
ため、熱衝撃で素子側面に被覆されたェポキシ樹脂にク
ラックが入り劣化の原因となる欠点がある。後者の方法
においては、焼成時に素子本体と側面絶縁剤の収縮率を
一致させる必要がある。このため1次焼成して或る程度
圧縮成形素子を収縮させ、しかる後に、無機化合物又は
それらの混合物を1次焼成済みの素子側面に塗布して、
本焼成し無機質絶縁側面被膜を形成させている。この場
合、2回に分けて焼成する必要がある。更に、焼成中B
i203が素子本体から蒸発する。
Furthermore, since there is a difference in thermal expansion between the element body and the epoxy resin, there is a drawback that the epoxy resin coated on the side surfaces of the element cracks due to thermal shock, causing deterioration. In the latter method, it is necessary to match the shrinkage rates of the element body and the side insulating material during firing. For this purpose, the compression molded element is first fired to shrink it to some extent, and then an inorganic compound or a mixture thereof is applied to the side surface of the element after the first firing.
Main firing is performed to form an inorganic insulating side surface coating. In this case, it is necessary to perform the baking twice. Furthermore, during firing B
i203 evaporates from the element body.

このため素子の非直線性を担うBi203粒界層濃度の
不均一が生じ、且つBj203の液相による液相凝結で
あるため、Zn○粒子の粒成長速度にばらつきが生じ圧
電非直線性が低下する欠点がある。また両者の方法とも
塗布膜を必要厚に均一にするためには、相当の技術と装
置を要する欠点がある。本発明の目的は上記の欠点に鑑
み、繊密で均一な結晶粒を有し、素子本体との密着性の
良い絶縁被膜体を形成し、且つ素子特性劣化が少なく、
電圧非直線特性が低下することのない電圧非直線抵抗体
素子の製造方法を提供するにある。
This causes non-uniformity in the concentration of the Bi203 grain boundary layer, which is responsible for the nonlinearity of the device, and liquid phase condensation due to the liquid phase of Bj203 causes variations in the grain growth rate of the Zn○ particles, reducing piezoelectric nonlinearity. There are drawbacks to doing so. Furthermore, both methods have the disadvantage that considerable skill and equipment are required in order to make the coating film uniform to the required thickness. In view of the above-mentioned drawbacks, an object of the present invention is to form an insulating film having dense and uniform crystal grains and having good adhesion to the device body, and to reduce deterioration of device characteristics.
It is an object of the present invention to provide a method for manufacturing a voltage nonlinear resistor element in which voltage nonlinear characteristics do not deteriorate.

本発明により上記の目的は、焼成に用いる容器内にアン
チモンの酸化物とビスマスの酸化物を入れ、同容器内に
Zn○を主成分とする成形体を入れて同時に焼成するこ
とにより達成される。
According to the present invention, the above object is achieved by placing an oxide of antimony and an oxide of bismuth in a container used for firing, and placing a molded body mainly composed of Zn○ in the same container and firing them at the same time. .

以下、本発明の一実施例を図面に従って説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の電圧非直線抵抗体素子の製造方法を適
用した一実施例である。
FIG. 1 shows an embodiment to which the method of manufacturing a voltage nonlinear resistor element of the present invention is applied.

第1図では、アルミナ質の鞘(焼成用容器)12を底に
耐熱性セラミック材から成る台座14が載遣されている
In FIG. 1, a pedestal 14 made of a heat-resistant ceramic material is placed on the bottom of an alumina sheath (firing container) 12.

この台座14の上に敷粉16の層を介して、Zn○を主
成分として圧縮成形した秦体18を設置する。敦粉16
は台座14と素体18の溶着を防ぐものである。また鞘
12の内側面には素体18に側面絶縁被膜を形成させ、
且つ素体からBi203の蒸発を防ぐための塗布剤20
が塗布されている。鞘12の上部には鞘12と同質性の
蓋22が設けられている。台座14の材質はアルミナ質
又は酸化亜鉛系焼給板等が良く、特に酸化亜鉛系焼綾板
は素子の主成分と同質なので焼結された素子の特性を損
ねる恐れがなく望ましい。
On this pedestal 14, with a layer of bedding powder 16 interposed therebetween, a Qin body 18 which is compression-molded and whose main component is Zn◯ is placed. Dungeon powder 16
This prevents the pedestal 14 and the element body 18 from welding. Further, a side insulation coating is formed on the element body 18 on the inner surface of the sheath 12,
Coating agent 20 for preventing evaporation of Bi203 from the element body
is coated. The top of the sheath 12 is provided with a lid 22 that is homogeneous to the sheath 12. The material of the pedestal 14 is preferably an alumina or zinc oxide sintering plate, and in particular, a zinc oxide sintered twill plate is preferable since it is of the same quality as the main component of the element and does not impair the characteristics of the sintered element.

敷粉16はアルミナ質やZnq素子の造粉末分又はZn
○素子を仮焼して砕いた粉等が用いられている。Znq
素子の成分に類似又は同質のものが台座の場合よりも強
く要求される。なお台座14に素材18と同質系のもの
を用いた場合は数粉16がなくても良い。また塗布剤2
川嫌省12の内面の一部又は全面及び蓋22の底面に塗
布しても良く、また、鞘と塗布剤との間に他の都材を介
在させてもよく、要は素体18の近傍に塗布剤を配置す
ればよい。本発明の電圧非直線抵抗体素子の製造方法を
次に示す。
The bed powder 16 is made of alumina or ZnQ element powder or Zn.
○ Powder made by calcining and crushing the element is used. Znq
Similar or identical components of the element are required more strongly than in the case of the pedestal. Note that if the pedestal 14 is made of the same material as the material 18, the powder 16 may be omitted. Also, coating agent 2
It may be applied to a part or the entire surface of the inner surface of the coating material 12 and the bottom surface of the lid 22, or another material may be interposed between the sheath and the coating agent. A coating agent may be placed nearby. A method for manufacturing the voltage nonlinear resistor element of the present invention will be described below.

先ず素体1 8はZn0(91重量%)にSQ03,B
i203,Co203,Cr203,Mn02,Si0
2等合計(9重量%)の混合物を加え、充分混合した後
適当な形状に圧縮成形する。例えば直径40側め厚さ約
30肌の円柱形にして成形体とする。塗布剤20は、出
発原料として、Sb203,Bi203を下表のように
なるように秤量後、水を適当量加え十分に湿式混合して
得られたスラリ−を用いる。
First, the element body 18 is made of Zn0 (91% by weight) with SQ03,B
i203, Co203, Cr203, Mn02, Si0
Two equal parts (9% by weight) of the mixture were added, thoroughly mixed, and then compression molded into a suitable shape. For example, it is made into a cylindrical shape with a diameter of 40 mm and a thickness of about 30 mm. The coating agent 20 uses a slurry obtained by weighing Sb203 and Bi203 as starting materials as shown in the table below, adding an appropriate amount of water, and sufficiently wet-mixing.

このように作った塗布剤20は第1図で示した焼成用容
器の内壁面に塗布され乾燥させられる(200の‘の内
容積の容器内に約2タ塗布する)。
The coating agent 20 thus prepared is applied to the inner wall surface of the firing container shown in FIG. 1 and dried (approximately 2 coats are applied to the container having an internal volume of 200').

その後Zn○を主成分とした素体18を鞘12に入れ蓋
22をしてほぼ密閉状態とする。この密閉状態で100
0午0〜1400午C(素子の電気特性の点からは11
00oo〜1300℃が好ましい。)の温度範囲で焼成
すると、鞘12内の塗布剤20であるアンチモン酸化物
とビスマス酸化物が昇華及び蒸発し、容器内はアンチモ
ン酸化物の雰囲気とビスマス酸化物の雰囲気となり、素
体18表面のZn○、添加混合物等と図、気相反応をし
素体18の表面に高抵抗の絶縁被膜が形成される。上記
の固、気相反応において、容器内に塗布されたSb20
3,Bi203のうちSb203は57000でSQ0
4に変態し920℃付近で昇華し始め100000以上
では非常に活発となる。
Thereafter, the element body 18 containing Zn○ as a main component is placed in the sheath 12 and covered with a lid 22 to make it almost airtight. 100 in this sealed state
0:00 to 1400:00 C (from the point of view of the electrical characteristics of the element, 11
000°C to 1300°C is preferable. ) When fired in the temperature range of A high-resistance insulating film is formed on the surface of the element body 18 through a gas phase reaction with Zn○, additive mixture, etc. In the above solid and gas phase reactions, Sb20 coated inside the container
3. Among Bi203, Sb203 is 57000 and SQ0
It transforms into 4 and begins to sublimate at around 920°C, and becomes extremely active at temperatures above 100,000°C.

またBi203は82000で融解し焼成炉内は100
000以上でアンチモン酸化物とビスマス酸化物の種分
子の高濃度な雰囲気が充満する。一方素体18は800
q0〜100000の温度領域で体積比で約40%収縮
しZn○の他Zn2Si04、パィロクロア、Zn2,
33Sb〇,6704,Bi203,14Bj203一
Cr203等の結晶層が形成される。素体表面ではBi
203が加熱温度の上昇と共に蒸発し始めるが、焼成炉
内に発生したBi203の雰囲気によりその蒸発量はか
なり抑制される。また雰囲気中のSQ03は素体と反応
し表面にZ〜,斑Sbo,6704が形成される。この
際雰囲気中あるいは素体中のBi203が素体と雰囲気
中のSQ03との反応を促進する。これらの化合物は素
体と共に競結される。このようにして繊密で均一な結晶
粒を持つ側面絶縁被膜を有する電圧非直線抵抗体素子が
製造される。第2図は、Sb203とBi203から成
る塗布剤を使用して焼成した素子の表面に形成された絶
縁被膜の状態をX線マイクロアナラィザで調べた結果で
ある。同図Aは6$Q03一40Bi203を塗布した
場合で、1は2次電子像、0,m,WはそれぞれSb,
Zn,Biの特性X線像である。
Also, Bi203 melts at 82,000 and the temperature inside the firing furnace is 100.
000 or more, the atmosphere is filled with highly concentrated seed molecules of antimony oxide and bismuth oxide. On the other hand, element 18 is 800
In the temperature range from q0 to 100,000, it shrinks by about 40% by volume, and in addition to Zn○, Zn2Si04, pyrochlore, Zn2,
A crystal layer of 33Sb〇, 6704, Bi203, 14Bj203-Cr203, etc. is formed. Bi on the surface of the element
Although 203 begins to evaporate as the heating temperature rises, the amount of evaporation is considerably suppressed by the atmosphere of Bi203 generated in the firing furnace. Further, SQ03 in the atmosphere reacts with the element body, and spots Z~ and spots Sbo, 6704 are formed on the surface. At this time, Bi203 in the atmosphere or in the element body promotes the reaction between the element body and SQ03 in the atmosphere. These compounds are bound together with the elementary bodies. In this way, a voltage nonlinear resistor element having a side insulating coating with dense and uniform crystal grains is manufactured. FIG. 2 shows the results of examining, using an X-ray microanalyzer, the condition of an insulating film formed on the surface of an element fired using a coating agent consisting of Sb203 and Bi203. Figure A shows the case where 6$Q03-40Bi203 is applied, 1 is the secondary electron image, 0, m, and W are Sb, respectively.
This is a characteristic X-ray image of Zn and Bi.

これらの像より絶縁被膜にBiリッチ層があることが解
かる。同図Bは8のb203−20Bi203を塗布し
た場合で、1は2次電子像、ロ,m,WはそれぞれSb
,Zn,Biの特性×線像である。ここには図示してい
ないがX線個所より第8図に示す被膜のX線回折図から
明らかなように皮膜はスピネル(Z心,33SQ,的0
4)から形成され、少量のBj203が混在している。
このスピネルは素子中に存在するCo,Mn,Crを固
熔していることから、焼成中に表面に形成されたスピネ
ル素体18と十分反応して形成されていることが確認さ
れた。Co,Mn,Cr,Si等を固溶していることは
図示してないが他のX線マィクロァナラィザの特性×線
像から確認された。第3図は素体18を焼成して得られ
た素子中のBi203を化学分析したもので、図に示さ
れているようにBi203の塗布により秦体からのBi
203の飛散が抑制されていることがわかる。第4図は
塗布するSQ03とBi203の混合比を変えて素子を
焼成炉で製造した場合の素子の有する電気特性を示した
ものである。
From these images, it can be seen that there is a Bi-rich layer in the insulating film. B in the same figure shows the case where No. 8 b203-20Bi203 is applied, 1 is the secondary electron image, and B, m, and W are Sb.
, Zn, and Bi. Although not shown here, it is clear from the X-ray diffraction diagram of the coating shown in FIG.
4), with a small amount of Bj203 mixed therein.
Since this spinel solidified Co, Mn, and Cr present in the element, it was confirmed that it was formed by sufficiently reacting with the spinel body 18 formed on the surface during firing. Although not shown in the figure, it was confirmed from the characteristic x-ray image of other X-ray microanalyzers that Co, Mn, Cr, Si, etc. were dissolved in solid solution. FIG. 3 shows a chemical analysis of Bi203 in the element obtained by firing the element body 18. As shown in the figure, by applying Bi203, Bi203 from the element body is
It can be seen that scattering of 203 is suppressed. FIG. 4 shows the electrical characteristics of devices manufactured in a firing furnace with different mixing ratios of SQ03 and Bi203 to be applied.

図中0は0.1mAQ,mAを示し、△はV2,5KA
/V,mA及びXは放電耐量(4×10ムs2回)を示
している。Bj203の量が減少していくと0.1mA
Q,mAは減少し、V2,5KA/V,mAは増加し、
放電耐量が低下するが、Bi203が2仇hoそ%以下
になると急変していることがわかる。第5図は焼成用容
器内のBi203の量と絶縁層の厚みとの関係を示した
図である。
In the figure, 0 indicates 0.1mAQ, mA, △ indicates V2,5KA
/V, mA, and X indicate the discharge capacity (4×10 ms twice). As the amount of Bj203 decreases, it becomes 0.1mA.
Q, mA decreases, V2,5KA/V, mA increases,
It can be seen that although the discharge withstand capacity decreases, it suddenly changes when Bi203 becomes less than 20%. FIG. 5 is a diagram showing the relationship between the amount of Bi203 in the firing container and the thickness of the insulating layer.

AはSb203とBi203の塗布剤により形成された
絶縁層の厚みを示し、BはSb203のみの塗布剤によ
り形成された絶縁層の厚みを示している。図からBi2
03の量が多くなるに伴ない絶縁層が厚くなる。特にB
i203が2皿oク%までは直線的に増加していく。し
かし3皿oそ%を越すと)Z〜,3ぶbo,釘04相の
外側にSb−Bi−Zn−○酸化物層が形成されZn2
,斑Sb。,6704相(スピネル)の形成反応にBi
203が関与しなくなる。第6図は上記のBi203が
2伍ho〆%までの絶縁層形成過程を示すもので、Bi
203が塗布剤20から完全に蒸発して、素体18から
蒸発するBj203を抑制している。またSb203と
素体18からのZn○との因、気相反応によって形成さ
れるスピネル相24の形成をBj203が促進している
。第7図はBj203が3瓜hoと%を越えた時の絶縁
層形成過程を示すものである。
A indicates the thickness of an insulating layer formed with a coating agent of Sb203 and Bi203, and B indicates a thickness of an insulating layer formed with a coating agent of only Sb203. From the diagram Bi2
As the amount of 03 increases, the thickness of the insulating layer increases. Especially B
i203 increases linearly up to 2 plates. However, when the concentration exceeds 0%), an Sb-Bi-Zn-○ oxide layer is formed on the outside of the Z~, 3bubo, and nail04 phases, and Zn2
, Spot Sb. , 6704 phase (spinel) formation reaction
203 will no longer be involved. Figure 6 shows the process of forming an insulating layer in which the Bi203 content is up to 25%.
Bj 203 is completely evaporated from the coating agent 20, and Bj 203 is suppressed from evaporating from the element body 18. In addition, Bj203 promotes the formation of spinel phase 24 formed by a gas phase reaction between Sb203 and Zn○ from element body 18. FIG. 7 shows the process of forming an insulating layer when Bj203 exceeds 30%.

Bi203が過剰であるためBi203が飽和し、スピ
ネル相24の上にSb−Bi−Zn−0系の酸化物26
を形成し、スピネル相の形成に寄与していない。また塗
布剤2川こはBら03が残る。本実施例によれば、Sb
203とBi203の混合物を塗布剤として素体を入れ
る容器に塗布し、SQ03とBi203の雰囲気の中で
Zn○素体を焼成して素子を製造することによって、Z
nO繁体からBi203が蒸発し‘こくいので、放電耐
量などの電気特性が良好な非直線電圧電流特性を有する
電圧非直線抵抗体素子を製造する効果がある。
Since Bi203 is in excess, Bi203 becomes saturated and Sb-Bi-Zn-0 based oxide 26 is formed on top of the spinel phase 24.
, and does not contribute to the formation of the spinel phase. Also, coating agent 2 Kawakoha B et al. 03 remains. According to this embodiment, Sb
By applying a mixture of 203 and Bi203 as a coating agent to a container containing the element body, and baking the Zn○ element body in an atmosphere of SQ03 and Bi203 to manufacture an element.
Since Bi203 evaporates from the nO substance and is thick, it is effective in manufacturing a voltage nonlinear resistor element having nonlinear voltage-current characteristics with good electrical characteristics such as discharge withstand capacity.

Bi203の雰囲気が絶縁体形成を促進するため、素子
焼成温度範囲で高抵抗な絶縁層を簡単に素子側面に形成
させる効果がある。この絶縁層はェポキシ樹脂をコーテ
ィングした場合に比較して、素子の電気的諸特性が優れ
無機側面剤を塗布して焼成したものと同等の特性のもの
を製造し得る効果がある。またZn○素体からBi20
3の飛散を抑制するため、均質な素子を製造する効果が
ある。以上の説明から明らかなように本発明によれば、
アンチモン酸化物とビスマス酸化物の混合雰囲気中にて
Zn○素体を焼成することにより、繊密で均一な結晶粒
を有し、素子本体との密着性の良い絶縁層を形成し、且
つ素子特性劣化が少なく電圧非直線性も増加し、更に他
の電気特性も向上する電圧非直線抵抗体素子が得られる
ものである。
Since the Bi203 atmosphere promotes the formation of an insulator, it has the effect of easily forming a high-resistance insulating layer on the side surface of the device within the device firing temperature range. This insulating layer has the effect that the electrical properties of the device are superior to those coated with epoxy resin, and it is possible to manufacture a device with properties equivalent to those obtained by applying an inorganic side surface agent and firing. Also, Bi20 from Zn○ element body
In order to suppress scattering of 3, it is effective to manufacture a homogeneous element. As is clear from the above description, according to the present invention,
By firing the Zn* element in a mixed atmosphere of antimony oxide and bismuth oxide, an insulating layer with fine and uniform crystal grains and good adhesion to the element body is formed, and the element It is possible to obtain a voltage nonlinear resistor element that exhibits little characteristic deterioration, increases voltage nonlinearity, and further improves other electrical characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である電圧非直線抵抗体素子
の製造方法を適用した説明図、第2図はX線マイクロア
ナライザーによる形成絶縁層の状態で、同図Aは6庇b
203−4服i203の場合で、1は2次電子像、ロ,
m,WはそれぞれSb,Zn,Biの特性×線図、同図
Bは8庇Q03−20Bj203の場合で、1は2次電
子像、0,m,WはSb,Zn,Biの特性X線像、第
3図はSb203とBi203の混合量と、素子内のB
i203の減量関係図、第4図はSb203とBi20
3の混合比の変化と、素子の電気特性との関係図、第5
図は焼成用容器内のBj203の量と絶縁層の厚みとの
関係図、第6図はBj203が2仇hoそ%以下の場合
の絶縁層形成過程図、第7図はBj203が3仇hoク
%以上の場合の絶縁層形成過程図、第8図は被膜のX線
回折図である。 12・・・鞘、18・・・素子、20・・・塗布剤、2
2・・・蓋。 第1図 第2図 第3図 第8図 第2図 第4図 第5図 第6図 第7図
Fig. 1 is an explanatory diagram to which a method for manufacturing a voltage non-linear resistor element according to an embodiment of the present invention is applied, Fig. 2 shows the state of an insulating layer formed by an X-ray microanalyzer, and Fig. A shows a 6 eaves b.
In the case of 203-4 clothes i203, 1 is the secondary electron image, b,
m, W are the characteristics x diagram of Sb, Zn, Bi, respectively, B is the case of 8 eaves Q03-20Bj203, 1 is the secondary electron image, 0, m, W are the characteristics X of Sb, Zn, Bi Line image, Figure 3 shows the amount of mixture of Sb203 and Bi203, and the B in the element.
i203 weight loss relationship diagram, Figure 4 is Sb203 and Bi20
Relationship diagram between the change in the mixing ratio in No. 3 and the electrical characteristics of the element, No. 5
The figure shows the relationship between the amount of Bj203 in the firing container and the thickness of the insulating layer. Figure 6 shows the process of forming an insulating layer when Bj203 is 20% or less. Figure 7 shows the insulating layer formation process when Bj203 is 30% or less. Figure 8 is an X-ray diffraction diagram of the film, showing the process of forming an insulating layer in the case where the concentration is higher than %. 12... Sheath, 18... Element, 20... Coating agent, 2
2... Lid. Figure 1 Figure 2 Figure 3 Figure 8 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 酸化亜鉛を含む電圧非直線抵抗体の焼成時において
、容器内にアンチモン酸化物、ビスマス酸化物を配置し
、前記焼成と同時に気−固相反応により側面絶縁被膜を
形成するようにしたことを特徴とする電圧非直線抵抗体
素子の製造方法。
1. When firing a voltage nonlinear resistor containing zinc oxide, antimony oxide and bismuth oxide are placed in a container, and a side insulating film is formed by a gas-solid phase reaction at the same time as the firing. A method for manufacturing a voltage nonlinear resistor element characterized by:
JP55041777A 1980-03-19 1980-03-31 Manufacturing method of voltage nonlinear resistor element Expired JPS6015126B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55041777A JPS6015126B2 (en) 1980-03-31 1980-03-31 Manufacturing method of voltage nonlinear resistor element
SE8101532A SE455143B (en) 1980-03-19 1981-03-11 SET TO MAKE A NON-LINES, VOLTAGE-DEPENDENT RESISTOR
AU68469/81A AU527861B2 (en) 1980-03-19 1981-03-18 Voltage dependent resistor
CH1830/81A CH650096A5 (en) 1980-03-19 1981-03-18 Method for fabricating a resistor having a non-linear voltage dependence
DE3110750A DE3110750A1 (en) 1980-03-19 1981-03-19 Process for producing a nonlinear voltage-dependent resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55041777A JPS6015126B2 (en) 1980-03-31 1980-03-31 Manufacturing method of voltage nonlinear resistor element

Publications (2)

Publication Number Publication Date
JPS56138901A JPS56138901A (en) 1981-10-29
JPS6015126B2 true JPS6015126B2 (en) 1985-04-17

Family

ID=12617794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55041777A Expired JPS6015126B2 (en) 1980-03-19 1980-03-31 Manufacturing method of voltage nonlinear resistor element

Country Status (1)

Country Link
JP (1) JPS6015126B2 (en)

Also Published As

Publication number Publication date
JPS56138901A (en) 1981-10-29

Similar Documents

Publication Publication Date Title
US4460497A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and selected alkali metal additives
US3909327A (en) Method for making a monolithic ceramic capacitor with silver bearing electrodes
JPS6015126B2 (en) Manufacturing method of voltage nonlinear resistor element
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
JPS6253922B2 (en)
JPS6015128B2 (en) Manufacturing method of voltage nonlinear resistor element
JPS6156845B2 (en)
US4374160A (en) Method of making a non-linear voltage-dependent resistor
JPS6248881B2 (en)
US20210225564A1 (en) Thermistor sintered body and temperature sensor element
US4269898A (en) Resistance material
JPS6161523B2 (en)
JPS6320004B2 (en)
JPS6025008B2 (en) Firing method for voltage nonlinear resistor element
JPS6015125B2 (en) Firing method for voltage nonlinear resistance element
JPS6161522B2 (en)
US3962487A (en) Method of making ceramic semiconductor elements with ohmic contact surfaces
JPS6156844B2 (en)
JPS59172201A (en) Method of forming insulating film of voltage nonlinear resistor element
JPS6236610B2 (en)
JPS6243324B2 (en)
JP2793578B2 (en) Method for manufacturing voltage non-linear resistor and sagger used for the same
JP2619129B2 (en) Method for manufacturing voltage non-linear resistor and sagger used for the same
JPH08203708A (en) Nonlinear resistor
JPS6161686B2 (en)