JPS5989410A - Vapor phase reaction method - Google Patents
Vapor phase reaction methodInfo
- Publication number
- JPS5989410A JPS5989410A JP57199897A JP19989782A JPS5989410A JP S5989410 A JPS5989410 A JP S5989410A JP 57199897 A JP57199897 A JP 57199897A JP 19989782 A JP19989782 A JP 19989782A JP S5989410 A JPS5989410 A JP S5989410A
- Authority
- JP
- Japan
- Prior art keywords
- silane
- fluorine
- mixed
- oxide
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、1モル以下の酸素または酸化物の混入した
シランに、フッ素またはフッ化水素をシランに対し0.
1〜20% 、好ましくは1〜10チの温度に混入ぜし
めた反応性気体であることを目的としている。DETAILED DESCRIPTION OF THE INVENTION The present invention involves adding fluorine or hydrogen fluoride to silane mixed with 1 mole or less of oxygen or oxide in an amount of 0.00% relative to the silane.
It is intended to be a reactive gas mixed at a temperature of 1 to 20%, preferably 1 to 10 degrees.
この発明は、かかるフッ素またはフッ化水素(以下単に
フッ素という)を混入させたシランをプラズマ気相法(
PCVDという)または減圧気相法(r、pcvDとい
う)Kよシ、基板の被形成面上に非単結晶半導体膜を形
成せしめたことを目的とする0
この発明は、アモルファスまたに1結晶性が一部捷たは
全部に含む非単結晶学:4シ体であって、かかる半導体
中に酸化物性11C1,IQ化珪素(S10□一般には
Siq、)が混入して、その電気伝漕度および5i−O
H結合が混入して電気伝導!■、の特性劣化をおこすこ
とを防ぐことによシ、高電気伝心度を有しかつ特性の劣
化をともなわない半導体を形成することを目的としてい
る。In this invention, silane mixed with such fluorine or hydrogen fluoride (hereinafter simply referred to as fluorine) is produced using a plasma vapor phase method.
It is an object of the present invention to form a non-single-crystalline semiconductor film on a surface of a substrate by using PCVD (referred to as PCVD) or reduced-pressure vapor phase method (referred to as PCVD). Non-single crystallography in which 11C1, IQ silicon oxide (S10□Generally, Siq) is mixed into such a semiconductor, and its electrical conductivity increases. and 5i-O
Electrical conduction with H-bonds mixed in! (2) By preventing the deterioration of characteristics, the purpose is to form a semiconductor that has high electrical conductivity and is not accompanied by deterioration of characteristics.
従来かかる気相法(P (3V DまたはLPOVD法
を総称する)においては、反応装b°のごく微量酸素の
リークによる反応炉内への混入、ステンレス酸等内壁に
伺着している水、酸素との反応による酸化珪素の発生お
よびかかる酸化珪素の1疋コン半導体膜への混入によシ
その電気特性が十分なものではなかった。Conventionally, in the gas phase method (P (collectively referred to as 3V D or LPOVD method)), there were problems such as leakage of a very small amount of oxygen from the reactor b° into the reactor, water adhering to the inner walls of stainless steel, etc. Due to the generation of silicon oxide due to the reaction with oxygen and the incorporation of such silicon oxide into the single-layer semiconductor film, its electrical properties were not satisfactory.
加えて高圧容器(ボンベともいう)中にシランを充填す
る際、この初期のボンベ内に残存する吸着水により、ボ
ンベ内では酸化珪素が発生し、このボンベ内に残存する
酸化珪素極微粉もシランとともに反応炉内を飛翔して、
シリコン半4′!体中に酸化物または水酸化物を作って
し寸っていた。そしてこのf1〆化物および水酸化物は
その混入f2素が一般的に10〜3X10 am も
半朽体中に混入してしまい、結果とし′C061〜2%
もの湿度匠なつ1しまっていた。さらにその伝導が十分
でないとともに前記した装j?’j (7,”リーク等
によシさらに多くの酸素がシリコン半N)体中に混入し
又しまっていた。In addition, when filling silane into a high-pressure container (also called a cylinder), silicon oxide is generated in the cylinder due to the adsorbed water that remains in the cylinder at the initial stage, and the ultrafine silicon oxide powder remaining in this cylinder also becomes silane. and fly inside the reactor with
Silicone and a half 4′! He was creating oxides or hydroxides in his body. In general, 10 to 3X10 am of f2 elements are mixed into the semi-decayed body of f1 and hydroxide, resulting in 'C061 to 2%.
The humidity level of Takumi Natsu was stored away. Furthermore, the conduction is not sufficient and the above-mentioned equipment? (7.) Due to leakage, more oxygen was mixed into the silicon semi-N body.
本発明はかかる特性低下および劣化の主原因である酸素
をとシ除くことを目的としている。The object of the present invention is to eliminate oxygen, which is the main cause of such property deterioration and deterioration.
そのため本発1.!Jlけシラン(81H,のモノシラ
ンまたは5inH,、、−Ln> 2のポリシラン)中
にフッ素または純水素の転体を混入せしめ、このフッ素
によジシラン中の脱水を行なわしめ、反応生成物である
非1結晶シリコン中KSiOxまたは5i(OHλで表
わされる酸化珪素または水酸化珪素を除去せしめること
をl[ヲ徴としている。Therefore, the main issue is 1. ! Fluorine or pure hydrogen is mixed into silane (monosilane of 81H, or polysilane of 5inH, -Ln>2), and the fluorine dehydrates the disilane, resulting in a reaction product. 1 is characterized by removing silicon oxide or silicon hydroxide represented by KSiOx or 5i (OHλ) in non-mono-crystalline silicon.
即ち、酸素の電気411度が3.0であるのに対し、そ
れより大きい3.5の11.気Pi41度を有するフッ
素を消量添加せしめることによシ、脱水反応(脱rK素
反応と変えてもよい)を行なわしめることを目的として
いる。That is, while the electric 411 degrees of oxygen is 3.0, it is 11 degrees, which is 3.5 degrees. The purpose is to carry out a dehydration reaction (which may be changed to a de-rK reaction) by adding and depleting fluorine having a gas Pi of 41 degrees.
以下に図面に従ってその実施例を示す。Examples are shown below according to the drawings.
実施例1
第1図は本発明に用いられたpcvD装置の(°;L要
を示す。Example 1 FIG. 1 shows the (°; L) of the PCVD apparatus used in the present invention.
[,41面において被形成面をイ)する基板(1)は2
′!、い対をなし、各対を耐量(3〜10cm)l、て
反応性気体の流れにそうようにしてホルダー(1ツに保
持されている。反応炉(2)は上部下部に赤外線ヒータ
(7)(9)を有し、基板(1)を加熱している。反応
性気体はふき出し口(3)よシ排気口(8)K上方より
下方に基板表面れ、基板の近傍の空間で反応性気体をプ
ラズマ化して被形成面上に非単結晶半導体膜を形成して
いる0
反応炉の出し入れは予備室を有し、炉内に大気が混入す
るのを防いでいる。即ち基板ホルダーは予備室(10に
配置し、パルプ(ハ)を開は真空ポンプはりによシ真空
にした後、反応炉内(てゲート弁を開けて導入ぜしめる
。The substrate (1) whose surface to be formed is a) on the [,41 plane is 2
′! The reactor (2) is equipped with an infrared heater (2) in the upper and lower parts. 7) (9), which heats the substrate (1).The reactive gas flows from the blowout port (3) to the bottom of the substrate surface from above the exhaust port (8) K, and the reactive gas flows into the space near the substrate. A non-single-crystal semiconductor film is formed on the surface to be formed by converting the reactive gas into plasma in the reactor. The holder is placed in the preliminary chamber (10), and the pulp (c) is evacuated using a vacuum pump, and then introduced into the reactor by opening the gate valve.
ドーピング系体)は流量計α′L)、バルブ9)9をイ
jし又いる。The doping system) also includes a flowmeter α'L) and a valve 9).
この図面では水素希釈のジポランQす、水素希釈の7第
2:ヒンQ′→、水素またはへリュームのキャリアガス
Qυを有している。シランはボンベψ)K充μ「iされ
、J1力1,1ε整器い夛をへてパルプ斡9より翰にイ
ピ(されている。In this figure, a hydrogen-diluted diporane Q, a hydrogen-diluted 7-hin Q'→, and a hydrogen or helium carrier gas Qυ are shown. The silane was added to the cylinder ψ)K, passed through the J1 force 1,1ε preconditioner, and was then piped from the pulp box 9 to the cell.
かかるPCVD装置において、電気エイルギ(4)を加
えない楊−8はLPOVDと2直る。In such a PCVD apparatus, Yang-8 without adding electric energy (4) is equivalent to LPOVD by 2.
かくし−C反応炉を真空引をし、十分配管を含めて真空
引(IXlo−′torr以下)をした後、フッ素の混
入したシランをに)より反応炉内に巧゛大した0温度を
25060 、反応炉内圧力をO,1torrとし、電
気ヱネルギとしてIOWを加えた。基板はここでは10
c m’が161い4cmの間隙をへ又配置されてい
る。After evacuating the Hidden-C reactor, including the piping, the vacuum was sufficiently evacuated (below IXlo-'torr), and then fluorine-containing silane was poured into the reactor to bring the temperature up to 25,060 degrees. The pressure inside the reactor was set to 0.1 Torr, and IOW was added as electrical energy. The board is 10 here.
cm' is 161 and is placed across a gap of 4 cm.
シランを30ccZ分でフッ素/シラ/を5係とすると
フッ素はl 、5007分とする)を;+、、’:L人
した。If silane is 30ccZ and fluorine/sila/ is 5 parts, fluorine is l, 5007 parts);+,,':L people.
すると反応炉内では第2図に示される反応式がおこり、
A;、−果として形成される非単結晶半導体中゛vr
H:p 累はI X 10 c rr+’以下、好まし
くは1×10〜lXl0 C!nK’tて下げること
ができた。これを赤外線吸収スペクトルまたは工MA(
イオン・マイクロ・アナライザ)により検出せしめた。Then, the reaction equation shown in Figure 2 occurs inside the reactor,
A; - In the non-single crystal semiconductor formed as a result ゛vr
H:p cumulative is less than or equal to IX10 crr+', preferably 1x10 to lXl0C! I was able to lower it by nK't. This is called the infrared absorption spectrum or engineering MA (
It was detected using an ion micro analyzer).
作光し轄。Managed by light.
第2図r(おい1すJ’、 i−i、、rJA’ (3
0%31) ”’C’ ;h 60 結果として非狼結
晶シリコンが水素を含南しtlまた一部には従来のフッ
素を含有して形ル)Lぜしめることができた。Figure 2 r (Oi1suJ', ii,, rJA' (3
0%31) ``'C'; h 60 As a result, the non-silica crystalline silicon contained hydrogen and also partially contained conventional fluorine to form the form L).
この時一般にフッ素がない場合、式(3曵(3名(3つ
の反応もおき、結果としてこの反応生成物中に日10バ
一般的にはS 10 x )が混入してしまう。加えて
式(33)(’、34)の中途の反応がおきるため、5
i−OHフ
も同時に多4に混入してし1うことが判明し7た。At this time, if there is generally no fluorine, the formula (3 reactions also take place, and as a result, the reaction product is mixed with S 10 x ).In addition, the formula (33) (', 34) because the intermediate reaction occurs, 5
It was found that i-OH was also mixed into the water at the same time.
しかしこの反応式に式(31)K示される如くフッ素を
混入ぜしめると、フッ素′!f、たけフッ化水素は式(
35) (36) K示される如く、5inLを脱水せ
しめ、プ
珪素のri(化物または水酸化物の反応を錆止すること
ができることがわかった。However, when fluorine is mixed into this reaction equation as shown in equation (31)K, fluorine'! f, hydrogen fluoride is expressed by the formula (
35) (36) K As shown, it was found that 5 inL was dehydrated and the reaction of RI (compound or hydroxide) of silicon could be prevented from rusting.
さらにこの反応FiSiFヤを反応性気体として用いる
のではなく、フッ素(勺またはフッ化水素(HF)であ
ることが重要であシ、シラン系の]〜30Wの珪素11
〆3を作ることを4芙−R〉丁はしていない。これは式
(3卑36)より明らかに化学的に安定なSiF、ld
、二次生成物であることよシ明らかである。Furthermore, rather than using this reaction FiSiF as a reactive gas, it is important to use fluorine (or hydrogen fluoride (HF), silane-based) ~30W silicon 11
4-R〉cho does not make 〆3. This is clearly chemically stable SiF, ld
, it is clear that it is a secondary product.
かくしてフッ素−jたはフッ化水素を添加することによ
シ、反応生成物中に酸化物または水酸化物を十分少なく
することができる。そしてそのフッ素の添加範囲は第3
図に示す曲線(3つに囲まれた斜線領域(38)が最適
であった。Thus, by adding fluorine or hydrogen fluoride, the amount of oxide or hydroxide in the reaction product can be sufficiently reduced. And the range of addition of fluorine is the third
The curve shown in the figure (the shaded area (38) surrounded by three) was optimal.
は脱酸素反応を期待することができなかった。またフッ
素の添加量を20%以上にすることも可能であるが、あ
棟り多いと配管系または反応炉がエツチングされやすく
、その結果全屈不純物が入シやすいため20%1で好ま
しくは1〜10%が最適であった。No deoxidizing reaction could be expected. It is also possible to increase the amount of fluorine added to 20% or more, but if there are too many ridges, the piping system or reactor is likely to be etched, and as a result, total fluorine impurities are likely to enter. ~10% was optimal.
との反応生成物を作る温度も250’Oではなく150
〜300°ORおいてはこ(7; ji dlが好まし
がった。The temperature at which the reaction product is produced is also not 250'O but 150
At ~300°OR, 7; ji dl was preferred.
しかし500〜’i’oo’oと高温になると、単なる
r、pCvDでよく、電気エネルギは不要であった。However, when the temperature reached 500 to 'i'oo'o, simple r, pCvD was sufficient and no electrical energy was required.
シランを前記したモノシランではなく、ポリシラン(例
えば5itl−]、)を用いた場合はLPCVD&−よ
300〜500°Cで可能であった。その際のフッ素は
1〜10チ添加することが有効であった。When a polysilane (for example, 5 itl-) was used instead of the above-mentioned monosilane, LPCVD was possible at 300 to 500°C. It was effective to add 1 to 10 fluorine at that time.
第4図はガラス基板上K O,5μの半巧体層を平行f
f1lf極を設けて電気伝導度特性を調べたものである
。第4図は特に本発明方法のフッ素またはフッ化水素を
冷加l−た特性(44) −(48)およびフッ素また
はフッ化水素の添加を全く行なっていない場合の層性(
39)〜(43)を示したものである。Figure 4 shows a semi-structured layer of KO, 5μ on a glass substrate parallel to f.
The electrical conductivity characteristics were investigated by providing an f1lf pole. Figure 4 particularly shows the properties (44) to (48) of the method of the present invention when fluorine or hydrogen fluoride is cooled, and the layer properties (44) to (48) when no fluorine or hydrogen fluoride is added.
39) to (43) are shown.
図面において領域(49)は暗転洒1ツを示し、10(
ncJのオーダの値を有している。ことKAMI(10
0mW/Q m L) f領域(50)Kて照射すると
、従来は曲?a(40)K示す如< I X 10’
(A C! m5’を有しかつ2時間連続照射して約1
桁その値が劣化していた。In the drawing, area (49) shows 1 dark change and 10 (
It has a value on the order of ncJ. KotoKAMI (10
0mW/Q m L) f area (50) When irradiated with K, conventionally it is a curve? a(40)K as shown < I X 10'
(A C! m5' and after continuous irradiation for 2 hours approximately 1
That value had deteriorated.
他方本イ’i 8J] Kおい−CFi、そ。ブ、5ヶ
。1,1.ゆ、6′湧デゴオーダと約1桁も大きく、さ
らに連続光の照射にて曲線(45)+でみられる如くほ
とんとその劣化かみられなかった。On the other hand, I'i 8J] Koi-CFi, that. Wow, 5. 1,1. It was about an order of magnitude larger than 6', and furthermore, when irradiated with continuous light, almost no deterioration was seen as seen in curve (45)+.
さらに領域(51)においてその照射後の暗転導度も従
来例では(3”)(’ 1) S′ノー桁の劣化がみら
れるがン
本発明においては(44)(46)は?、![のn11
4囲で同一であ)
つた〇
さらに150’Oの加熱を行なうと、従来例では曲線(
41)が(42)となシ、ηljノーの特性向上変化が
あシその後領域(5ツにて光照射を行なうと曲線0段と
曲線<40)の如<rlび劣化特性がみられる。即ち従
来例ではかくの如くに電気伝導度が(5つに示される如
く小さく、かつ光照射により劣化Q+性がみられる。Furthermore, in the conventional example, the dark conversion conductivity after irradiation in the region (51) shows a deterioration of no order of magnitude of (3'') (' 1) S', but in the present invention, (44) and (46)?,! [n11
〇 When heating is further performed at 150'O, the conventional example shows the curve (
41) becomes (42), there is no improvement in the characteristics of ηlj, but the subsequent region (when light irradiation is performed at 5 points, curve 0 step and curve <40) show deterioration of characteristics. That is, in the conventional example, the electrical conductivity is small as shown in (5), and the Q+ property of deterioration is observed by light irradiation.
しかし本発明においては、電気伝導度が(54)の如く
大きく、かつ光照射の有無、熱アニールの有無で特性の
劣化がほとんど観察されなかった。However, in the present invention, the electrical conductivity was as high as (54), and almost no deterioration of the characteristics was observed with or without light irradiation and with or without thermal annealing.
ここに第1図に示される如くドーピング系にてホウ素を
10″〜5XlO” C耐′代表的には2X10”〜l
Xl6’cI71□J混入させることにより、このホウ
素が変化をもさらに完全に除去することができた。Here, as shown in Fig. 1, boron is added in a doping system of 10'' to 5XlO''C, typically 2X10'' to 1
By incorporating Xl6'cI71□J, this boron change could be further completely removed.
第5図は第4図における従来例の光劣化特性(Phot
o−工nduced Effect以1P工Eという、
これはステズラーロンスキ7JJJ果ともいわれている
)の原理および本発明による特性びJの原理を示したも
のである。Figure 5 shows the photodegradation characteristics (Photo) of the conventional example in Figure 4.
o-engine induced Effect is called 1P-engine E,
This shows the principle of Stezleronski (also known as 7JJJ) and the characteristics and principles of the present invention.
即ち(A)はTi f、 Y f ?イ 中に【jとの
結合があると、この部分ではsiOを作るため電気伝導
を劣化さぜる。このため第4図(53)(49)が作ら
れる。さり
0H基によるスピン(55)(5a)を逆向きに有して
いるま
ため 4″1: VCこの8l−OHにより電気伝導に
大きな変化はない。しかし第4図曲線(40)(43)
Kみられるプ
如く光特に紫外iiη照射を行なうと、その一方の8l
−OH基の向きがかわる。そのタ゛イボール(双このた
め電気伝導度が曲線(40) (43)の如くにその照
フ
対量に従って指数関数的に桟少していく。これは150
°C以上の熱処理で再び熱4伯の(B) K fLるた
め、曲線(43)の光照射のルハ41−は(53)に概
略一致する。That is, (A) is Ti f, Y f? If there is a bond with [j in A, SiO is formed in this part, which deteriorates electrical conduction. For this reason, FIG. 4 (53) and (49) are created. 4"1: VC, which has the spin (55) (5a) due to the 0H group in the opposite direction. There is no significant change in electrical conduction due to this 8l-OH. However, the curves (40) (43) in Figure 4
When irradiated with light, especially ultraviolet iiη, as seen in K, one of the 8l
The orientation of the -OH group changes. Because of the two balls, the electrical conductivity decreases exponentially according to the amount of light, as shown by curves (40) and (43).This is 150
Since the heat treatment at temperatures higher than 0.degree. C. causes the heat 4.degree.
この可逆性のくりかえしがおきるため、lp¥性の劣化
がされる。このモデルは本元明人によってなされたもの
であシ、現在フィジカル・レビュー・レター社に投稿中
である。Since this reversible cycle occurs repeatedly, the lp performance deteriorates. This model was created by Akito Motomoto and is currently being submitted to Physical Review Letters.
さらに本jIM明に示す如く、フッ素またはフッ化水素
を添加すると、第5図(D) K示す如く、酸素を全く
またにはとんと除去できると同時に、その珪素の不対結
合手の中和に水素およびフ、ツ素が寄与するため、第4
図(5ツに示す如く、その電気伝導度を向上せしめると
ともに、5i−OH基の可逆過程による特性の劣化がな
い。Furthermore, as shown in this book, when fluorine or hydrogen fluoride is added, oxygen can be completely or completely removed as shown in Figure 5 (D), and at the same time, the dangling bonds of silicon can be neutralized. Due to the contribution of hydrogen and fluorine, the fourth
As shown in Figure 5, the electrical conductivity is improved and the properties do not deteriorate due to the reversible process of the 5i-OH group.
さらにこの本発明の珪素中K hz C,酸素がそれで
も残存する場合、第5図(K) K示す如く、三4?の
ホウ素と5i−OHとが第5図(F) K示す如く混合
し、B−〇−81結合によυ5i−OH基の存在を禁止
することができた。その結果、電気特性の阪導度の向上
をさらKはかることができた。Furthermore, if K hz C and oxygen still remain in the silicon of the present invention, as shown in FIG. 5(K), 34? boron and 5i-OH were mixed as shown in FIG. As a result, we were able to further improve the electrical conductivity.
この実施例は第1図にみられる如く、ボンベ中特にボン
ベ内でボンベとフッ素が反応しないようにその内壁にボ
ンベの金1qty、2化物または≧d化珪累ヲコーティ
ングした。またはステンレスボンベ9へ9
を用い、その内壁をプラズマ水素゛カヒ「およびそれに
加えてプラズマ望にイア1f覧を施したものケ用いた。In this embodiment, as shown in FIG. 1, the inner wall of the cylinder was coated with 1qty of gold, dioxide, or ≧d silicon to prevent the reaction between the cylinder and fluorine in the cylinder. Alternatively, a stainless steel cylinder 9 was used, the inner wall of which was treated with plasma hydrogen oxide and, in addition, a plasma cylinder 1f.
かくすることによシ、7ツネを0.1〜20%、残りシ
ランという高濃J皮シランをlo=30Kg/cm”c
高圧で充填することができ、かつその特性もI4−以上
十分安定なものであった。In this way, 7 pieces of 0.1 to 20% and the rest of silane, Kono J-skin silane, were added to lo=30Kg/cm"c.
It could be filled under high pressure, and its properties were sufficiently stable over I4-.
この発明において吏だ右l(として高圧容器内にフッ素
寸たはフッ化水素を混合したシランを用いた。In this invention, silane mixed with fluorine or hydrogen fluoride was used in a high-pressure container.
しかし第1図においてに)よシフッ素またはフッ化水素
またViこれらを水素またt・まヘリュームによシ0.
1〜10%に希釈して導入し、0邊よりはシランのみ導
入し、ドーピング系にて混合させてもよい。However, in FIG.
The silane may be diluted to 1 to 10% and introduced, and only silane may be introduced from the zero point, and mixed in a doping system.
第3図の特性に1:かくの如く((シて調べることによ
υさらにその粘度を向上させることができる。The viscosity can be further improved by examining the characteristics shown in Figure 3.
本発明に1?いてPまたはN型の不純物を0.001チ
以上混入さぜない真性のシリコン被膜を示した。1 for this invention? This indicates an intrinsic silicon film containing no more than 0.001 inch of P- or N-type impurities.
しかしN価またはV価の不純物をi la的に導入して
PまたはN型の半2’、”4’+体を作ることも可能で
あるGtまたC!II達同時に導入して、シリコン金主
成分とするB i X Or−y((0< x、< 1
)を作ることも可Nヒでちる。However, it is also possible to create a P- or N-type half 2', "4'+ body" by introducing N-valent or V-valent impurities. B i X Or-y ((0< x, < 1
) can also be made.
またゲルマンを4人してシリコンを主成分とするS 1
XGe+−、I(0<X< 1)を作ることも可能であ
る。In addition, S 1 with silicon as the main component by 4 Germans
It is also possible to make XGe+-, I (0<X<1).
さらに本発明の非単結晶半導体を積層したP工N構造を
冶したjY: ’i’に、変換装置またはIGFE’T
、集石゛1回路It % l ;、 :、 l’ f(
)5++へLl、高イr; :’NtI性の半導体装I
V1゛を実用化することができ、その工業的価値は大な
るものである。Furthermore, a conversion device or an IGFE
, Stone collection 1 circuit It % l ;, :, l' f(
)5++ to Ll, high ir; :'NtI semiconductor device I
V1' can be put to practical use, and its industrial value is great.
第1図は本発明に用いたOVD装置、の概要を示す〇
#r! 2図は本発明に用いられた化学反応式を示すO
第3図は本光りJK必要なjl:1量な領域を示す。
第4図は木兄IJilおよび従来例の電気伝導涯の変化
を示す。
第5し;]は本発明および従来例における結合子配位の
16.1係を示す。
5iH4−−−−−−→ S、 −1−2H1−−−−
−(ヲのs、 H,+2 l−1−〜 SH+ 2)
IF −−−−(?I)Si)14十〇、 −
−う Sシα+2Hxj −−−−(a2)02+
2)−12−m−→2HtO↑ 〜−−−(99
)S、H3+2H10−−−一う 5102+ 4Hコ
↑ −−−−C34)S;Oz’2h +2)4m
−) 5r−V*1+ 2HtOi −−−−tq
s)S、α+4)−IF −−一う Si):、丁
+2HtO4−−−−t9g)替91a
0−00Q/ 0−001 0.01
0.J //@3(2)
g8問(kr )
羊4■
0
S。
(E)
(A)
(B)
(C)
CD)
♂、−B−5゜
$l
(Fン
舖贋aFigure 1 shows an overview of the OVD device used in the present invention. Figure 2 shows the chemical reaction formula used in the present invention.
FIG. 3 shows the area of jl:1 required for Honkari JK. FIG. 4 shows changes in the electrical conductivity of the Kinoi IJil and the conventional example. 5th] indicates the 16.1 ratio of the bond coordination in the present invention and the conventional example. 5iH4-------→ S, -1-2H1----
-(Wonos, H, +2 l-1-~ SH+ 2)
IF -----(?I)Si) 1400, -
-U S α+2Hxj ---(a2)02+
2) -12-m-→2HtO↑ ~---(99
)S, H3+2H10---1 5102+ 4H ↑ -----C34)S;Oz'2h +2)4m
-) 5r-V*1+ 2HtOi ---tq
s) S, α+4) -IF --1 Si):, D+2HtO4---t9g) Replacement 91a 0-00Q/ 0-001 0.01
0. J //@3(2) g8 questions (kr) Sheep 4 ■ 0 S. (E) (A) (B) (C) CD) ♂, -B-5゜$l
Claims (1)
、フッ素またはフッ化水素を蛙−“ −
混入せしめ た反応性気体を、1気圧以下に保持された反応炉内に導
入し、熱または電気エネルギを供給して熱化学反応寸た
はプラズマ化学反応をぜしめることCζより、被形成面
上にシリコンを主成分とした非単結晶半導体膜を形成ゼ
しめることを特徴とした気相反応方法。 2、特許請求の範囲第1項において、シランd!9 j
、 H,’IHたはS 1 n Hi*+z(n 2’
”)よりなることを特徴とする気相反応方法0 :ty1%イta ’C! S 44Q Lij JX
。[Claims] Fluorine or hydrogen fluoride is added to silane mixed with oxygen or oxides of 11 molar proportion or less.
The mixed reactive gas is introduced into a reactor maintained at 1 atmosphere or less, and heat or electrical energy is supplied to cause a thermochemical reaction or a plasma chemical reaction. A gas phase reaction method characterized by forming a non-single crystal semiconductor film mainly composed of silicon. 2. In claim 1, Silane d! 9 j
, H,'IH or S 1 n Hi*+z(n 2'
”) A gas phase reaction method characterized by consisting of 0: ty1% Ita'C!
.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57199897A JPS5989410A (en) | 1982-11-15 | 1982-11-15 | Vapor phase reaction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57199897A JPS5989410A (en) | 1982-11-15 | 1982-11-15 | Vapor phase reaction method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5989410A true JPS5989410A (en) | 1984-05-23 |
Family
ID=16415419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57199897A Pending JPS5989410A (en) | 1982-11-15 | 1982-11-15 | Vapor phase reaction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5989410A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2592396A1 (en) * | 1985-12-28 | 1987-07-03 | Canon Kk | PROCESS FOR FORMING A DEPOSITED FILM. |
EP0673058A3 (en) * | 1988-03-31 | 1995-10-11 | Toshiba Kk | |
USRE36328E (en) * | 1988-03-31 | 1999-10-05 | Kabushiki Kaisha Toshiba | Semiconductor manufacturing apparatus including temperature control mechanism |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56107551A (en) * | 1980-01-30 | 1981-08-26 | Fuji Photo Film Co Ltd | Amorphous semiconductor having chemical modification |
JPS57153428A (en) * | 1981-03-18 | 1982-09-22 | Semiconductor Energy Lab Co Ltd | High-pressure vessel for manufacturing semiconductor and its use |
JPS57170520A (en) * | 1981-04-13 | 1982-10-20 | Semiconductor Energy Lab Co Ltd | High-pressure cylinder for fabrication of semiconductor film and its application |
-
1982
- 1982-11-15 JP JP57199897A patent/JPS5989410A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56107551A (en) * | 1980-01-30 | 1981-08-26 | Fuji Photo Film Co Ltd | Amorphous semiconductor having chemical modification |
JPS57153428A (en) * | 1981-03-18 | 1982-09-22 | Semiconductor Energy Lab Co Ltd | High-pressure vessel for manufacturing semiconductor and its use |
JPS57170520A (en) * | 1981-04-13 | 1982-10-20 | Semiconductor Energy Lab Co Ltd | High-pressure cylinder for fabrication of semiconductor film and its application |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2592396A1 (en) * | 1985-12-28 | 1987-07-03 | Canon Kk | PROCESS FOR FORMING A DEPOSITED FILM. |
EP0673058A3 (en) * | 1988-03-31 | 1995-10-11 | Toshiba Kk | |
USRE36328E (en) * | 1988-03-31 | 1999-10-05 | Kabushiki Kaisha Toshiba | Semiconductor manufacturing apparatus including temperature control mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Inoue et al. | Low temperature growth of SiO2 thin film by double-excitation photo-CVD | |
Pereyra et al. | Wide gap a-Si1− xCx: H thin films obtained under starving plasma deposition conditions | |
Lucovsky | Local bonding of hydrogen in a-Si: H, a-Ge: H and a-Si, Ge: H alloy films | |
Khalifa et al. | Purification of silicon powder by the formation of thin porous layer followed byphoto-thermal annealing | |
CN105140306A (en) | Solar cell structure with anti-potential induced degradation (PID) effect and production method of solar cell structure | |
JPS5989410A (en) | Vapor phase reaction method | |
JPH01500444A (en) | Photochemical vapor deposition method with increased oxide layer growth rate | |
Lofgren et al. | Modeling of Silicon Carbide Epitaxial Growth in Hot‐Wall Chemical Vapor Deposition Processes | |
JPH06101573B2 (en) | Semiconductor device | |
Liu et al. | Structural and optoelectronic characteristics of nanocrystalline silicon oxide film as absorber layer for thin film solar cells | |
JPS60121272A (en) | Production of transparent conductive film | |
Shen et al. | Effects of pressure on the electronic and optical properties of defect-free and defect-containing fused silica: A first-principles study | |
JPS6027122A (en) | Method of photo plasma gas phase reaction | |
JPS63258016A (en) | Method for producing amorphous thin film | |
JP2001352087A (en) | Silicon film and manufacturing method thereof | |
Horita et al. | Low-temperature deposition of silicon oxide film from the reaction of silicone oil vapor and ozone gas | |
JPS5989409A (en) | Reactive gas for vapor phase reaction | |
CN1265110A (en) | Organosilicon nanocluster and process for producing same | |
JPH02259074A (en) | Method and apparatus for cvd | |
JPS59190209A (en) | Preparation of silicon coating film | |
JP3547161B2 (en) | Amorphous silicon film and method of manufacturing the same | |
Murri et al. | Electrical resistivity of a-SiC: H as a function of temperature: evidence for discontinuities | |
JP3555221B2 (en) | Method for producing fluorine-containing silicon oxide film | |
JPS60144940A (en) | Method of producing silicon oxide | |
Dias et al. | Evidence for oxygen bubbles in fluorine doped amorphous silicon dioxide thin films |