[go: up one dir, main page]

JPS5965252A - Ultrasonic automatic flaw detecting apparatus - Google Patents

Ultrasonic automatic flaw detecting apparatus

Info

Publication number
JPS5965252A
JPS5965252A JP57174751A JP17475182A JPS5965252A JP S5965252 A JPS5965252 A JP S5965252A JP 57174751 A JP57174751 A JP 57174751A JP 17475182 A JP17475182 A JP 17475182A JP S5965252 A JPS5965252 A JP S5965252A
Authority
JP
Japan
Prior art keywords
delay
probe
probe array
signal
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57174751A
Other languages
Japanese (ja)
Other versions
JPH0143906B2 (en
Inventor
Eiji Yamamoto
山本 英爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP57174751A priority Critical patent/JPS5965252A/en
Publication of JPS5965252A publication Critical patent/JPS5965252A/en
Publication of JPH0143906B2 publication Critical patent/JPH0143906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent the generation of a region not subjected to flaw detection by a simple control treatment without enhancing the accumulation density of a probe array, by successively sending out ultrasonic beams different in refractive angles every time when the probe array is changed over to oscillate the same. CONSTITUTION:A focus delay part 14 has eight delay elements each having a delay amount shown in the size in a longitudinal direction and ultrasonic beams from the probe groups of a probe array 10 are converged in the vicinity of the center O of a tubular body 12 to be inspected. On the other hand, in an argument delay part 16, ultrasonic beams converged in the vicinity of the center O of the tubular body are converged to the focus F1 on an X-axis coming to an eccentric amount d1 by the delay elements increased in the delay amounts thereof. Eight probe groups of the probe array 10 are used as one group and the argument delay parts 16A, 16B,... successively reduced in the delay amounts are successively changed over to perform oscillation for sending out ultrasonic beams B, B2,... of which refractive angles theta1, theta2,... are successively changed. By this method, the generation of a region not subjected to flaw detection is prevented by a simple control treatment.

Description

【発明の詳細な説明】 本発明(は、複数の探触子を環状に配列した探触子アレ
イを水中に固定設置し、探触子アレイの切換え走査によ
り被検査体の欠陥を検知する静止型の超音波自動探傷装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a stationary method in which a probe array in which a plurality of probes are arranged in a ring is fixedly installed in water, and defects in an object to be inspected are detected by switching and scanning the probe array. This article relates to automatic ultrasonic flaw detection equipment.

本願発明者等は、探触子を機械的に回転させることなく
スチールパイプ等の全周にわたる超音波自動探傷を可能
にするため、複数の探触子を環状に配列した探触子プレ
イを水中に固定設置し、所定数の探触子を1グループと
して一定方向に順次切換え走査し、切換え走査により選
択した探触子群に対する送信パルスに焦点探触子と等価
な超音波ビーム特性を得るだめの送信遅延を施し、併せ
て各探触子よシの受信信号についても伝搬距離の相違に
よる受信タイミングのずれを無くすように送信時と同じ
遅延を施し、その合成受信信号から欠陥を検知する装置
を提案している。
In order to enable automatic ultrasonic flaw detection over the entire circumference of steel pipes, etc., without mechanically rotating the probes, the inventors of the present application developed an underwater probe play system in which multiple probes are arranged in a ring. A predetermined number of probes are fixedly installed in a group and sequentially switched and scanned in a fixed direction, and the ultrasonic beam characteristics equivalent to those of a focusing probe are obtained in the transmission pulse for the selected probe group by switching scanning. A device that detects defects from the combined received signal by applying the same delay to the received signal from each probe as at the time of transmission so as to eliminate the difference in reception timing due to differences in propagation distance. is proposed.

しかしながら、上記の装置゛における探触子アレイの切
換え走査においては、例えば第1図に示すように探触子
アレイ10における7161〜/168の探触子の選択
により屈折角θをもつビームB1で探傷を行なった後に
、左回シに探触子1ケぶんシフトして/162〜/16
9の探触子群の選択で同じく屈折角θのビームB、で探
傷を行なうようになるが、ビームB、とB2の間にビー
ムが照射されない未探傷領域Aを生ずるようになる。
However, in the switching scan of the probe array in the above device, for example, as shown in FIG. 1, the beam B1 having the refraction angle θ is After performing flaw detection, shift the probe one position to the left and set /162 to /16.
By selecting probe group No. 9, flaw detection is performed using beam B having the same refraction angle θ, but an undetected area A is created between beams B and B2 where the beam is not irradiated.

ぞこで、探触子アレイ10における探触子の取付はピン
チを狭めることも考えられるが、ピンチを狭めると探触
子の数が大幅に増加して切換走査回路が相当複雑化し、
探触子プレイもコスト的に高価となる。
In this case, it is conceivable to narrow the pinch in mounting the probes in the probe array 10, but if the pinch is narrowed, the number of probes will increase significantly and the switching scanning circuit will become considerably complicated.
Probe play is also expensive in terms of cost.

本発明は、上記に鑑みてなされたもので、探触子プレイ
の集積度を高めることなく筒部な制御処理により未探傷
領域の発生を防止することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to prevent the occurrence of undetected areas through cylindrical control processing without increasing the degree of integration of probe plays.

この目的を実現するため、本発明によれは探触子アレイ
を切換え走査する毎に、送受信遅延量を多段階に切換え
ることで屈折角の異る超音波ビームを11i次送出して
ビームを首振りさせるようにしたものである。
In order to achieve this objective, the present invention transmits 11i-order ultrasonic beams with different refraction angles by switching the transmission/reception delay amount in multiple stages each time the probe array is switched and scanned, thereby narrowing the beam. It was designed to make it swing.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第2図は、本発明で用いる探触子アレイを示した説明図
であシ、第3図に110方向の断面図を示す。
FIG. 2 is an explanatory diagram showing a probe array used in the present invention, and FIG. 3 is a sectional view taken in the 110 direction.

第2.3図において、10は探触子アレイであり、複数
の探触子を環状に配列してゼR成され、この探触子アレ
イ10は水11の中に固定設置され、探触子アレイ10
の内部に図示のように被検査体としての管体12が軸方
向に搬送される。
In Fig. 2.3, 10 is a probe array, which is formed by arranging a plurality of probes in a ring, and this probe array 10 is fixedly installed in water 11, and the probe Child array 10
As shown in the figure, a tube body 12 as an object to be inspected is transported in the axial direction.

探触子アレイ10による超音波ビームの切換走査は、例
えば探触子アレイ10の所定位置を基準位置とした8個
の探触子で1グループを形成し、lグループを形成する
探触子群に対する送信パルス信号の遅延供給により、焦
点探触子と等価な卸音波ビーム特性を作り出し、探触子
アレイの切換走査は1グル一プ単位で時計回り方向、又
は、反時計回多方向に1探触子分だけ順次シフトした切
換走査を行なう。
The ultrasonic beam switching scan by the probe array 10 is performed by, for example, forming one group of eight probes with a predetermined position of the probe array 10 as a reference position, and a group of probes forming an l group. By delaying the supply of the transmission pulse signal to the focal point probe, a wholesale acoustic beam characteristic equivalent to that of a focusing probe is created, and the switching scan of the probe array is performed in clockwise or counterclockwise directions in units of one group. A switching scan is performed in which the probe is sequentially shifted by the length of the probe.

第4,5及び6図は、本発明の探触子プレイによる超音
波ビームの首振り作用を示した説明図である。
4, 5 and 6 are explanatory diagrams showing the swinging effect of the ultrasonic beam due to the probe play of the present invention.

まず第4図に示す探触子アレイ10の超音波ビーム特性
は、管体12の中心Oを通るX軸上に焦点F1が位置す
るような遅延制御により得られた超音波ビーム特性を示
している。
First, the ultrasonic beam characteristics of the probe array 10 shown in FIG. 4 are those obtained by delay control such that the focal point F1 is located on the There is.

すなわち、1グループを形成する探触子アレイ1008
個の探触子群に対する超音波パルス信号の供給を焦点遅
延部14及び偏角遅延部16Aを介して行なうことによ
り破線で示すように管体12の中心0よりの偏心量d1
となるX軸の焦点F、に超音波ビームを集束させる特性
を作り出すことができる。
That is, the probe array 1008 forming one group
By supplying ultrasonic pulse signals to the probe groups through the focus delay section 14 and the declination delay section 16A, the eccentricity d1 from the center 0 of the tube body 12 is shown by the broken line.
It is possible to create a characteristic that focuses the ultrasonic beam on the focal point F on the X axis.

ここで第4図に示す焦点ビーム特性における管体12に
対する入射角11と屈折角θ1との間には水の縦波音速
CW中1500m/s を鋼の横波音速Cs−; 32
30 m / sとすると、の関係が成立する。
Here, in the focal beam characteristics shown in FIG. 4, between the angle of incidence 11 on the tube 12 and the angle of refraction θ1, the longitudinal sound velocity of water CW is 1500 m/s, and the shear sound velocity of steel Cs-; 32
30 m/s, the following relationship holds true.

一方、5inilは 1 sini、=          ・・・(2)で与え
られることから、この第(2)式を前記第(1)式に代
入して、 d。
On the other hand, since 5inil is given by 1sini,=...(2), substituting this equation (2) into the equation (1) above, d.

JF2.16−       ・・・(3)の関係が得
られる。
JF2.16-...The relationship (3) is obtained.

すなわち、超音波ビームの焦点F1を変移量d1となる
X軸上に設定したとすると、管体12の外径2rから前
記第(2)式によシ入射角11が決まり、更に前記@(
3)式より管体12に対する屈折角θ!も一義的に定オ
リ、このような焦点探触子と等価な超音波ビーム特性の
設定は、焦点遅延部14及び偏角遅延部16における各
探触子毎の遅延量を調整することにより実現することが
できる。
That is, if the focal point F1 of the ultrasonic beam is set on the X-axis where the displacement amount d1 is, the incident angle 11 is determined from the outer diameter 2r of the tubular body 12 according to the above equation (2), and the above-mentioned @(
3) From the formula, the refraction angle θ with respect to the tube body 12! Setting the ultrasonic beam characteristics equivalent to such a focus probe, which has a uniquely defined orientation, is achieved by adjusting the amount of delay for each probe in the focus delay section 14 and the deflection angle delay section 16. can do.

すなわち、焦点遅延部14は8個の探触子毎に遅延素子
を備えており、その遅延量は遅延素子の長手方向の大き
さで示すように、両側から中央に向うに従って遅延量が
順次増加しており、この遅延量の設定によシ探触子アレ
イ1oの探触子群よりの超音波ビームを管体12の中心
O付近に集束させる超音波ビーム特性を作り吊す。
That is, the focus delay unit 14 is equipped with a delay element for each of the eight probes, and the delay amount increases sequentially from both sides toward the center, as shown by the longitudinal size of the delay element. By setting this delay amount, an ultrasonic beam characteristic is created to focus the ultrasonic beam from the probe group of the probe array 1o near the center O of the tube body 12, and the ultrasonic beam is suspended.

一方、偏角遅延部16Aも各探触子毎に遅延素子を備え
、遅延素子の長手方向の大きさで示すように左側から右
側に向かうにつれて段階的に遅延量を増加させており、
この遅延量の設定により、焦点遅延部14の遅延で管体
12の中心0付近に集束させている超音波ビームを偏心
量dIとなるX軸上の焦点F8に集束させる偏角特性を
作り出す。
On the other hand, the declination delay unit 16A is also provided with a delay element for each probe, and the amount of delay is gradually increased from the left side to the right side, as shown by the lengthwise size of the delay element.
By setting this delay amount, a deflection angle characteristic is created in which the ultrasonic beam, which is focused near the center 0 of the tubular body 12 due to the delay of the focus delay unit 14, is focused to the focal point F8 on the X-axis having the eccentricity dI.

第5図、第6図も第4図と同様に焦点遅延部14及び偏
角遅延部16B、16Cを有し、焦点遅延部14は第4
図と同じ遅延量の設定を行なっているが、偏角遅延部1
6B、16Cについては偏角遅延部16Aに対し、相互
に異なる遅延量を設定している。
5 and 6 also have a focus delay section 14 and an argument delay section 16B, 16C as in FIG. 4, and the focus delay section 14 has a fourth
The delay amount is set the same as in the figure, but the argument delay section 1
For 6B and 16C, different delay amounts are set for the argument delay section 16A.

すなわち、絶5図の偏角遅延部16Bは、第4図の偏角
遅延部16Aに対し、左側から右側に向かって段階的に
増加する遅延素子の遅延増加量が少なくなるように設定
されており、そのため探触子群による超音波ビームの焦
点F2は、管体12の中心Oより偏心ft d tの位
置にあり、この偏心量d、は第4図の偏心量d、より小
さくなるように偏角遅延部16Bの遅延量を定めている
In other words, the argument delay section 16B of FIG. 5 is set so that the amount of delay increase of the delay element, which increases stepwise from the left side to the right side, is smaller than the argument delay section 16A of FIG. 4. Therefore, the focal point F2 of the ultrasonic beam from the probe group is located at a position of eccentricity ft d t from the center O of the tube body 12, and this eccentricity d is set to be smaller than the eccentricity d in Fig. 4. The amount of delay of the argument delay section 16B is determined as follows.

従ってdz<d+であることから前記第(2) (3)
式より明らかなように入射角i、及び屈折角θ、も第4
図に比べて小さくなる。
Therefore, since dz<d+, the above (2) (3)
As is clear from the formula, the incident angle i and the refraction angle θ are also the fourth
It will be smaller than the figure.

更に、第6図は偏角遅延部16Cにおける遅延素子の左
側から右側への段階的な増加量を第5図の偏角遅延部1
6Bよシ更に少なくしたもので、探触子アレイ10の超
音波ビームの焦点F3の偏心量d3は第5図の偏心量d
、より小さくなり、同様に入射角・i3及び屈折角θ8
も偏心量d8に応じて最小となる。
Furthermore, FIG. 6 shows the amount of gradual increase from the left side to the right side of the delay element in the argument delay unit 16C in the argument delay unit 1 of FIG.
6B, the eccentricity d3 of the focal point F3 of the ultrasonic beam of the probe array 10 is the eccentricity d in FIG.
, becomes smaller, and similarly the incident angle i3 and the refraction angle θ8
also becomes the minimum according to the amount of eccentricity d8.

すなわち、本発明においては探触子アレイ1゜における
8個の探触子群を1グループとして選択した時に焦点遅
延部14に対し、偏角遅延部16A、16B及び16C
を順次切換え接続して超音波パルス信号を供給すること
によシ、屈折角がθ。
That is, in the present invention, when eight probe groups in a probe array of 1° are selected as one group, the declination delay units 16A, 16B, and 16C are used for the focus delay unit 14.
By sequentially switching and connecting the ultrasonic pulse signals, the refraction angle becomes θ.

、θ2.θ3と順次変化する超音波ビームB1.B、。, θ2. Ultrasonic beam B1 that changes sequentially with θ3. B.

Bsを送出する超音波ビームの首振りを行なうものであ
る。
This oscillates the ultrasonic beam that sends out Bs.

尚、第4〜6図の首振り制御は超音波ビームの送信を例
に取るものであったが、超音波ビームB1〜B、による
欠陥よりの反射エコーの受信信号にについても、同様な
遅延制御によシ各探触子毎に伝搬時間の異なる受信信号
を同一タイミングの受信信号となるように偏角及び焦点
遅延を行なうようになる。
Incidentally, although the swing control shown in Figs. 4 to 6 takes the transmission of ultrasonic beams as an example, the same delay applies to received signals of echoes reflected from defects caused by ultrasonic beams B1 to B. Through control, the deflection angle and focus are delayed so that received signals having different propagation times are received at the same timing for each probe.

第7図は本発明の一実施例を示したブロック図ある。FIG. 7 is a block diagram showing one embodiment of the present invention.

まず構成を説明すると、18は制御信号発生器テアリ、
マイクロコンピュータ44のプログラム制御に基づいて
48音波ビームを首振りさせるだめの切換信号、探触子
アレイ10を切換走査するための切換定食信号及び受信
タイミングの制御信号などを出力する。
First, to explain the configuration, 18 is a control signal generator Tearly;
Based on the program control of the microcomputer 44, a switching signal for swinging the 48 sound wave beams, a switching signal for switching and scanning the probe array 10, a control signal for reception timing, etc. are output.

14は焦点遅延部であシ、第4〜第6図に示した焦点遅
延部14と同じ遅延量を各探触子毎に設定しており、制
御信号発生器18よりの送信制御信号がパルス信号であ
ることから送信制御パルスに同期したカウンタによるク
ロツクパルスの計a出力でアナログ遅延素子を用いた場
合と同様な信最遅延を行なう。
Reference numeral 14 denotes a focus delay unit. The same delay amount as the focus delay unit 14 shown in FIGS. 4 to 6 is set for each probe, and the transmission control signal from the control signal generator 18 is pulsed. Since it is a signal, the signal is delayed in the same way as when an analog delay element is used by outputting a clock pulse from a counter synchronized with the transmission control pulse.

20は切換スイッチであり、探触子アレイ1゜における
8個の探触子群が1グループとして選択される毎に順次
切換端子20a 、20b 、zocの切換接続を行安
う。16A、16B、j6Cは偏角遅延部であり、記4
〜6図に示す偏角遅延部と同じ遅1tT#fi4を設定
しており、切換スイッチ2゜を介して入力される信号が
パルス信号であることから焦点遅延部14と同様にカウ
ンタの計数により所定の偏角蒼延量を作り出すようにし
ている。
Reference numeral 20 denotes a changeover switch, which sequentially switches and connects the changeover terminals 20a, 20b, and zoc every time eight probe groups in the probe array 1° are selected as one group. 16A, 16B, and j6C are argument delay units, and
The delay 1tT#fi4 is set to be the same as that of the declination delay unit shown in Figures 6 to 6, and since the signal input via the changeover switch 2° is a pulse signal, the delay is determined by the counting of the counter in the same way as the focus delay unit 14. A predetermined amount of deviation angle is created.

又、偏角i)′(延部16A〜16Cの偏角遅延(、Q
は第4〜6図に示したように相互に異なった値を設定し
てキ・・す、偏角遅延部16Aによる超音波ビームの屈
折角はθ1、偏角遅延部16Bによる屈折角はθ7、更
に偏角遅延部16Cによる屈折角はθ、となるように偏
角遅延量を設定している022は送信部であシ、偏角遅
延部16A〜16Cより順次出力される送信制御信号に
よシ超音波発振器を駆動し、所宇の遅延を施した送信パ
ルス信号を各探触子毎に出力する。24はアナログスイ
ッチであり、探触子アレイ1oの基準位置をスターi位
置とした8個の探触子群を1グループとして一定周期毎
に探触子1個分ずつP’J’+定回転方向に切換走査す
る。
In addition, the declination angle i)' (deflection delay of the extending portions 16A to 16C (, Q
are set to different values as shown in FIGS. 4 to 6. The refraction angle of the ultrasonic beam by the declination delay unit 16A is θ1, and the refraction angle by the declination delay unit 16B is θ7. , furthermore, the amount of argument delay is set so that the refraction angle by the argument delay unit 16C is θ.022 is a transmitting unit, and transmits a transmission control signal sequentially output from the argument delay units 16A to 16C. The ultrasonic oscillator is then driven, and a transmission pulse signal with a certain delay is output for each probe. Reference numeral 24 is an analog switch, which sets the reference position of the probe array 1o to the star i position and sets a group of 8 probes as one group, and rotates P'J' + constant rotation for one probe at a fixed period. Switch and scan in the direction.

又、アナログスイッチ24で選択接続した探触子アレイ
10の探触子群は受信側の偏角遅延部26A、26T3
,26CK対しても共うm接続される。
Further, the probe groups of the probe array 10 selectively connected by the analog switch 24 are connected to the receiving side declination delay units 26A and 26T3.
, 26CK are also connected.

この偏角ηぺ延部26A〜26Cには受信側の偏角遅延
部16A〜16Cと同じ偏角遅延5:が設定されており
、探触子アレイ1oよシの受信信号がアナログ48号で
あることがら第4〜第6図の偏角遅延部に示したと同じ
アナログ遅延素子を用いている。
The declination η extension parts 26A to 26C are set with the same declination delay 5: as the declination delay parts 16A to 16C on the receiving side, so that the received signal from the probe array 1o is analog No. 48. For some reason, the same analog delay element as shown in the argument delay section of FIGS. 4 to 6 is used.

28は切換スイッチでルシ、受信側の切換スイッチ20
に同期して切換端子28a〜28cを順次切換接続する
28 is a changeover switch, Luci, reception side changeover switch 20
The switching terminals 28a to 28c are sequentially switched and connected in synchronization with .

30はプリアンプ、32は焦点遅延部であり、送信側の
焦点遅延部14と同じ遅延量が設定され、同じくアナロ
グ信号を遅延させることから第4〜6図の焦点遅延部に
示したと同様にアナログ遅延素子が使用される。   
− 34は焦点遅延部32より並列入力される各探触子毎の
受信信号を加算合成する加算器、36は加算器34の合
成信号について超音波の伝搬距離に対する信号レベルの
変化を補正する距離振幅補正を行ない且つ受信信号の処
理手段としてマイクロコンピュータ44を使用している
ことがら合成愛他信号をデジタル信号に変換するA/D
変換器を有する。主増@器36のデジタル受信信号はバ
ッファ38.・を介して混合−レベル比較器4oに入力
づれている。混合−レベル比較器4oは主増幅器36よ
りのデジタル受信信号が基準レベルを上回った時に欠陥
受信信号として判別し、基準レベルを下回わる信号につ
いてはノイズ成分として除去するとともに送信パルス信
号による超音波ビームの直接の回シ込みによる受信成分
を制御信号発生器18より送信制御信号に基づいて除去
するようにしている。
30 is a preamplifier, and 32 is a focus delay unit, which is set with the same delay amount as the focus delay unit 14 on the transmitting side, and similarly delays analog signals, so it is analog A delay element is used.
- 34 is an adder that adds and synthesizes the received signals of each probe that are input in parallel from the focus delay unit 32; 36 is a distance that corrects changes in signal level with respect to the ultrasonic propagation distance for the combined signal of the adder 34; Since it performs amplitude correction and uses the microcomputer 44 as a processing means for the received signal, it is an A/D that converts the synthesized altruistic signal into a digital signal.
It has a converter. The digital reception signal of the main multiplier 36 is sent to the buffer 38. * to the mixing-level comparator 4o. The mixing level comparator 4o determines that the digital received signal from the main amplifier 36 is a defective received signal when it exceeds the reference level, and removes the signal that is below the reference level as a noise component and generates an ultrasonic wave by the transmitted pulse signal. A received component due to direct beam recirculation is removed by a control signal generator 18 based on a transmission control signal.

又、混合−レベル比較器42はバッファ42゜44及び
46を介して距離信号a、探傷モード信号す及び欠陥位
置信号Cが入力されている。
Further, the mixing level comparator 42 receives a distance signal a, a flaw detection mode signal and a defect position signal C via buffers 42, 44 and 46.

ここで距離信号aは探触子アレイ1oに対して送シ込ま
れる鷺・体により、駆動はれるパルスジェネレータより
のパルス信号を用いており、管体の基準位置に対する長
手方向の位置を検知するようにしている。
Here, the distance signal a uses a pulse signal from a pulse generator driven by a heron sent to the probe array 1o, and detects the longitudinal position of the tubular body with respect to the reference position. That's what I do.

又、探傷モード信号すは首振りの遅延にょるθ。Also, the flaw detection mode signal is θ due to the swing delay.

、θ2.θ3の何れか全識別する信号を入力し、欠陥位
置などの受信処理を指令する/こめに用いる。
, θ2. A signal for identifying any one of .theta.3 is input and used to instruct reception processing such as defect position.

更に欠陥位(9(a郵Cはアナログスイッチ24の切換
制御信号に基づき、探触子アレイ1oの切換十査位置、
すなわち、何番目の探触子で欠陥信号が受信されたかを
識別するため探触子アレイ1゜の基準位置に対する角度
信号として与えられる。
Furthermore, the defect position (9 (a) is the switching position of the probe array 1o based on the switching control signal of the analog switch 24,
That is, in order to identify which probe has received the defect signal, it is given as an angle signal with respect to the reference position of the probe array 1°.

混合−レベル比較器4oの出力は、入力インタフェース
42を介してマイクロコンピュータ44に入力きれ、入
力データに基づいて欠陥及び欠陥位置゛を演算処理し、
出力インタフェース46を介してプリンタ48.CRT
50に打ち出し記録するようにしている。
The output of the mixing level comparator 4o is inputted to a microcomputer 44 via an input interface 42, which processes defects and defect positions based on the input data.
Printer 48 .via output interface 46 . CRT
I try to hit it at 50 and record it.

次に第8図の動作フローを参照して第7図の実施例の作
用を説明する。
Next, the operation of the embodiment shown in FIG. 7 will be explained with reference to the operational flow shown in FIG.

水中に固定設置された探触子アレイ10に対し、被検を
体としての管体が送シ込まれてくると、マイクロコンピ
ュータ44の制御により制御信号発生器18がアナログ
スイッチ24に切換走査信号を出力し、探触子アレイ1
0の基準位置をスタート位置とした8個の探触子群を送
信部22および受信側の偏角遅延部26A〜26Cに選
択接続する。
When a tube containing a subject is introduced into the probe array 10 fixedly installed in the water, the control signal generator 18 switches the analog switch 24 to generate a scanning signal under the control of the microcomputer 44. output and probe array 1
A group of eight probes having a reference position of 0 as a starting position are selectively connected to the transmitting section 22 and the declination delay sections 26A to 26C on the receiving side.

続いて制御信号発生器18より屈折角θ1の超音波ビー
ムを送出させるだめの送信制御信号及び切換信号が出力
される。この切換信号により切換スイッチ20及び28
は図示のように切換接点20a、28aに切換わり、続
いて送信制御信号により焦点遅延部14で焦点遅延され
た送信制御信号が切換スイッチ20を介して偏角遅延部
16Aに入力し、F、’h定の偏角遅延を施した後に送
信部22に供給され、各探触子群毎に設けている超音波
ビームを駆動し、アナログスイッチ24を介して選択さ
れている探触子アレイlOの探触子群に送信パルス信号
を供給する。
Subsequently, the control signal generator 18 outputs a transmission control signal and a switching signal for transmitting the ultrasonic beam having the refraction angle θ1. This switching signal causes the changeover switches 20 and 28 to
is switched to the switching contacts 20a and 28a as shown in the figure, and then the transmission control signal whose focus is delayed in the focus delay unit 14 according to the transmission control signal is input to the declination delay unit 16A via the changeover switch 20, and F, After being subjected to a constant declination delay, the ultrasonic beam is supplied to the transmitter 22, which drives the ultrasonic beam provided for each probe group, and the probe array lO selected via the analog switch 24. A transmission pulse signal is supplied to the probe group.

このため探触子アレイ10の探触子群からは第4図に示
す屈折角θ、の焦点探触子と等価な超音波ビームが管体
に入射され、超音波ビームの伝搬経路に存在する傷9割
れなどの欠陥による反射信号が同じ探触子群で受信され
、受信側の偏角遅延回路26Aに入力する。偏角遅延回
路26Aにおいて偏角遅延を施された受信信号は切換接
点28aに切換わっている切換スイッチ28を介してプ
リアンプ30で前置増幅され、焦点遅延部32における
焦点遅延により各探触子毎に異なる受信タイミングのず
れを除去し、加算器34で合成して主増幅部36におけ
る距離振幅補正後にデジタル信号に変換され、ブツファ
38aを介して混合−レベル比較器40に入力する。
Therefore, from the probe group of the probe array 10, an ultrasonic beam equivalent to a focal probe with a refraction angle θ shown in FIG. Reflected signals due to defects such as scratches and cracks are received by the same probe group and input to the receiving-side declination delay circuit 26A. The received signal subjected to the declination delay in the declination delay circuit 26A is preamplified by the preamplifier 30 via the changeover switch 28 which is switched to the changeover contact 28a, and the focus delay in the focus delay section 32 causes the reception signal to be preamplified by the preamplifier 30. The signals are combined in an adder 34 and converted into a digital signal after distance and amplitude correction in the main amplification section 36, which is input to the mixing-level comparator 40 via a buffer 38a.

同時にバンファ42,44.46を介して距離信号a、
探傷モード(U号す及び欠陥位置信号Cも入力され、混
合−レベル比較器40において基準レベルを上回る受信
信号を欠陥信号として比較判別し、欠陥位置を示す距離
信号a及び欠陥位置信号Cに基づいたデータとともに入
力インタフエーx42’i=介してマイクロコンピュー
タ44に入力する。
At the same time, distance signals a,
Flaw detection mode (U signal and defect position signal C are also input, and a received signal exceeding the reference level is compared and determined as a defect signal in the mixing-level comparator 40, based on distance signal a indicating the defect position and defect position signal C. The data are input to the microcomputer 44 through the input interface x42'i.

続いて屈折角θ、による欠陥検知か終了すると、切換ス
イッチ20.28は切換接点20b、28bに切換わり
、同様な超音波の送受信により、屈折角θ!の超音波ビ
ームによる欠陥検知(第5図参照)を行なう。
Subsequently, when the defect detection based on the refraction angle θ is completed, the changeover switch 20.28 switches to the switching contacts 20b and 28b, and the refraction angle θ! is changed by transmitting and receiving similar ultrasonic waves. Defect detection is performed using an ultrasonic beam (see Fig. 5).

更に切換スイッチ20.28は切換接点10C。Furthermore, the changeover switch 20.28 has a changeover contact 10C.

28Cに切換わり、同様な超音波の送受信により屈折角
θ3による欠陥検知を行なう。
28C, and defect detection based on the refraction angle θ3 is performed by transmitting and receiving similar ultrasonic waves.

このような屈折角θ、〜θ、の超音波ビームの切換えに
よるビーム首振りでマイクロコンピュータ44に得られ
た受信信号は所定のプログラム演算により欠陥の有無が
判別され、欠陥を検出した時には欠陥の大きさ及び欠陥
位置を示すデータを出カイノンフェース46を介してプ
リンタ48゜cn、T5oに打ち出し記録する。
The reception signal obtained by the microcomputer 44 by the beam swing by switching the ultrasonic beam at the refraction angle θ, ~θ, is determined by a predetermined program calculation to determine whether or not there is a defect. Data indicating the size and defect position is ejected and recorded on the printer 48°cn, T5o via the output chinon face 46.

Claims (1)

【特許請求の範囲】[Claims] 複数の探触子を環状に配列した探触子プレイを水中に固
定設置し、該探触子アレイの所定数の探触子を1グルー
プとして軸周方向に順次切換え走査し、切換え走査毎に
選択し7た探触子群の送受信遅延により焦点探触子と等
価な超音波ビーム特性をもって探触子プレイ内を通過す
る管状金属の欠陥を検知する超音波自動探傷装置におい
て、前記探触子アレイの探触子群を切換え走査する毎に
、該探触子群に対する送受信連itの多段切換えにより
超音波ビームを首振シさせるビーム首振9手段を設けた
ことを特徴とする超音波自動探傷装置。
A probe play in which a plurality of probes are arranged in a ring is fixedly installed in the water, and a predetermined number of probes in the probe array are set as one group and sequentially switched and scanned in the circumferential direction of the axis, and for each switching scan. In an automatic ultrasonic flaw detection device that detects defects in a tubular metal passing through a probe play with ultrasonic beam characteristics equivalent to those of a focused probe by transmitting and receiving delays of a group of seven selected probes, the probe An ultrasonic automatic apparatus characterized in that nine beam oscillation means are provided for oscillating the ultrasonic beam by multi-stage switching of the transmission/reception unit for the probe group each time the probe group of the array is switched and scanned. Flaw detection equipment.
JP57174751A 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus Granted JPS5965252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57174751A JPS5965252A (en) 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174751A JPS5965252A (en) 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus

Publications (2)

Publication Number Publication Date
JPS5965252A true JPS5965252A (en) 1984-04-13
JPH0143906B2 JPH0143906B2 (en) 1989-09-25

Family

ID=15984041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174751A Granted JPS5965252A (en) 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus

Country Status (1)

Country Link
JP (1) JPS5965252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118860A (en) * 1984-07-06 1986-01-27 Nippon Steel Corp Ultrasonic beam control method for ultrasonic flaw detection of steel pipes using array type probe
JPS61198056A (en) * 1985-02-28 1986-09-02 Nippon Steel Corp Ultrasonic flaw detecting method for steel pipe by array type probe
JP2009150679A (en) * 2007-12-19 2009-07-09 Sanyo Special Steel Co Ltd Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2712540C (en) * 2005-08-26 2015-12-08 Masaki Yamano Ultrasonic probe, ultrasonic testing equipment, ultrasonic testing method, and manufacturing method of seamless pipe or tube
WO2007113907A1 (en) * 2006-04-05 2007-10-11 Sumitomo Metal Industries, Ltd. Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446595A (en) * 1977-09-21 1979-04-12 Hitachi Ltd Ultrasonic flaw locator of electronic scanning type
JPS55110952A (en) * 1979-02-21 1980-08-27 Toshiba Corp Ultrasonic probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446595A (en) * 1977-09-21 1979-04-12 Hitachi Ltd Ultrasonic flaw locator of electronic scanning type
JPS55110952A (en) * 1979-02-21 1980-08-27 Toshiba Corp Ultrasonic probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118860A (en) * 1984-07-06 1986-01-27 Nippon Steel Corp Ultrasonic beam control method for ultrasonic flaw detection of steel pipes using array type probe
JPS61198056A (en) * 1985-02-28 1986-09-02 Nippon Steel Corp Ultrasonic flaw detecting method for steel pipe by array type probe
JP2009150679A (en) * 2007-12-19 2009-07-09 Sanyo Special Steel Co Ltd Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel

Also Published As

Publication number Publication date
JPH0143906B2 (en) 1989-09-25

Similar Documents

Publication Publication Date Title
WO1999034204A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
JP5871274B2 (en) Ultrasonic flaw detection apparatus and method
JP2004109129A (en) Industrial use phased array ultrasonic inspection method
CN104350381A (en) Defect detection device, defect detection method, program, and storage medium
CN113939735B (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel material manufacturing method
JPH0215821B2 (en)
US4967873A (en) Acoustic lens apparatus
US4576048A (en) Method and apparatus for ultrasonic inspection of a solid workpiece
JPS59208457A (en) Ultrasonic transmission/reception method and device
CN113994204B (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel manufacturing method
JPS5965252A (en) Ultrasonic automatic flaw detecting apparatus
WO2001071338A1 (en) Ultrasonic testing
JP2008286639A (en) Coupling check method for ultrasonic oblique angle flaw detector
JPS59126952A (en) Ultrasonic flaw detection of round bar
RU2592044C1 (en) Method for ultrasonic measurement and ultrasonic measuring device
JPH0311734Y2 (en)
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JPS59151057A (en) Ultrasonic flaw detector
JP3729044B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPS5963560A (en) Automatic ultrasonic flaw detector
JPH022924A (en) Ultrasonic wave flaw detecting apparatus for seam welded pipe
JP4359892B2 (en) Ultrasonic flaw detection method
JPH06337263A (en) Ultrasonic flaw detection method
JP2001050941A (en) Variable angle ultrasonic probe and variable angle ultrasonic flaw-detecting device
JPS6027853A (en) Ultrasonic wave flaw detector