[go: up one dir, main page]

JPH0143906B2 - - Google Patents

Info

Publication number
JPH0143906B2
JPH0143906B2 JP57174751A JP17475182A JPH0143906B2 JP H0143906 B2 JPH0143906 B2 JP H0143906B2 JP 57174751 A JP57174751 A JP 57174751A JP 17475182 A JP17475182 A JP 17475182A JP H0143906 B2 JPH0143906 B2 JP H0143906B2
Authority
JP
Japan
Prior art keywords
probe
delay
signal
probe array
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57174751A
Other languages
Japanese (ja)
Other versions
JPS5965252A (en
Inventor
Eiji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP57174751A priority Critical patent/JPS5965252A/en
Publication of JPS5965252A publication Critical patent/JPS5965252A/en
Publication of JPH0143906B2 publication Critical patent/JPH0143906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、複数の探触子を環状に配列した探触
子アレイを水中に固定設置し、探触子アレイの切
換え走査により被検査体の欠陥を検知する静止型
の超音波自動探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a stationary type probe array in which a plurality of probes arranged in a ring is fixedly installed in water, and defects in an object to be inspected are detected by switching and scanning the probe array. This article relates to automatic ultrasonic flaw detection equipment.

本願発明者等は、探触子を機械的に回転させる
ことなくスチールパイプ等の全周にわたる超音波
自動探傷を可能にするため、複数の探触子を環状
に配列した探触子アレイを水中に固定設置し、所
定数の探触子を1グループとして一定方向に順次
切換え走査し、切換え走査により選択した探触子
群に対する送信パルスに焦点探触子と等価な超音
波ビーム特性を得るための送信遅延を施し、併せ
て各探触子よりの受信信号についても伝搬距離の
相違による受信タイミングのずれを無くすように
送信時と同じ遅延を施し、その合成受信信号から
欠陥を検知する装置を提案している。
In order to enable automatic ultrasonic flaw detection over the entire circumference of steel pipes, etc. without mechanically rotating the probes, the inventors of the present application have developed a probe array in which multiple probes are arranged in a ring shape underwater. A predetermined number of probes are fixedly installed in a group and sequentially switched and scanned in a fixed direction, in order to obtain ultrasonic beam characteristics equivalent to those of a focusing probe in the transmission pulse for the selected probe group by switching scan. In addition, the same delay is applied to the received signals from each probe as during transmission to eliminate differences in reception timing due to differences in propagation distance, and a device is installed that detects defects from the combined received signals. is suggesting.

しかしながら、上記の装置における探触子アレ
イの切換え走査においては、例えば第1図に示す
ように探触子アレイ10におけるNo.1〜No.8の探
触子の選択により屈折角θをもつビームB1で探
傷を行なつた後に、左回りに探触子1ケぶんシフ
トしてNo.2〜No.9の探触子群の選択で同じく屈折
角θのビームB2で探傷を行なうようになるが、
ビームB1とB2の間にビームが照射されない未探
傷領域Aを生ずるようになる。
However, in the switching scan of the probe array in the above-mentioned apparatus, for example, as shown in FIG. After performing flaw detection with B 1 , shift one probe counterclockwise and select probe groups No. 2 to No. 9 to perform flaw detection with beam B 2 with the same refraction angle θ. However,
An undetected area A, which is not irradiated with the beam, is created between the beams B1 and B2 .

そこで、探触子アレイ10における探触子の取
付けピツチを狭めることも考えられるが、ピツチ
を狭めると探触子の数が大幅に増加して切換走査
回路が相当複雑化し、探触子アレイもコスト的に
高価となる。
Therefore, it is possible to narrow the mounting pitch of the probes in the probe array 10, but if the pitch is narrowed, the number of probes will increase significantly, the switching scanning circuit will become considerably complicated, and the probe array will also become smaller. It is expensive in terms of cost.

本発明は、上記に鑑みてなされたもので、探触
子アレイの集積度を高めることなく簡潔な制御処
理により未探傷領域の発生を防止することを目的
とする。
The present invention has been made in view of the above, and an object of the present invention is to prevent the occurrence of undetected areas by simple control processing without increasing the degree of integration of a probe array.

この目的を実現するため、本発明によれば探触
子アレイを切換え走査する毎に、送受信遅延量を
多段階に切換えることで屈折角の異る超音波ビー
ムを順次送出してビームを首振りさせるようにし
たものである。
In order to achieve this objective, according to the present invention, each time the probe array is switched and scanned, the amount of transmission/reception delay is switched in multiple stages to sequentially send out ultrasound beams with different refraction angles and swing the beam. It was designed to let you do so.

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第2図は、本発明で用いる探触子アレイを示し
た説明図であり、第3図に軸方向の断面図を示
す。
FIG. 2 is an explanatory view showing a probe array used in the present invention, and FIG. 3 is an axial cross-sectional view.

第2,3図において、10は探触子アレイであ
り、複数の探触子を環状に配列して構成され、こ
の探触子アレイ10は水11の中に固定設置さ
れ、探触子アレイ10の内部に図示のように被検
査体としての管体12が軸方向に搬送される。
In FIGS. 2 and 3, reference numeral 10 denotes a probe array, which is constructed by arranging a plurality of probes in a ring shape, and this probe array 10 is fixedly installed in water 11. A tube body 12 as an object to be inspected is transported in the axial direction inside the tube 10 as shown in the figure.

探触子アレイ10による超音波ビームの切換走
査は、例えば探触子アレイ10の所定位置を基準
位置とした8個の探触子で1グループを形成し、
1グループを形成する探触子群に対する送信パル
ス信号の遅延供給により、焦点探触子と等価な超
音波ビーム特性を作り出し、探触子アレイの切換
走査は1グループ単位で時計回り方向、又は、反
時計回り方向に1探触子分だけ順次シフトした切
換走査を行なう。
The switching scan of the ultrasonic beam by the probe array 10 is performed by forming one group of eight probes with a predetermined position of the probe array 10 as a reference position, for example.
By delaying the supply of transmission pulse signals to the probes forming one group, ultrasonic beam characteristics equivalent to those of a focusing probe are created, and the switching scan of the probe array is performed in clockwise direction or in the clockwise direction in units of one group. A switching scan is performed in which the probe is sequentially shifted by one probe element in the counterclockwise direction.

第4,5及び6図は、本発明の探触子アレイに
よる超音波ビームの首振り作用を示した説明図で
ある。
FIGS. 4, 5, and 6 are explanatory diagrams showing the oscillation effect of the ultrasonic beam by the probe array of the present invention.

まず第4図に示す探触子アレイ10の超音波ビ
ーム特性は、管体12の中心Oを通るX軸上に焦
点F1が位置するような遅延制御により得られた
超音波ビーム特性を示している。
First , the ultrasonic beam characteristics of the probe array 10 shown in FIG. ing.

すなわち、1グループを形成する探触子アレイ
10の8個の探触子群に対する超音波パルス信号
の供給を焦点遅延部14及び偏角遅延部16Aを
介して行なうことにより破線で示すように管体1
2の中心Oよりの偏心量d1となるX軸の焦点F1
超音波ビームを集束させる特性を作り出すことが
できる。
That is, by supplying ultrasonic pulse signals to the eight probe groups of the probe array 10 forming one group via the focus delay section 14 and the deflection angle delay section 16A, the tubes are controlled as shown by the broken line. body 1
It is possible to create a characteristic in which the ultrasonic beam is focused at a focus F 1 on the X axis with an eccentricity d 1 from the center O of 2.

ここで第4図に示す焦点ビーム特性における管
体12に対する入射角i1と屈折角θ1との間には水
の縦波音速Cw≒1500m/s、鋼の横波音速Cs≒
3230m/sとすると、 sini1/Cw=sinθ1/Cs ……(1) の関係が成立する。
Here, in the focal beam characteristics shown in FIG. 4, between the angle of incidence i 1 and the angle of refraction θ 1 with respect to the tube body 12, the longitudinal sound velocity of water Cw≒1500 m/s, and the transverse sound velocity of steel Cs≒
When the speed is 3230 m/s, the relationship sini 1 /Cw=sinθ 1 /Cs (1) holds true.

一方、sini1は sini1=d1/r ……(2) で与えられることから、この第(2)式を前記第(1)式
に代入して、 sinθ1=Cs/Cw・d1/r=3230/1500・d1/r≒2.16
d1/r……(3) の関係が得られる。
On the other hand, sini 1 is given by sini 1 = d 1 / r ...(2), so by substituting this equation (2) into the above equation (1), sinθ 1 = Cs/Cw・d 1 /r=3230/1500・d 1 /r≒2.16
The relationship d 1 /r...(3) is obtained.

すなわち、超音波ビームの焦点F1を変移量d1
なるX軸上に設定したとすると、管体12の外径
2rから前記第(2)式により入射角i1が決まり、更
に前記第(3)式より管体12に対する屈折角θ1も一
義的に定まり、このような焦点探触子と等価な超
音波ビーム特性の設定は、焦点遅延部14及び偏
角遅延部16における各探触子毎の遅延量を調整
することにより実現することができる。
That is, if the focus F 1 of the ultrasonic beam is set on the X-axis with the displacement d 1 , the incident angle i 1 is determined from the outer diameter 2r of the tubular body 12 by the above equation (2), and the incident angle i 1 is determined by the above equation (2). The refraction angle θ 1 with respect to the tube body 12 is also uniquely determined from equation (3), and the setting of ultrasonic beam characteristics equivalent to such a focusing probe is determined by each probe in the focus delay section 14 and the deflection angle delay section 16. This can be achieved by adjusting the amount of delay for each touche.

すなわち、焦点遅延部14は8個の探触子毎に
遅延素子を備えており、その遅延量は遅延素子の
長手方向の大きさで示すように、両側から中央に
向うに従つて遅延量が順次増加しており、この遅
延量の設定により探触子アレイ10の探触子群よ
りの超音波ビームを管体12の中心O付近に集束
させる超音波ビーム特性を作り出す。
That is, the focus delay unit 14 is equipped with a delay element for each of the eight probes, and the delay amount increases from both sides toward the center, as shown by the length of the delay element. By setting this delay amount, an ultrasonic beam characteristic is created that focuses the ultrasonic beam from the probe group of the probe array 10 near the center O of the tube body 12.

一方、偏角遅延部16Aも各探触子毎に遅延素
子を備え、遅延素子の長手方向の大きさで示すよ
うに左側から右側に向かうにつれて段階的に遅延
量を増加させており、この遅延量の設定により、
焦点遅延部14の遅延で管体12の中心O付近に
集束させている超音波ビームを偏心量d1となるX
軸上の焦点F1に集束させる偏角特性を作り出す。
On the other hand, the declination delay section 16A also includes a delay element for each probe, and the amount of delay is increased stepwise from the left side to the right side as shown by the lengthwise size of the delay element. Depending on the amount setting,
The ultrasonic beam focused near the center O of the tubular body 12 due to the delay of the focus delay unit 14 becomes X with eccentricity d 1
Creates a declination characteristic that focuses on the focal point F 1 on the axis.

第5図、第6図も第4図と同様に焦点遅延部1
4及び偏角遅延部16B,16Cを有し、焦点遅
延部14は第4図と同じ遅延量の設定を行なつて
いるが、偏角遅延部16B,16Cについては偏
角遅延部16Aに対し、相互に異なる遅延量を設
定していいる。
In FIGS. 5 and 6, the focus delay unit 1 is similar to FIG. 4.
4 and declination delay units 16B and 16C, and the focus delay unit 14 has the same delay setting as in FIG. , mutually different delay amounts are set.

すなわち、第5図の偏角遅延部16Bは、第4
図の偏角遅延部16Aに対し、左側から右側に向
かつて段階的に増加する遅延素子の遅延増加量が
少なくなるように設定されており、そのため探触
子群による超音波ビームの焦点F2は、管体12
の中心Oより偏心量d2の位置にあり、この偏心量
d2は第4図の偏心量d1より小さくなるように偏角
遅延部16Bの遅延量を定めている。
That is, the argument delay section 16B in FIG.
The declination delay unit 16A in the figure is set so that the amount of delay increase of the delay element that increases stepwise from the left side to the right side becomes smaller, so that the focus F 2 of the ultrasonic beam by the probe group is is tube body 12
It is located at a position of eccentricity d 2 from the center O of
The delay amount of the yaw angle delay section 16B is determined so that d 2 is smaller than the eccentricity d 1 shown in FIG.

従つてd2<d1であることから前記第(2),(3)式よ
り明らかなように入射角i2及び屈折角θ2も第4図
に比べて小さくなる。
Therefore, since d 2 <d 1 , the incident angle i 2 and the refraction angle θ 2 are also smaller than in FIG. 4, as is clear from equations (2) and (3).

更に、第6図は偏角遅延部16Cにおける遅延
素子の左側から右側への段階的な増加量を第5図
の偏角遅延部16Bより更に少なくしたもので、
探触子アレイ10の超音波ビームの焦点F3の偏
心量d3は第5図の偏心量d2より小さくなり、同様
に入射角i3及び屈折角θ3も偏心量d3に応じて最小
となる。
Furthermore, in FIG. 6, the amount of stepwise increase of the delay elements from the left side to the right side in the argument delay section 16C is smaller than that of the argument delay section 16B in FIG.
The eccentricity d 3 of the focal point F 3 of the ultrasonic beam of the probe array 10 is smaller than the eccentricity d 2 shown in FIG . Minimum.

すなわち、本発明においては探触子アレイ10
における8個の探触群を1グループとして選択し
た時に焦点遅延部14に対し、偏角遅延部16
A,16B及び16Cを順次切換え接続して超音
波パルス信号を供給することにより、屈折角が
θ1,θ2,θ3と順次変化する超音波ビームB1,B2
B3を送出する超音波ビームの首振りを行なうも
のである。
That is, in the present invention, the probe array 10
When eight probe groups are selected as one group, the declination delay unit 16
By sequentially switching and connecting A, 16B and 16C to supply an ultrasonic pulse signal, ultrasonic beams B 1 , B 2 , whose refraction angles change sequentially as θ 1 , θ 2 , θ 3 are created.
This oscillates the ultrasonic beam that sends out B3 .

尚、第4〜6図の首振り制御は超音波ビームの
送信を例に取るものであつたが、超音波ビーム
B1〜B3による欠陥よりの反射エコーの受信信号
についても、同様な遅延制御により各探触子毎に
伝搬時間の異なる受信信号を同一タイミングの受
信信号となるように偏角及び焦点遅延を行なうよ
うになる。
Note that the swing control shown in Figures 4 to 6 was based on the example of transmitting an ultrasonic beam.
Regarding the received signals of reflected echoes from defects caused by B 1 to B 3 , the declination and focus delay are adjusted using similar delay control so that the received signals with different propagation times for each probe become received signals with the same timing. I will start doing it.

第7図は本発明の一実施例を示したブロツク図
ある。
FIG. 7 is a block diagram showing one embodiment of the present invention.

まず構成を説明すると、18は制御信号発生器
であり、マイクロコンピユータ44のプログラム
制御に基づいて超音波ビームを首振りさせるため
の切換信号、探触子アレイ10を切換走査するた
めの切換走査信号及び受信タイミングの制御信号
などを出力する。
First, to explain the configuration, 18 is a control signal generator, which includes a switching signal for swinging the ultrasonic beam and a switching scanning signal for switching and scanning the probe array 10 based on the program control of the microcomputer 44. and outputs control signals for reception timing, etc.

14は焦点遅延部であり、第4〜第6図に示し
た焦点遅延部14と同じ遅延量を各探触子毎に設
定しており、制御信号発生器18よりの送信制御
信号がパルス信号であることから送信制御パルス
に同期したカウンタによるクロツクパルスの計数
出力でアナログ遅延素子を用いた場合と同様な信
号遅延を行なう。
14 is a focus delay unit, in which the same delay amount as the focus delay unit 14 shown in FIGS. 4 to 6 is set for each probe, and the transmission control signal from the control signal generator 18 is a pulse signal. Therefore, the same signal delay as in the case of using an analog delay element is performed by counting and outputting clock pulses by a counter synchronized with the transmission control pulse.

20は切換スイツチであり、探触子アレイ10
における8個の探触子群が1グループとして選択
される毎に順次切換端子20a,20b,20c
の切換接続を行なう。16A,16B,16Cは
偏角遅延部であり、第4〜6図に示す偏角遅延部
と同じ遅延量を設定しており、切換スイツチ20
を介して入力される信号がパルス信号であること
から焦点遅延部14と同様にカウンタの計数によ
り所定の偏角遅延量を作り出すようにしている。
20 is a changeover switch, and the probe array 10
Each time eight probe groups are selected as one group, the switching terminals 20a, 20b, 20c are sequentially switched.
Make the switching connection. Reference numerals 16A, 16B, and 16C are argument delay sections, which are set with the same delay amount as the argument delay sections shown in FIGS. 4 to 6.
Since the signal input via the focus delay section 14 is a pulse signal, a predetermined amount of argument delay is created by counting the counter similarly to the focus delay section 14.

又、偏角遅延部16A〜16Cの偏角遅延量は
第4〜6図に示したように相互に異なつた値を設
定しており、偏角遅延部16Aによる超音波ビー
ムの屈折角はθ1、偏角遅延部16Bによる屈折角
はθ2、更に偏角遅延部16Cによる屈折角はθ3
なるように偏角遅延量を設定している。
Further, the argument delay amounts of the argument delay units 16A to 16C are set to different values as shown in FIGS. 4 to 6, and the refraction angle of the ultrasonic beam by the argument delay unit 16A is θ. 1 , the amount of argument delay is set so that the refraction angle by the argument delay unit 16B is θ 2 and the refraction angle by the argument delay unit 16C is θ 3 .

22は送信部であり、偏角遅延部16A〜16
Cより順次出力される送信制御信号により超音波
発振器を駆動し、所定の遅延を施した送信パルス
信号を各探触子毎に出力する。24はアナログス
イツチであり、探触子アレイ10の基準位置をス
タート位置とした8個の探触子群を1グループと
して一定周期毎に探触子1個分ずつ所定回転方向
に切換走査する。
22 is a transmitter, which includes argument delay units 16A to 16;
The ultrasonic oscillator is driven by a transmission control signal sequentially output from C, and a transmission pulse signal with a predetermined delay is output for each probe. Reference numeral 24 denotes an analog switch which switches and scans in a predetermined rotational direction one probe at a time at regular intervals, with eight probe groups as one group starting from the reference position of the probe array 10.

又、アナログスイツチ24で選択接続した探触
子アレイ10の探触子群は受信側の偏角遅延部2
6A,26B,26Cに対しても共通接続され
る。
Further, the probe groups of the probe array 10 selectively connected by the analog switch 24 are connected to the declination delay section 2 on the reception side.
It is also commonly connected to 6A, 26B, and 26C.

この偏角遅延部26A〜26Cには受信側の偏
角遅延部16A〜16Cと同じ偏角遅延量が設定
されており、探触子アレイ10よりの受信信号が
アナログ信号であることから第4〜第6図の偏角
遅延部に示したと同じアナログ遅延素子を用いて
いる。
The argument delay units 26A to 26C are set with the same argument delay amount as the argument delay units 16A to 16C on the receiving side, and since the received signal from the probe array 10 is an analog signal, the fourth - The same analog delay element as shown in the argument delay section of FIG. 6 is used.

28は切換スイツチであり、送信側の切換スイ
ツチ20に同期して切換端子28a〜28cを順
次切換接続する。
Reference numeral 28 denotes a changeover switch, which sequentially switches and connects the changeover terminals 28a to 28c in synchronization with the changeover switch 20 on the transmitting side.

30はプリアンプ、32は焦点遅延部であり、
送信側の焦点遅延部14と同じ遅延量が設定さ
れ、同じくアナログ信号を遅延させることから第
4〜6図の焦点遅延部に示したと同様にアナログ
遅延素子が使用される。
30 is a preamplifier, 32 is a focal delay section,
The same delay amount as the focus delay section 14 on the transmitting side is set, and analog delay elements are used in the same manner as shown in the focus delay section of FIGS. 4 to 6 because analog signals are similarly delayed.

34は焦点遅延部32より並列入力される各探
触子毎の受信信号を加算合成する加算器、36は
加算器34の合成信号について超音波の伝搬距離
に対する信号レベルの変化を補正する距離振幅補
正を行ない且つ受信信号の処理手段としてマイク
ロコンピユータ44を使用していることから合成
受信信号をデジタル信号に変換するA/D変換器
を有する。主増幅器36のデジタル受信信号はバ
ツフア38aを介して混合―レベル比較器40に
入力されている。混合―レベル比較器40は主増
幅器36よりのデジタル受信信号が基準レベルを
上回つた時に欠陥受信信号として判別し、基準レ
ベルを下回わる信号についてはノイズ成分として
除去するとともに送信パルス信号による超音波ビ
ームの直接の回り込みによる受信成分を制御信号
発生器18より送信制御信号に基づいて除去する
ようにしている。
34 is an adder that adds and synthesizes the received signals of each probe that are input in parallel from the focus delay unit 32, and 36 is a distance amplitude that corrects the change in signal level with respect to the ultrasonic propagation distance for the combined signal of the adder 34. Since the microcomputer 44 is used for correction and processing of the received signal, it has an A/D converter for converting the combined received signal into a digital signal. The digital reception signal of main amplifier 36 is input to mixing-level comparator 40 via buffer 38a. The mixing level comparator 40 determines that the digital received signal from the main amplifier 36 is a defective received signal when it exceeds the reference level, and removes the signal that falls below the reference level as a noise component and eliminates the excess signal caused by the transmitted pulse signal. Received components due to direct wraparound of the sound wave beam are removed by the control signal generator 18 based on the transmission control signal.

又、混合―レベル比較器42はバツフア42,
44及び46を介して距離信号a、探傷モード信
号b及び欠陥位置信号cが入力されている。
The mixing level comparator 42 also includes a buffer 42,
A distance signal a, a flaw detection mode signal b, and a defect position signal c are inputted via 44 and 46.

ここで距離信号aは探触子アレイ10に対して
送り込まれる管体により、駆動されるパルスジエ
ネレータよりのパルス信号を用いており、管体の
基準位置に対する長手方向の位置を検知するよう
にしている。
Here, the distance signal a uses a pulse signal from a pulse generator driven by the tubular body sent to the probe array 10, and is designed to detect the longitudinal position of the tubular body with respect to the reference position. ing.

又、探傷モード信号bは首振りの遅延による
θ1,θ2,θ3の何れかを識別する信号を入力し、欠
陥位置などの受信処理を指令するために用いる。
Further, the flaw detection mode signal b inputs a signal that identifies any one of θ 1 , θ 2 , and θ 3 due to the swing delay, and is used to instruct reception processing of defect positions and the like.

更に欠陥位置信号cはアナログスイツチ24の
切換制御信号に基づき、探触子アレイ10の切換
走査位置、すなわち、何番目の探触子で欠陥信号
が受信されたかを識別するため探触子アレイ10
の基準位置に対する角度信号として与えられる。
Further, the defect position signal c is applied to the probe array 10 in order to identify the switching scanning position of the probe array 10, that is, which probe receives the defect signal based on the switching control signal of the analog switch 24.
is given as an angle signal with respect to the reference position.

混合―レベル比較器40の出力は、入力インタ
フエース42を介してマイクロコンピユータ44
に入力され、入力データに基づいて欠陥及び欠陥
位置を演算処理し、出力インタフエース46を介
してプリンタ48、CRT50に打ち出し記録す
るようにしている。
The output of the mixing-level comparator 40 is connected to a microcomputer 44 via an input interface 42.
The defects and defect positions are calculated based on the input data, and printed and recorded on the printer 48 and CRT 50 via the output interface 46.

次に第8図の動作フローを参照して第7図の実
施例の作用を説明する。
Next, the operation of the embodiment shown in FIG. 7 will be explained with reference to the operational flow shown in FIG.

水中に固定設置された探触子アレイ10に対
し、被検査体としての管体が送り込まれてくる
と、マイクロコンピユータ44の制御により制御
信号発生器18がアナログスイツチ24に切換走
査信号を出力し、探触子アレイ10の基準位置を
スタート位置とした8個の探触子群を送信部22
および受信側の偏角遅延部26A〜26Cに選択
接続する。
When a tube body as an object to be inspected is sent to the probe array 10 fixedly installed in the water, the control signal generator 18 outputs a switching scanning signal to the analog switch 24 under the control of the microcomputer 44. , eight probe groups with the reference position of the probe array 10 as the starting position are transmitted to the transmitter 22.
and selectively connected to the receiving side argument delay units 26A to 26C.

続いて制御信号発生器18より屈折角θ1の超音
波ビームを送出させるための送信制御信号及び切
換信号が出力される。この切換信号により切換ス
イツチ20及び28は図示のように切換接点20
a,28aに切換わり、続いて送信制御信号によ
り焦点遅延部14で焦点遅延された送信制御信号
が切換スイツチ20を介して偏角遅延部16Aに
入力し、所定の偏角遅延を施した後に送信部22
に供給され、各探触子群毎に設けている超音波発
振器を駆動し、アナログスイツチ24を介して選
択されている探触子アレイ10の探触子群に送信
パルス信号を供給する。
Subsequently, the control signal generator 18 outputs a transmission control signal and a switching signal for transmitting an ultrasonic beam having a refraction angle θ 1 . This switching signal causes the switching switches 20 and 28 to switch to the switching contact 20 as shown in the figure.
a, 28a, and then the transmission control signal whose focus is delayed by the focus delay unit 14 according to the transmission control signal is input to the declination delay unit 16A via the changeover switch 20, and after being subjected to a predetermined declination delay. Transmission section 22
The ultrasonic oscillator provided for each probe group is driven, and a transmission pulse signal is supplied to the selected probe group of the probe array 10 via the analog switch 24.

このため探触子アレイ10の探触子群からは第
4図に示す屈折角θ21の焦点探触子と等価な超音
波ビームが管体に入射され、超音波ビームの伝搬
経路に存在する傷、割れなどの欠陥による反射信
号が同じ探触子群で受信され、受信側の偏角遅延
回路26Aに入力する。偏角遅延回路26Aにお
いて偏角遅延を施された受信信号は切換接点28
aに切換わつている切換スイツチ28を介してプ
リアンプ30で前置増幅され、焦点遅延部32に
おける焦点遅延により各探触子毎に異なる受信タ
イミングのずれを除去し、加算器34で合成して
主増幅部36における距離振幅補正後にデジタル
信号に変換され、ブツフア38aを介して混合―
レベル比較器40に入力する。
Therefore, from the probe group of the probe array 10, an ultrasonic beam equivalent to the focusing probe with a refraction angle θ 21 shown in FIG. Reflected signals due to defects such as scratches and cracks are received by the same probe group and input to the receiving side declination delay circuit 26A. The received signal subjected to the declination delay in the declination delay circuit 26A is transferred to the switching contact 28.
The signals are preamplified by a preamplifier 30 via a changeover switch 28 that is switched to a, and the difference in reception timing that differs for each probe is removed by a focus delay in a focus delay unit 32, and then combined by an adder 34. After distance amplitude correction in the main amplifying section 36, the signal is converted into a digital signal and mixed via the buffer 38a.
input to the level comparator 40.

同時にバツフア42,44,46を介して距離
信号a、探傷モード信号b及び欠陥位置信号cも
入力され、混合―レベル比較器40において基準
レベルを上回る受信信号を欠陥信号として比較判
別し、欠陥位置を示す距離信号a及び欠陥位置信
号cに基づいてデータとともに入力インタフエー
ス42を介してマイクロコンピユータ44に入力
する。
At the same time, a distance signal a, a flaw detection mode signal b, and a defect position signal c are also input via buffers 42, 44, and 46, and a received signal exceeding a reference level is compared and determined as a defect signal in a mixing level comparator 40, and the defect position signal is The data are input to the microcomputer 44 via the input interface 42 based on the distance signal a indicating the defect position signal c and the defect position signal c.

続いて屈折角θ1による欠陥検知が終了すると、
切換スイツチ20,28は切換接点20b,28
bに切換わり、同様な超音波の送受信により、屈
折角θ2の超音波ビームによる欠陥検知(第5図参
照)を行なう。
Next, when the defect detection using the refraction angle θ 1 is completed,
The changeover switches 20 and 28 have changeover contacts 20b and 28.
b, and by transmitting and receiving similar ultrasonic waves, defect detection is performed using an ultrasonic beam having a refraction angle of θ 2 (see FIG. 5).

更に切換スイツチ20,28は切換接点10
c,28cに切換わり、同様な超音波の送受信に
より屈折角θ3による欠陥検知を行なう。
Furthermore, the changeover switches 20 and 28 are connected to the changeover contact 10.
c, 28c, and detects defects based on the refraction angle θ 3 by transmitting and receiving similar ultrasonic waves.

このような屈折角θ1〜θ3の超音波ビームの切換
えによるビーム首振りでマイクロコンピユータ4
4に得られた受信信号は所定のプログラム演算に
より欠陥の有無が判別され、欠陥を検出した時に
は欠陥の大きさ及び欠陥位置を示すデータを出力
インタフエース46を介してプリンタ48、
CRT50に打ち出し記録する。
By switching the ultrasonic beam at the refraction angle θ 1 to θ 3 in this way, the microcomputer 4
The received signal obtained in step 4 is subjected to a predetermined program calculation to determine whether there is a defect or not, and when a defect is detected, data indicating the size and location of the defect is output via an interface 46 to a printer 48,
Shoot and record on CRT50.

このように1回のビーム首振りによる欠陥検知
が終了すると、制御信号発生器18よりの切換走
査信号によりアナログスイツチ24は探触子アレ
イ10の探触子1個分だけ所定方向にずらした探
触子群を選択接続し、再び選択した探触子群に対
する超音波ビームの首振り制御を探触子アレイを
探触子1個分ずつ所定方向にシフトする毎に繰り
返す。
When the defect detection by one beam swing is completed in this way, the switching scanning signal from the control signal generator 18 causes the analog switch 24 to shift the detection by one probe of the probe array 10 in a predetermined direction. A group of probes is selectively connected, and the oscillation control of the ultrasonic beam for the selected group of probes is repeated every time the probe array is shifted in a predetermined direction by one probe.

従つて、本発明の超音波ビームの首振り制御に
より探触子アレイを1探触子分シフトした時に生
ずる未探傷領域が3段階にわたる超音波ビームの
首振りにより完全にカバーすることができ、探触
子アレイの切換走査により生ずる被検査体の未探
傷領域を完全になくして精度の高い欠陥検知を行
なうことができる。
Therefore, by the ultrasonic beam swing control of the present invention, the undetected area that occurs when the probe array is shifted by one probe element can be completely covered by the ultrasonic beam swing control in three stages. Highly accurate defect detection can be performed by completely eliminating the undetected area of the object to be inspected that is caused by the switching scan of the probe array.

尚、上記の実施例では超音波ビームを3段階に
首振りさせる場合を例に取るものであつたが、首
振り段数は2段階でもよく又、3段階以上の適宜
段数としてもよい。
In the above embodiment, the ultrasonic beam is oscillated in three stages, but the number of oscillation stages may be two stages, or may be three or more stages as appropriate.

以上説明してきたように、本発明によれば、複
数の探触子を環状に配列した探触子アレイを水中
に固定設置し、この探触子アレイの所定数の探触
子を1グループとして軸方向に順次切換走査し、
切換走査毎に選択した探触子群の送受信遅延によ
り焦点探触子と等価な超音波ビーム特性をもつて
探触子アレイ内を通過する被検査体の欠陥を検知
する超音波自動探傷装置において、探触子アレイ
を切換走査する毎に送受信遅延量を多段階に切換
えることで屈折角の異なる超音波ビームを送出し
てビームを首振りさせるようにしたため、探触子
アレイの切換走査で生ずる被検査体の未探傷領域
を完全になくすことができ、探触子を固定設置し
た構造の探傷装置における探傷精度を大幅に向上
することができるという効果が得られる。
As described above, according to the present invention, a probe array in which a plurality of probes are arranged in a ring is fixedly installed underwater, and a predetermined number of probes in this probe array are grouped as one group. Switching scans sequentially in the axial direction,
In an automatic ultrasonic flaw detection system that detects defects in an object to be inspected passing through a probe array with ultrasonic beam characteristics equivalent to those of a focused probe by delaying the transmission and reception of a group of probes selected for each switching scan. By switching the transmission/reception delay amount in multiple stages each time the probe array is switched and scanned, ultrasonic beams with different refraction angles are sent out and the beam is oscillated. It is possible to completely eliminate the undetected area of the object to be inspected, and it is possible to obtain the effect that the flaw detection accuracy in a flaw detection apparatus having a structure in which a probe is fixedly installed can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明者による静止型探触子アレイ
の切換え走査で生ずる未探傷領域の説明図、第
2,3図は本発明で用いる探触子アレイの一実施
例を示した説明図、第4,5,6図は本発明によ
るビーム首振りの原理を示した説明図、第7図は
本発明の一実施例を示したブロツク図、第8図は
第7図の実施例における動作フロー図である。 10……探触子アレイ、11……水、12……
管体、14……焦点遅延部(送信側)、16A,
16B,16C……偏角遅延部(送信側)、18
……制御信号発生器、22,28……切換スイツ
チ、22……送信部、24……アナログスイツ
チ、26A,26B,26C……偏角遅延部(受
信側)、32……焦点遅延部(受信側)、30……
プリアンプ、34……加算器、36……主増幅
部、38a,38b,38c,38d……バツフ
ア、40……混合―レベル比較器、42……入力
インタフエース、44……マイクロコンピユー
タ、46……出力インタフエース、48……プリ
ンタ、50……CRT。
FIG. 1 is an explanatory diagram of an undetected area caused by switching scanning of a stationary probe array by the present inventor, and FIGS. 2 and 3 are explanatory diagrams showing one embodiment of the probe array used in the present invention. Figures 4, 5, and 6 are explanatory diagrams showing the principle of beam swing according to the present invention, Figure 7 is a block diagram showing an embodiment of the present invention, and Figure 8 is the operation of the embodiment of Figure 7. It is a flow diagram. 10...Probe array, 11...Water, 12...
Tube body, 14... Focus delay section (transmission side), 16A,
16B, 16C... Declination angle delay section (transmission side), 18
. . . Control signal generator, 22, 28 . . . Selector switch, 22 . receiving side), 30...
Preamplifier, 34...Adder, 36...Main amplifier section, 38a, 38b, 38c, 38d...Buffer, 40...Mixing-level comparator, 42...Input interface, 44...Microcomputer, 46... ...Output interface, 48...Printer, 50...CRT.

Claims (1)

【特許請求の範囲】 1 複数の探触子を環状に配列した探触子アレイ
を水中に固定設置し、該探触子アレイの所定数の
探触子を1グループとする探触子群を軸周方向に
順次切換え走査し、切換え走査毎に選択した探触
子群の送受信遅延により焦点探触子と等価な超音
波ビーム特性をもつて探触子アレイ内を通過する
管状金属の欠陥を検知する超音波自動探傷装置に
おいて、 前記探触子アレイの前記探触子群を切換え走査
する毎に該探触子群に対する送受信遅延量を多段
階に切換えることにより超音波ビームを首振りさ
せるビーム首振り手段を設けことを特徴とする超
音波自動探傷装置。
[Scope of Claims] 1. A probe array in which a plurality of probes are arranged in a ring is fixedly installed in water, and a probe group is formed in which a predetermined number of probes in the probe array constitute one group. Scans are sequentially switched in the axial circumferential direction, and defects in the tubular metal passing through the probe array are detected with ultrasonic beam characteristics equivalent to those of a focal probe by the transmission/reception delay of the probe group selected for each switching scan. In an ultrasonic automatic flaw detection device, the ultrasonic beam is oscillated by switching the amount of transmission/reception delay for the probe group in multiple stages each time the probe group of the probe array is switched and scanned. An ultrasonic automatic flaw detection device characterized by being provided with a swinging means.
JP57174751A 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus Granted JPS5965252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57174751A JPS5965252A (en) 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174751A JPS5965252A (en) 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus

Publications (2)

Publication Number Publication Date
JPS5965252A JPS5965252A (en) 1984-04-13
JPH0143906B2 true JPH0143906B2 (en) 1989-09-25

Family

ID=15984041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174751A Granted JPS5965252A (en) 1982-10-05 1982-10-05 Ultrasonic automatic flaw detecting apparatus

Country Status (1)

Country Link
JP (1) JPS5965252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024000A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic probe, ultrasonic flaw detector, ultrasonic flaw detecting method and production method of seamless pipe
WO2007113907A1 (en) * 2006-04-05 2007-10-11 Sumitomo Metal Industries, Ltd. Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118860A (en) * 1984-07-06 1986-01-27 Nippon Steel Corp Ultrasonic beam control method for ultrasonic flaw detection of steel pipes using array type probe
JPS61198056A (en) * 1985-02-28 1986-09-02 Nippon Steel Corp Ultrasonic flaw detecting method for steel pipe by array type probe
JP5558666B2 (en) * 2007-12-19 2014-07-23 山陽特殊製鋼株式会社 Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446595A (en) * 1977-09-21 1979-04-12 Hitachi Ltd Ultrasonic flaw locator of electronic scanning type
JPS55110952A (en) * 1979-02-21 1980-08-27 Toshiba Corp Ultrasonic probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446595A (en) * 1977-09-21 1979-04-12 Hitachi Ltd Ultrasonic flaw locator of electronic scanning type
JPS55110952A (en) * 1979-02-21 1980-08-27 Toshiba Corp Ultrasonic probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024000A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic probe, ultrasonic flaw detector, ultrasonic flaw detecting method and production method of seamless pipe
WO2007113907A1 (en) * 2006-04-05 2007-10-11 Sumitomo Metal Industries, Ltd. Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection device
JPWO2007113907A1 (en) * 2006-04-05 2009-08-13 住友金属工業株式会社 Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Also Published As

Publication number Publication date
JPS5965252A (en) 1984-04-13

Similar Documents

Publication Publication Date Title
JPH0215821B2 (en)
US4576048A (en) Method and apparatus for ultrasonic inspection of a solid workpiece
JPH0257268B2 (en)
US5024093A (en) Fan-shape scanning ultrasonic flaw detecting apparatus
GB2221303A (en) Acoustic lens apparatus
EP0396761B1 (en) Ultrasonic wave inspecting apparatus
JPH0143906B2 (en)
WO2001071338A1 (en) Ultrasonic testing
JP2008286639A (en) Coupling check method for ultrasonic oblique angle flaw detector
JPS59126952A (en) Ultrasonic flaw detection of round bar
JPH0311734Y2 (en)
JPS5963560A (en) Automatic ultrasonic flaw detector
JPH0143905B2 (en)
JP2002257798A (en) Flaw detection method and flaw detection device for solid shaft member
JPH0619341B2 (en) Electronic scanning ultrasonic flaw detector
JPH07236642A (en) Ultrasonic diagnostic device
JPS6356946B2 (en)
JPS62194454A (en) Defect inspection method for steel pipe welds
JP2019174239A (en) Ultrasonic flaw detection method
JPS6027853A (en) Ultrasonic wave flaw detector
JPS61223553A (en) Ultrasonic flaw detection
JPS5963561A (en) Automatic ultrasonic flaw detector
JPH0545346A (en) Ultrasonic probe
SU1610431A1 (en) Scanning apparatus for ultrasonic flaw detection
JPH01126543A (en) Sector scan type ultrasonic flaw detector