JPS59153550A - Mold for continuous casting - Google Patents
Mold for continuous castingInfo
- Publication number
- JPS59153550A JPS59153550A JP2771183A JP2771183A JPS59153550A JP S59153550 A JPS59153550 A JP S59153550A JP 2771183 A JP2771183 A JP 2771183A JP 2771183 A JP2771183 A JP 2771183A JP S59153550 A JPS59153550 A JP S59153550A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- thickness
- insulating layer
- continuous casting
- copper plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は連続鋳造用モールドGこ関し、とくに連続鋳
造鋳片の表面改質鋳造、なかでも溶質成分が負偏析し、
これによってアルミナクラスターなどの介在物が少なく
、また微細な表面割れがなく、すぐれた表面性状を有す
る連続鋳造鋳片の製造を可能にしようとするものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to mold G for continuous casting, and in particular to surface modification casting of continuously cast slabs, in which solute components are negatively segregated,
This is intended to make it possible to produce continuously cast slabs that have fewer inclusions such as alumina clusters, are free from minute surface cracks, and have excellent surface properties.
連続鋳造技術の進歩は著しく、最近では介在物集積や中
心偏析の少ない連続鋳造鋳片の大量生産が行なわれてい
る。Continuous casting technology has made remarkable progress, and recently continuous casting slabs with less inclusion accumulation and center segregation have been mass-produced.
しかしながら自動車用外板などに供される冷延鋼板では
鋼板表面の疵がとくに少ないことが要求されるのに対し
、しばしばアルミナクラスタによる多量の格落品が連続
鋳造鋳片より製造された冷や熱延鋼板では、微細な表面
割れのための連続鋳造後に、鋳片段階でのスカーフィン
グを余儀なくされることが多い。However, cold-rolled steel sheets used for automobile exterior panels are required to have very few defects on the surface of the steel sheet, but a large number of inferior products due to alumina clusters are often produced from cold-rolled steel sheets manufactured from continuously cast slabs. In rolled steel sheets, scarfing is often required at the slab stage after continuous casting due to minute surface cracks.
すなわち、連続鋳造技術の蓄積をもってしても、鋳片表
面品質にはなおかなりの教養の余地があると云える。In other words, even with the accumulation of continuous casting technology, there is still considerable room for improvement in the surface quality of slabs.
この発明は、このような連続鋳造鋳片の表面品質問題を
抜本的に解消することを目指した一連の開発成果の要部
を開示するものである。This invention discloses the main part of a series of development results aimed at fundamentally solving the surface quality problem of continuously cast slabs.
こ\に鋳片凝固時に溶鋼を攪拌すると溶鋼流速の増加に
ともない溶質成分の負偏析が生じることはすでに公知で
あり、たとえば連続鋳造機のスプレィ・クーリングゾー
ンで電磁攪拌を行なうと、攪拌時に凝固が進行しつつあ
る個所では溶質成分が負偏析を起す。この負偏析の程度
は、攪拌流速に比例し、凝固速度に反比例することがわ
かっている。It is already known that when molten steel is stirred during solidification of a slab, negative segregation of solute components occurs as the molten steel flow rate increases.For example, when electromagnetic stirring is performed in the spray cooling zone of a continuous casting machine, solidification during stirring is known. Negative segregation of solute components occurs in areas where solubility is progressing. It is known that the degree of negative segregation is proportional to the stirring flow rate and inversely proportional to the solidification rate.
しかしながら、このような事実をもってしても、とくに
鋳片表層における負偏析を拡張しようとする場合は、多
くの難点があり、一般に不可能である。However, even with this fact, there are many difficulties and it is generally impossible, especially when trying to expand the negative segregation in the surface layer of the slab.
すなわち、凝固速度は、次式の普通に用いられる凝固定
数25 jntn/min+を含む凝固厚dの表示式6
式%)
の微方形で与えられ、
&ci/at= 12.57./r
tfjt &d/at=312.5/dで示される。That is, the solidification rate is determined by the commonly used expression 6 for the solidification thickness d, which includes the solidification fixation number 25 jntn/min +
Given by the microcube of the formula %), &ci/at= 12.57. /r tfjt &d/at=312.5/d.
ところで鋳片表層部のたとえば2,5および10嘔深さ
の各位置で凝固速度はそれぞれ156.68および81
”/min+のようにかなり速いため、この発明の意
図する目的には沿わないわけである。By the way, the solidification rates at the 2, 5 and 10 depth positions on the surface of the slab are 156.68 and 81, respectively.
”/min+, which is quite fast, and therefore does not meet the intended purpose of this invention.
なお以上の計算は、連続鋳造に際して一般に用いられる
銅製水冷鋳型による場合についてのものである。The above calculations are based on a copper water-cooled mold commonly used in continuous casting.
発明者らは、このような銅製水冷鋳型による限りこの発
明の目的に適合され得ない難点を解消すべく多数の実験
を重ねた。その結果、鋳造方向の鋳型長さを通常のまま
から120%増に至るまでの間とし、そのうち上方の鋳
造方向長さで鋳型全長の10〜40%に相当する部分の
、凝固シェル側に厚み0.5〜30闘の耐火物層を設け
てこれを銅板にてバックアップし、残りは従来どおり銅
の層からなるものとした複合構造連続鋳造鋳型を用いる
ことにより、初期凝固速度を20〜5間・min”4G
こ抑制調整しうろことを究明した。The inventors conducted a number of experiments in order to solve the problem that the copper water-cooled mold cannot meet the objectives of the present invention. As a result, the length of the mold in the casting direction was increased from the normal length to 120%, and the thickness was increased on the solidified shell side in the upper casting direction, which corresponded to 10 to 40% of the total length of the mold. By using a composite structure continuous casting mold in which a refractory layer of 0.5 to 30 mm is backed up with a copper plate, and the rest is made of conventional copper layers, the initial solidification rate can be increased to 20 to 50 mm. Between/min”4G
We have determined how to adjust this suppression.
かくして水冷鋳型の上部にその長さを延長するを可とす
る緩冷却帯を形成し、こ−に注入した溶鋼に電磁攪拌を
加え、緩冷却帯における凝固係数k : 2〜1 ”/
min+、攪拌流速U:12,000〜120、000
11Im/minでかつに/U: (0,3〜8.0
) X]、 O−’ min+の条件で鋳造を行い、表
層に2〜1Orryn厚みの負偏析層を形成させること
をもって、連続鋳造鋳片の表面改質に関する課題解決手
段としている。In this way, a slow cooling zone whose length can be extended is formed at the top of the water-cooled mold, and electromagnetic stirring is applied to the molten steel injected into this zone, so that the solidification coefficient k in the slow cooling zone is 2 to 1''/
min+, stirring flow rate U: 12,000 to 120,000
11Im/min dekatsuni/U: (0.3~8.0
) X], O-'min+, and by forming a negative segregation layer with a thickness of 2 to 1 Orryn on the surface layer, this is a means to solve the problem of surface modification of continuously cast slabs.
ここに連続鋳造鋳型の長さを通常よりも長くする場合、
鋳型内部における鋳片の初期凝固が遅れて鋳型直下の凝
固シェルの厚さが薄くなり、ブレークアウトの危険を生
じ、またこれを避けようとすると鋳造速度、すなわち連
続鋳造機の生産性の低下が余儀なくされることに対処す
る方策としてとくに有効であるが不可欠ではない。When making the length of the continuous casting mold longer than usual,
The initial solidification of the slab inside the mold is delayed and the thickness of the solidified shell directly under the mold becomes thinner, creating the risk of breakout.In addition, attempts to avoid this will reduce the casting speed, i.e. the productivity of the continuous casting machine. It is particularly effective as a coping strategy, but it is not essential.
すでに述べたように、この発明は連鋳機内の初期凝固の
速度を格段に遅らせるため凝固シェルに対向する面に水
冷銅板でバックアップされたセラミックス主体の断熱層
を鋳型頭部に設けることで上記の目的を達しつる。As already mentioned, this invention solves the above problems by providing a heat insulating layer mainly made of ceramics backed up by a water-cooled copper plate on the surface facing the solidified shell on the mold head in order to significantly slow down the initial solidification speed in the continuous casting machine. Achieve your purpose.
すなわち、あらかじめ所要厚分だけCu板の一部を切削
して凹みを形成し、Ni基合金粉末の薄膜を溶射により
形成し、ついでセラミックスを主体とする粉末により溶
射を継続して断熱層を形成し、抜熱量を通常の水冷aU
板の場合に比べ14〜1/2oに調整するものである。That is, a part of the Cu plate is cut to the required thickness in advance to form a recess, a thin film of Ni-based alloy powder is formed by thermal spraying, and then thermal spraying is continued with powder mainly composed of ceramics to form a heat insulating layer. The amount of heat removed is compared to normal water cooling aU.
It is adjusted to 14 to 1/2 degrees compared to the case of a plate.
勿論、頭部緩冷却帯と通常の水冷銅板の凝固シェル側の
表面の段差は連続鋳造中のトラブルに直結することとな
るので、溶射層の切削、研磨により100μ以下に調整
することが肝要である。Of course, the level difference between the head slow cooling zone and the solidified shell side surface of a normal water-cooled copper plate will directly lead to trouble during continuous casting, so it is important to adjust the level to 100μ or less by cutting and polishing the sprayed layer. be.
また、あらかじめ所要厚さ分だけ水冷銅板の一部を切削
して凹みを形成し、ここにアルミナ主体の接着剤を用い
て強固に接着、固定したタイル状のセラミックスを主体
とする平板により上記断熱層を形成する。この場合いわ
ゆる目地部分や該平板を接着していないOU板の個所に
おける段差は連続鋳造中のトラブルとなるので門みの形
状、セラミックス平板の寸法精度を50μ以下として、
この種の問題を回避する。In addition, a part of the water-cooled copper plate is cut to the required thickness in advance to form a recess, and a tile-like ceramic-based flat plate is firmly bonded and fixed using an alumina-based adhesive. form a layer. In this case, the so-called joints and the level difference at the part of the OU plate where the flat plate is not bonded will cause trouble during continuous casting, so the shape of the gate and the dimensional accuracy of the ceramic flat plate should be set to 50μ or less.
Avoid this kind of problem.
実施例1
1 tQnの実験用連鋳機を用いて実験した。モールド
の断面サイズは150 mln角、長さは通常700關
のところを900 amに延長し、モールド頭部よリ1
00〜300關の区間にはすべて水プラズマ溶射を行な
ったものを用いた。Example 1 An experiment was conducted using a 1tQn experimental continuous casting machine. The cross-sectional size of the mold is 150 mln square, and the length is usually 700 mm, but it is extended to 900 mm, and the mold head is 150 mm square.
All the sections from 00 to 300 were subjected to water plasma spraying.
プラズマ溶射した銘柄はY2O3安定化ジルコニアで、
y2oBは4wt%とし、溶射層の厚みは5闘とした。The plasma sprayed brand is Y2O3 stabilized zirconia.
y2oB was set to 4 wt%, and the thickness of the sprayed layer was set to 5 wt%.
一方MO30wt%、安定化ジルコニア70wt%の微
粉末混合物につき溶射層の厚みを10 amとした。On the other hand, for a fine powder mixture of 30 wt % MO and 70 wt % stabilized zirconia, the thickness of the sprayed layer was 10 am.
以上の2種類のモールドのは力1、通常のQu上モール
ド用いて鋳造試験を各2回実施した。なお、鋳造条件は
通常の場合ととくに大差はない条件とし、パウダーを用
いている。Casting tests were conducted twice using each of the above two types of molds with a force of 1 and a normal Qu top mold. Note that the casting conditions were not much different from those in the normal case, and powder was used.
鋳造時のモールドによる抜熱はモールド内に深さを変え
て埋めこんだ熱電対の温度差などから算出した。なお、
モールド全厚は(30±1 ) mm一定とした。この
結果、緩冷却帯における鋳造中の抜熱量の最大値ならひ
に人為的ブレークアウトにより求めた凝固係数は表1の
とおりであって、緩冷却ゾーンの設定により抜熱量は容
易に約(’/2〜1//8)とすることができることが
判明した。The heat removed by the mold during casting was calculated from the temperature difference between thermocouples embedded at different depths within the mold. In addition,
The total mold thickness was kept constant at (30±1) mm. As a result, if the maximum amount of heat removed during casting in the slow cooling zone, the solidification coefficient determined by artificial breakout is as shown in Table 1, and by setting the slow cooling zone, the heat removed can easily be approximately (' /2 to 1//8).
表 1
実施例2
1 tonの実験用連鋳機を用いて実験した。モールド
の断面サイズはl 5 Qss角、長さは通常700關
のところを900111111に延長し、モールド頭部
より100〜300闘の区間にはすべてセラミックス板
を張り付は緩冷却ゾーンを形成せしめた。ゼラミックス
平板の銘柄はY2O3安定化ジルコニアでY2O3は4
wt%、形状は50X50X5闘厚であり、一方、同じ
形状のMO80wt%安定化ジルコニア70wt%の微
粉末混合物をもとに成形した平板の2種類を用いた。Table 1 Example 2 An experiment was conducted using a 1 ton experimental continuous casting machine. The cross-sectional size of the mold is l5Qss square, and the length is extended from the usual 700mm to 900111111mm, and a ceramic plate is attached to the entire section 100 to 300mm from the mold head to form a slow cooling zone. . The brand of Xeramix flat plate is Y2O3 stabilized zirconia and Y2O3 is 4
wt%, shape was 50x50x5 thickness, and on the other hand, two types of flat plates molded based on a fine powder mixture of MO80wt% stabilized zirconia 70wt% with the same shape were used.
これらのモールドのほか、通常のQu上モールド用いて
鋳造試験を各2回実施した。なお、鋳造条件は通常の場
合ととくに大差はない条件とし、パウダーを用いている
。In addition to these molds, casting tests were conducted twice using ordinary Qu molds. Note that the casting conditions were not much different from those in the normal case, and powder was used.
鋳造時のモールドによる抜熱はモールド内に深さを変え
て埋めこんだ熱電対の温度差など力)ら算出した。なお
、モールド全厚は(30±1)闘一定とした。この結果
、緩冷却帯における鋳造中の抜熱量の最大値ならびに人
為的ブレークアウトにより求めた凝固係数は表2のとお
りであって、緩冷却ゾーンの設定により抜熱量は容易に
約(1//2〜1//8)とすることができることが判
明した。The heat removed by the mold during casting was calculated from the temperature difference between thermocouples embedded at different depths in the mold. The total mold thickness was kept constant (30±1). As a result, the maximum value of heat removal during casting in the slow cooling zone and the solidification coefficient determined by artificial breakout are as shown in Table 2. By setting the slow cooling zone, the heat removal can easily be approximately (1// 2 to 1//8).
表 2Table 2
Claims (1)
ップされたセラミック主体の断熱層部分を鋳型頭部に設
けたことを特徴とする、連続鋳造用モールド。 i 断熱層部分が、1〜10 mm厚みのプラズマまた
は水プラズマ溶射層である、l記載のモールド。 & 断熱層部分が、3〜1Qfflfi厚みで、辺長が
5〜5Qmmの方形のセラミックを主体とする材料の張
付けになる、]記載のモールド。[Scope of Claims] 1. A mold for continuous casting, characterized in that the head of the mold is provided with a heat insulating layer made mainly of ceramic, which is punched up with a water-cooled copper plate, on the surface facing the solidified shell. i The mold according to l, wherein the heat insulating layer portion is a plasma or water plasma sprayed layer with a thickness of 1 to 10 mm. & The mold according to ], wherein the heat insulating layer portion is made of a rectangular ceramic-based material with a thickness of 3 to 1 Qfflfi and a side length of 5 to 5 Qmm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2771183A JPS59153550A (en) | 1983-02-23 | 1983-02-23 | Mold for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2771183A JPS59153550A (en) | 1983-02-23 | 1983-02-23 | Mold for continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59153550A true JPS59153550A (en) | 1984-09-01 |
Family
ID=12228578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2771183A Pending JPS59153550A (en) | 1983-02-23 | 1983-02-23 | Mold for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59153550A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2590188A1 (en) * | 1985-11-15 | 1987-05-22 | Siderurgie Fse Inst Rech | CONTINUOUS CASTING LINGOTIERE WITH HOT HEAD |
FR2595596A1 (en) * | 1986-03-13 | 1987-09-18 | Cegedur | LINGOTIERE FOR ADJUSTING THE NEXT LEVEL IN WHICH IT IS IN CONTACT WITH THE FREE METAL SURFACE IN A VERTICAL COULEE |
EP0448773A2 (en) * | 1990-03-30 | 1991-10-02 | Nippon Steel Corporation | Continuous caster mold and continuous casting process |
US5299627A (en) * | 1992-03-03 | 1994-04-05 | Kawasaki Steel Corporation | Continuous casting method |
-
1983
- 1983-02-23 JP JP2771183A patent/JPS59153550A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2590188A1 (en) * | 1985-11-15 | 1987-05-22 | Siderurgie Fse Inst Rech | CONTINUOUS CASTING LINGOTIERE WITH HOT HEAD |
FR2595596A1 (en) * | 1986-03-13 | 1987-09-18 | Cegedur | LINGOTIERE FOR ADJUSTING THE NEXT LEVEL IN WHICH IT IS IN CONTACT WITH THE FREE METAL SURFACE IN A VERTICAL COULEE |
EP0448773A2 (en) * | 1990-03-30 | 1991-10-02 | Nippon Steel Corporation | Continuous caster mold and continuous casting process |
US5299627A (en) * | 1992-03-03 | 1994-04-05 | Kawasaki Steel Corporation | Continuous casting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8312916B2 (en) | Method for casting a composite ingot | |
JPS59153550A (en) | Mold for continuous casting | |
JPH0999344A (en) | Mold for vertical semi-continuous casting of non-ferrous metallic slab | |
JPS60244013A (en) | Manufacture of magnetic material | |
JP3101069B2 (en) | Continuous casting method | |
JPH04224050A (en) | Method for preventing solidification of end parts in strip casting | |
JPH1058093A (en) | Steel continuous casting method | |
JPH054925Y2 (en) | ||
US4744406A (en) | Horizontal continuous casting apparatus with break ring formed integral with mold | |
KR101119959B1 (en) | Casting roll in twin roll strip caster for producing strip with good quality | |
JP3018809B2 (en) | Method of manufacturing thin sheet ingot by electromagnetic force | |
JPS63112043A (en) | Manufacture of ingot in electron beam dissolution | |
JPH02207948A (en) | Production of cast strip with single belt type continuous casting machine | |
JPH07299545A (en) | Spraying method for coating material of twin belt for continuous casting | |
JPS63154245A (en) | Continuous casting method for thin slabs | |
JPS62230457A (en) | Production of two layer clad ingot | |
JPS58192667A (en) | Method for casting continuous casting ingot having improved surface | |
JPH02241645A (en) | Twin roll type continuous casting machine | |
JP2010515583A (en) | Mold with coating | |
JPS61176463A (en) | Casting mold for unidirectionally solidified steel ingot | |
JPH01299744A (en) | Method for preventing vertical cracks on the surface of continuously cast slabs | |
JPS5994559A (en) | Twin belt caster water heater gutter | |
JPH0464768B2 (en) | ||
JPS61147948A (en) | Casting mold for continuous casting | |
JPS61219453A (en) | Immersion nozzle for continuous casting |