[go: up one dir, main page]

JPS59123631A - Mold for molding optical element - Google Patents

Mold for molding optical element

Info

Publication number
JPS59123631A
JPS59123631A JP23116382A JP23116382A JPS59123631A JP S59123631 A JPS59123631 A JP S59123631A JP 23116382 A JP23116382 A JP 23116382A JP 23116382 A JP23116382 A JP 23116382A JP S59123631 A JPS59123631 A JP S59123631A
Authority
JP
Japan
Prior art keywords
mold
optical element
tungsten carbide
cobalt
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23116382A
Other languages
Japanese (ja)
Other versions
JPS6251211B2 (en
Inventor
Kenzo Matsuzaka
健三 松坂
Nobuo Nakamura
宣夫 中村
Seitarou Okano
岡野 誓太朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23116382A priority Critical patent/JPS59123631A/en
Publication of JPS59123631A publication Critical patent/JPS59123631A/en
Publication of JPS6251211B2 publication Critical patent/JPS6251211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/08Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/02Ceramics
    • B29K2909/04Carbides; Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To provide the titled mold for molding by heating under pressure an optical element such as lens, prism, filter, etc. that is high in surface accuracy, by making the mold up of a material containing as major constituents tungsten carbide and cobalt. CONSTITUTION:For example, 100pts.wt. tungsten carbide, 1-25pts.wt., in particular 3-10pts.wt., cobalt and, if required, nickel, etc. are mixed, sintered and pressed to produce the intended mold consisting of a material containing mainly tungsten carbide anc cobalt.

Description

【発明の詳細な説明】 本発明は光学素子成形用型に関するものである。[Detailed description of the invention] The present invention relates to a mold for molding an optical element.

レンズ、プリズム、フィルターなどの光学素子は従来、
多くはガラスの研摩処理によって製造されている。しか
し、研摩処理には和尚な時間と技能を要するものである
。また、非球面レンズを研摩処理で製造するには一層高
度の研摩技術が必要でまた処理時間も長くならざるを得
ないものである。
Optical elements such as lenses, prisms, and filters are conventionally
Most are manufactured by polishing glass. However, polishing requires time and skill. In addition, manufacturing an aspherical lens by polishing requires a more sophisticated polishing technique and requires a longer processing time.

このような研摩処理による光学素子の製造方法に対して
、加熱加圧による成形によって光学業子金製造する方法
がある。この成形方法によれば、短時間に光学素子を製
造することができ、また、非球面レンズも球面レンズと
同じように容易且つ短時間に製造することができるもの
であるが、加熱加圧による成形方法においてもなお改善
されるべき問題点がある。それは、光学素子として必要
な表面精度を有する光学素子を型で作るのは容易でなか
ったことである。即ち、従来、この型としてはグラファ
イトから形成されたものが多く使用されて米たが、グラ
ファイト製型を用いた場合には、良好な表面精度を有す
る光学ガラス素子を製造することができなかった。本発
明は、型材を選択することによって、良好な表面精度を
有する光学素子を製造できる型を提供することを主たる
目的とする。
In contrast to such a method of manufacturing an optical element using a polishing process, there is a method of manufacturing an optical metal by molding by heating and pressing. According to this molding method, optical elements can be manufactured in a short time, and aspherical lenses can also be manufactured easily and in a short time in the same way as spherical lenses. There are still problems that need to be improved in the molding method. The problem is that it is not easy to mold an optical element with the surface precision necessary for an optical element. That is, in the past, molds made of graphite were often used, but when graphite molds were used, it was not possible to manufacture optical glass elements with good surface precision. . The main object of the present invention is to provide a mold that can manufacture an optical element with good surface accuracy by selecting a mold material.

本発明による光学素子成形用型は、炭化タングステンお
よびコノ9ルトを主成分とする材料から形成されている
ことを特徴とするものである。即ち本発明は、炭化タン
グステンおよびコ・々ルトを主成分とする材料から形成
される型を使用することによって、加熱加圧によシ高い
表面精度を有する光学素子を製造することができる。前
述のように、光学素子をつくる型として、従来、グラフ
ァイトから形成されたものが多く使用されているが、グ
ラファイトは多孔性であるために、いかに研摩しても、
光学素子として充分な表面精度をもつ素子をつくるに光
分な表面粗さの内壁表面をもつ型を得ることができなか
ったが、本発明においては型として炭化タングステンお
よびコバルトを主成分とするものを使用することによっ
て、表面粗さ5/100μ以下の内壁表面をもつ型を得
ることができ、且つこのような表面粗さに正確に対応す
る表面精度をもつ光学素子をつくることができる。従っ
て、本発明による型の内壁の表面粗さは、通常、5/1
00μ以下、特には3/100μ以下に設定されるもの
が好適である。このような高い表面精度を有する型とし
て、炭化タングステンとコバルトの焼結体の表面に高い
圧力金かけて表面に表面精度に支障となるようなボア(
巣)がない状態にし、さらに研摩して製造したものが好
適である。型を形成する炭化タングステンとコバルトの
組成比は適宜設定されるが、一般に、炭化タングステン
100(重量)部に対して、コバルトは1〜25部、特
には3〜10部の範囲が好適である。また必要に応じて
ニッケルなどの他の成分を適宜加えてもよい。
The mold for molding an optical element according to the present invention is characterized in that it is made of a material whose main components are tungsten carbide and Conolite. That is, according to the present invention, an optical element having high surface precision can be manufactured by heating and pressing by using a mold made of a material whose main components are tungsten carbide and carbon dioxide. As mentioned above, molds made of graphite have traditionally been used in many cases for making optical elements, but since graphite is porous, no matter how much it is polished, it
Although it has not been possible to obtain a mold with an inner wall surface that is optically rough enough to produce an element with sufficient surface precision as an optical element, the present invention uses a mold whose main components are tungsten carbide and cobalt. By using this method, it is possible to obtain a mold having an inner wall surface with a surface roughness of 5/100 μm or less, and to produce an optical element having a surface precision that accurately corresponds to such surface roughness. Therefore, the surface roughness of the inner wall of the mold according to the present invention is usually 5/1
The thickness is preferably set to 00μ or less, particularly 3/100μ or less. In order to create a mold with such high surface precision, high pressure is applied to the surface of the sintered body of tungsten carbide and cobalt to form a bore (which would impede surface precision) on the surface.
Preferably, the material is made without any cavities and is further polished. The composition ratio of tungsten carbide and cobalt forming the mold is set appropriately, but in general, a range of 1 to 25 parts, particularly 3 to 10 parts of cobalt is suitable for 100 parts (by weight) of tungsten carbide. . Further, other components such as nickel may be added as appropriate.

このように、炭化タングステンにコバルトを加えること
によって、よシ緻密で且つ高温において形状変化を生じ
ない型を得ることができる・然して、炭化タングステン
訃よびコバルトヲ主成分とする材料は、線膨張係数が5
×10 でフリント系光学ガラス(SrI2)の8.2
X10  よシ小さくいわゆる焼きじめが起らないこと
、ガラスが型にくっつかないこと(離型住良)、熱伝導
度がセラミックスに比べ高いこと(0,91m/−んり
硬度が高く(Hv1500)耐久性が優れていること、
及び前述した高い鏡面性が得られること、という利点を
有している。
In this way, by adding cobalt to tungsten carbide, it is possible to obtain a mold that is highly dense and does not change shape at high temperatures.However, materials whose main components are tungsten carbide and cobalt have a coefficient of linear expansion. 5
8.2 of flint optical glass (SrI2) at ×10
X10 It is very small and does not cause so-called burning, the glass does not stick to the mold (Mold Sumira), and its thermal conductivity is higher than that of ceramics (0.91m/-).It has a high hardness (Hv1500). ) have excellent durability;
It also has the advantage that the high specularity described above can be obtained.

本発明による型によって加熱加圧により成型された光学
素子は後研摩が不要で、そのまま光学素子として用いる
ことができるものである。また成形工程である、加熱加
圧条件は使用する各種ガラスやMgF2. CaF2P
 Tie□p ZnSなどの結晶材料の種類によって適
宜設定されるが、ガラスの場合には加圧の際のガラスの
温度は、ガラス転移点以上である。型に収容する前に予
め加熱しておいてもよいし、型に収容後に型と共に加熱
してもよい。
An optical element molded by heat and pressure using a mold according to the present invention does not require post-polishing and can be used as an optical element as it is. In addition, the heating and pressing conditions in the molding process are different from the various glasses used and MgF2. CaF2P
Although it is appropriately set depending on the type of crystal material such as Tie□p ZnS, in the case of glass, the temperature of the glass during pressurization is equal to or higher than the glass transition point. It may be heated in advance before being placed in the mold, or it may be heated together with the mold after being placed in the mold.

然して、加熱によって酸化を生ずるのを防止するために
Aこの成形工程は、真空中または窒素ガス、ヘリウム等
の不活性雰囲気中にて行なうのがよい。
However, in order to prevent oxidation caused by heating, this molding step is preferably carried out in a vacuum or in an inert atmosphere such as nitrogen gas or helium.

以下、本発明による型を使用する光学素子の製造の実施
例、および従来のグラファイト製の型を使用する光学素
子の製造に関する比較例について説明する。
Hereinafter, an example of manufacturing an optical element using a mold according to the present invention and a comparative example of manufacturing an optical element using a conventional graphite mold will be described.

実施例1 1〜2μの粒径に粉砕した炭化タングステン(wc)i
oo重量部にコバルト(co)s重量部を混合し外径1
7 mm厚さ15簡にプレス後、焼結した素材を、熱間
静圧プレス法(HIP)によシス体(アルゴン)を圧力
媒体として5000 kp/−の面圧をかけて緻密化し
た。
Example 1 Tungsten carbide (wc) pulverized to a particle size of 1 to 2μ
Mix part by weight of cobalt (co)s with part by weight of OO to obtain an outer diameter of 1
After pressing to a thickness of 15 mm and a thickness of 7 mm, the sintered material was densified by hot isostatic pressing (HIP) using a cis body (argon) as a pressure medium and applying a surface pressure of 5000 kp/-.

次にカーブゼネレータ(球面創成機)を使用しレンズの
球面を創成するのと同じ敬領で研削し表面粗さを10μ
程度にした。さらに粒径10μのアルミナ砥粒を使って
ラッピングして1μ程度の表面粗さにしこれを粒径0.
5μのダイヤによって暦き上げて第1図(イ)に示す様
にRmaxを0.03μ以下とした。
Next, use a curve generator (spherical surface generator) to grind the surface to a surface roughness of 10 μm using the same method used to create the spherical surface of the lens.
I made it to the extent. Furthermore, lapping was performed using alumina abrasive grains with a particle size of 10μ to give a surface roughness of about 1μ.
The Rmax was increased to 0.03μ or less as shown in FIG.

レンズの成形装置と加工手順を第2図によって説明する
The lens molding apparatus and processing procedure will be explained with reference to FIG.

第2図中、1は真空槽(ペルツヤ−)本体、2はその蓋
、3は光学素子を成形するための上型、4はその下型、
5は上型をおさえるための上型おさえ、6は用型、7は
型ホルダ−,8はヒータ、9は下型をつき上げるつき上
げ棒、10は該つき上げ棒を作動するエアシリンダ、1
1は油廻転ポンプ、12,13.14はバルブ、15は
窒素ガス導入パイプ、16はバルブ、17は排出ノンイ
ブ、18はバルブ、19は温度センサ、20は水冷パイ
プ、21は真空槽(ペルジャー)を載せる台を示す◎ 光学素子を製造するにあたって、前準備としてフリント
系光学ガラス(SF14)を外径15.8■厚さ2mm
の円板状にしたものを両面若いておく(これをブランク
と呼ぶ)。真空槽1の蓋2をあけ、ブランク22を下型
4の土にのせて型3をセ、トシてから真空槽の蓋2を閉
じ水冷パイプ20に水を流してヒータ8をONにする。
In Fig. 2, 1 is the main body of the vacuum chamber, 2 is its lid, 3 is an upper mold for molding optical elements, 4 is its lower mold,
5 is an upper mold presser for holding down the upper mold; 6 is a mold; 7 is a mold holder; 8 is a heater; 9 is a lifting rod for lifting up the lower mold; 10 is an air cylinder for operating the lifting rod; 1
1 is an oil pump, 12, 13, 14 is a valve, 15 is a nitrogen gas introduction pipe, 16 is a valve, 17 is an exhaust non-vector, 18 is a valve, 19 is a temperature sensor, 20 is a water cooling pipe, 21 is a vacuum tank (Pelger ) ◎ Before manufacturing the optical element, as a preparation, flint-based optical glass (SF14) with an outer diameter of 15.8 mm and a thickness of 2 mm is shown.
Cut into a disk shape and keep both sides young (this is called a blank). Open the lid 2 of the vacuum chamber 1, place the blank 22 on the soil of the lower mold 4, set the mold 3, and then close the lid 2 of the vacuum chamber, let water flow through the water cooling pipe 20, and turn on the heater 8.

このとき窒素ガス用バルブ16および18は閉じ排気系
バルブ12 、13 。
At this time, the nitrogen gas valves 16 and 18 are closed and the exhaust system valves 12 and 13 are closed.

14も閉じている。尚油廻転ポンプ11は常に廻転して
いる。
14 is also closed. Incidentally, the oil rotating pump 11 is constantly rotating.

バルブ12を開は排気をはじめ10  Torr以下に
なったらバルブ12を閉じバルブ16.18を開いて蟹
素ガスをボンベより真空槽内に導入する。
The valve 12 is opened to begin evacuation, and when the pressure becomes below 10 Torr, the valve 12 is closed and the valves 16 and 18 are opened to introduce crab gas from the cylinder into the vacuum chamber.

温度が650℃になったらエアシリンダ10を作動させ
てl Q kl/am2の圧力で成形する。転移点以下
になるまで加圧をつソけこの間は冷却速度を10℃論n
位に制御する。その後は20℃/min以上の速度で冷
却を行い200℃以下に下がったらバルブ16゜18を
閉じリークバルブ13を開いて真空槽1内に空気を導入
する。それから蓋2を開は上型おさえ5をはずして成形
物を取り出す。
When the temperature reaches 650° C., the air cylinder 10 is operated and molding is performed at a pressure of 1 Q kl/am2. Apply pressure until the temperature drops below the transition point, and during this time reduce the cooling rate to 10°C.
control the position. Thereafter, cooling is carried out at a rate of 20° C./min or higher, and when the temperature drops to 200° C. or lower, the valves 16 and 18 are closed, the leak valve 13 is opened, and air is introduced into the vacuum chamber 1. Then, the lid 2 is opened, the upper mold presser 5 is removed, and the molded product is taken out.

上記のようにして、フリント系光学ガラス(SF14)
(軟化点S P=586℃、転移点Tg=485℃)を
使用して、第3図に示す形状および寸法のレンズを成形
した結果、第1図(イ)に示す表面粗さの型とほぼ同じ
表面粗さのレンズを得ることができた。
As above, flint optical glass (SF14)
(Softening point SP = 586°C, transition point Tg = 485°C) was used to mold a lens with the shape and dimensions shown in Figure 3. As a result, the mold with the surface roughness shown in Figure 1 (a) and We were able to obtain lenses with approximately the same surface roughness.

この時の成形条件すなわち時間一温度関係図を第4図に
示す。
FIG. 4 shows the molding conditions at this time, that is, a time-temperature relationship diagram.

実施例2 実施例1と同様に1〜2μの粒径に粉砕した炭化タング
ステン100重量部に、コバルト5重量部およびニッケ
ル5重量部より成る材量f:使用して、実施例1と同様
にして表面粗さRmax O,03μ以下の型をつくっ
た。
Example 2 The same procedure as in Example 1 was carried out using 100 parts by weight of tungsten carbide ground to a particle size of 1 to 2 μm in the same manner as in Example 1, and 5 parts by weight of cobalt and 5 parts by weight of nickel. A mold with a surface roughness Rmax of 0.03μ or less was made.

実施例1と全く同じレンズ成形装置および加工手順によ
ってレンズの成形をしたところ、実施例1と同様の結果
が得られた。
When a lens was molded using the same lens molding apparatus and processing procedure as in Example 1, the same results as in Example 1 were obtained.

比較例 従来のグラファイト製の型を磨いて、上記の実施例1と
同じレンズを同じ装置によって成形した。
Comparative Example A conventional graphite mold was polished and the same lens as in Example 1 above was molded using the same equipment.

この場合には型の表面粗さは第1図(ロ)に示す如く、
Rmax O,3μで、成形されたレンズは第1図(ハ
)に示すようにRmax O,2の表面粗さのものしか
得られなかった0
In this case, the surface roughness of the mold is as shown in Figure 1 (b).
With Rmax O, 3 μ, the molded lens could only have a surface roughness of Rmax O, 2, as shown in Figure 1 (C).

【図面の簡単な説明】[Brief explanation of the drawing]

第1 M 、本発明による型の表面粗さの例を示す図、
第1図(ロ)(ハ)は従来のグラファイトの型の表面粗
さおよび成形されたレンズの表面粗さを示す図、第2図
はレンズの成形装置を示す断面図、第3図は成形される
レンズの一例の形状および寸法を示す図、第4図は成形
の際における時間一温度関係図である。 ■・・・真空槽本俸   2・・・蓋 :3・・上型      4・・下型 り・・上型おさえ   6・・・胴室 7 ・型小ルター   8・・・ヒータ9・・・つき上
げ棒   10・・・エアシリシタ11・・・油廻転ノ
1〈、、ラ 12.13.14・・・パルづ15・・・
窒素ガス導入パイプ 16・・・パルづ17・排出パイ
づ  18・・・パルづ15)・・温Iftシサ  2
0・・・水冷バイや21・・・台 l 第1 図(イ) 第1図(ロ) 第1 図(ハ) 第2図 手続補正書 1.事イノ1の表示 昭和へ7年特 許願第Z311乙3号 3、補正をする者 事件との関係  出 願 人 住 所(居所)東京都大Il1区下九子3丁[130i
f2号氏名(名称) (1,00)キャノン株式会社4
代j11人 住 所  東京都千代田区丸の内2丁目6番2に3丸の
内へ重d11ビル330−1計1 ′−二一    ’ft*r+ラデ子シサ拌り婆(−一
7 補正の月象 補    正   書 本願明細書中下記事項を補正いたします。 記 1、第6頁9行目に 「1は真空槽(ペルジャー)本体、」とあるを「1は密
閉容器、」と訂正する。 2、第61下から3行目に 「21は真空槽(ペルジャ−)を」とあるをF21は密
閉容器を」と4J正する。 3、第7頁3行目、5行目、122行目び188行目 「真空槽」とあるをそれぞれ 「密閉容器」と訂正する。 4、第7頁6行目に 「ヒータ8をONにする。」とあるを [し−夕8に通電する。」と訂正する。 5第7頁11行目及び17〜18行目に「パルづ16,
18を」とあるをそれぞれ「バルブ16を」と訂正する
。 6、第7員18行目に 「リークパルプ13」とあるを 「ノリしづ13」と訂正する。 7、第9頁12行目に [1・・・真空槽本体」とおるを 「1・・・密閉容器」と訂正する。
1st M, a diagram showing an example of the surface roughness of the mold according to the present invention,
Figures 1 (B) and (C) are diagrams showing the surface roughness of a conventional graphite mold and the surface roughness of a molded lens, Figure 2 is a sectional view showing a lens molding device, and Figure 3 is a molding FIG. 4 is a time-temperature relationship diagram during molding. ■...Basic vacuum chamber price 2...Lid: 3...Upper mold 4...Lower mold...Upper mold presser 6...Body chamber 7 -Small mold router 8...Heater 9...With Raising rod 10...Air syringe 11...Oil rotation 1〈,,ra 12.13.14...Pal 15...
Nitrogen gas introduction pipe 16...Palzu 17・Discharge pipe 18...Palzu 15)...Warm Ift switch 2
0...Water-cooled bike or 21...units Figure 1 (A) Figure 1 (B) Figure 1 (C) Figure 2 Procedural amendment 1. Indication of fact No. 1 Showa 7 year patent application No. Z311 Otsu No. 3, relationship with the case of the person making the amendment Application Address (Residence) 3-chome Shimokuko, Il1-ku, University of Tokyo [130i
No. f2 Name (Name) (1,00) Canon Co., Ltd. 4
11 people Address: 2-6-2, Marunouchi, Chiyoda-ku, Tokyo 330-1, Building 330-1, 2-chome, Marunouchi, Chiyoda-ku, Tokyo Total: 1'-21'ft*r+Radeko Shisa Agitaba (-17 Revised Moon Elephant Supplement) The following matters have been amended in the specification of the original application. In Note 1, page 6, line 9, the statement "1 is the vacuum chamber (Pelger) body" is corrected to "1 is the airtight container."2. In the 3rd line from the bottom of No. 61, ``21 is a vacuum chamber (Pelger)'' is corrected by 4J to read ``F21 is a closed container.'' 3. Page 7, lines 3, 5, and 122. In line 188, "vacuum chamber" should be corrected to "airtight container." 4. On page 7, line 6, "turn on heater 8." should be replaced with "Turn on heater 8." 5, page 7, line 11 and lines 17-18, “Palzu 16,
18" should be corrected to read "valve 16". 6. In the 18th line of the 7th member, correct "Leak Pulp 13" to "Nori Shizu 13". 7. On page 9, line 12, [1... Vacuum chamber body] is corrected to "1... Airtight container."

Claims (1)

【特許請求の範囲】[Claims] 炭化タングステンおよびコバルトを主成分とする材料か
ら形成されていることを特徴とする光学素子成形用型。
A mold for molding an optical element, characterized in that it is formed from a material whose main components are tungsten carbide and cobalt.
JP23116382A 1982-12-28 1982-12-28 Mold for molding optical element Granted JPS59123631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23116382A JPS59123631A (en) 1982-12-28 1982-12-28 Mold for molding optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23116382A JPS59123631A (en) 1982-12-28 1982-12-28 Mold for molding optical element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20539490A Division JPH03228835A (en) 1990-08-02 1990-08-02 Formation of optical element

Publications (2)

Publication Number Publication Date
JPS59123631A true JPS59123631A (en) 1984-07-17
JPS6251211B2 JPS6251211B2 (en) 1987-10-29

Family

ID=16919290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23116382A Granted JPS59123631A (en) 1982-12-28 1982-12-28 Mold for molding optical element

Country Status (1)

Country Link
JP (1) JPS59123631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037287A (en) * 1997-11-26 2000-03-14 Praxair S.T. Technology, Inc. Laser clad pot roll sleeves and bushings for galvanizing baths
NL1032865C2 (en) * 2006-10-03 2008-04-04 Czl Tilburg B V Injection molding tool for producing e.g. lenses or CD's, includes wear resistant hard metal layer applied by shockwave cladding
CN104030548A (en) * 2014-07-03 2014-09-10 中国科学院上海硅酸盐研究所 Silicon carbide ceramic mold core for glass molding and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4429050Y1 (en) * 1967-10-18 1969-12-02
US4026692A (en) * 1975-12-15 1977-05-31 Corning Glass Works Press molding optical articles from acid hydrated glasses
JPS52144016A (en) * 1976-05-25 1977-12-01 Corning Glass Works Optical hydrated glass
JPS53109516A (en) * 1977-03-04 1978-09-25 Nippon Electric Glass Co Plunger for molding panel glass of picture tube
JPS5756339A (en) * 1980-09-18 1982-04-03 Yamamura Glass Kk Metallic mold for molding glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4429050Y1 (en) * 1967-10-18 1969-12-02
US4026692A (en) * 1975-12-15 1977-05-31 Corning Glass Works Press molding optical articles from acid hydrated glasses
JPS52144016A (en) * 1976-05-25 1977-12-01 Corning Glass Works Optical hydrated glass
JPS53109516A (en) * 1977-03-04 1978-09-25 Nippon Electric Glass Co Plunger for molding panel glass of picture tube
JPS5756339A (en) * 1980-09-18 1982-04-03 Yamamura Glass Kk Metallic mold for molding glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037287A (en) * 1997-11-26 2000-03-14 Praxair S.T. Technology, Inc. Laser clad pot roll sleeves and bushings for galvanizing baths
NL1032865C2 (en) * 2006-10-03 2008-04-04 Czl Tilburg B V Injection molding tool for producing e.g. lenses or CD's, includes wear resistant hard metal layer applied by shockwave cladding
CN104030548A (en) * 2014-07-03 2014-09-10 中国科学院上海硅酸盐研究所 Silicon carbide ceramic mold core for glass molding and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6251211B2 (en) 1987-10-29

Similar Documents

Publication Publication Date Title
US5736206A (en) Molded body of quartz glass and process for the production of a molded body of quartz glass
US5866062A (en) Process for producing shaped bodies of silicon dioxide
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
JPS59123631A (en) Mold for molding optical element
JPS59121126A (en) Mold for molding optical element
JPS6067118A (en) Manufacture of optical element
JPS59116137A (en) Manufacture of optical element
JPS6221733B2 (en)
JPS62207726A (en) Production of pressed lens
JPS61281030A (en) Mold for molding optical element
JPH0521854B2 (en)
JPS59123630A (en) Mold for molding optical element
JPH0379299B2 (en)
JPS59121124A (en) Production of optical glass element
JPH0283221A (en) Mold for forming optical element
JPH01172542A (en) Mold member for molding of optical element
JPS59116136A (en) Manufacture of optical element
JPS63151628A (en) Mold for forming optical element
JPS63151630A (en) Mold for forming optical element
JPS63288924A (en) Die member for molding optical element
JPH0116282B2 (en)
JPS63151629A (en) Mold for forming optical element
JPH08708B2 (en) Mold for optical element molding
JPS63222023A (en) Production of optical element
JPS60145920A (en) Method for forming optical element