[go: up one dir, main page]

JPH01172542A - Mold member for molding of optical element - Google Patents

Mold member for molding of optical element

Info

Publication number
JPH01172542A
JPH01172542A JP33046887A JP33046887A JPH01172542A JP H01172542 A JPH01172542 A JP H01172542A JP 33046887 A JP33046887 A JP 33046887A JP 33046887 A JP33046887 A JP 33046887A JP H01172542 A JPH01172542 A JP H01172542A
Authority
JP
Japan
Prior art keywords
mold
mold member
molding
tungsten carbide
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33046887A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamamoto
潔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33046887A priority Critical patent/JPH01172542A/en
Publication of JPH01172542A publication Critical patent/JPH01172542A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To easily prepare an optical element with high efficiency and to manufacture a mold member having small deterioration of accuracy and having a longer service life by forming a tungsten carbide-chromium carbide layer onto the molding surface of the mold base metal. CONSTITUTION:The mold base metal 30 is formed with the sintered hard alloy consisting of tungsten carbide 41 having hard grains and chromium 42 as the binding phase thereof and is worked to the desired outer shape to finish the molding surface into the desired surface accuracy. The surface of the mold base metal 30 is then subjected to a carburizing treatment for about 0.5-2hr at about 800-1,000 deg.C to form a layer 31 of about 1-100mu thickness consisting of tungsten carbide 41 and chromium carbide 43. The layer is subjected to specular finishing. By this method, the mold member having high oxidizing resistance, low fusion characteristics with glass and good mold releasability and having good accuracy even used repeatedly can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学素子成形装置に用いられる型部材に関し、
特に容易に高精度を実現でき且つ耐久性良好な光学素子
成形用型部材に関する。この様な光学素子成形用型部材
はたとえば直接光学面を形成する高精度成形のための型
部材として好適に利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mold member used in an optical element molding apparatus,
In particular, the present invention relates to a mold member for molding optical elements that can easily achieve high precision and has good durability. Such a mold member for molding an optical element is suitably used, for example, as a mold member for high-precision molding to directly form an optical surface.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

一般に、レンズ、プリズム、ミラー及びフィルタ等の光
学素子は、ガラス等の素材を研削して外形を所望の形状
とした後に、機能面即ち元が透過及び/または反射する
面を研摩して光学面とすることにより製造されている。
In general, optical elements such as lenses, prisms, mirrors, and filters are made by grinding a material such as glass to give the desired external shape, and then polishing the functional surface, that is, the surface that originally transmits and/or reflects. It is manufactured by

しかして、以上の様な光学素子の製造においては、研削
及び研摩により所望の表面精度(即ち表面形状及び表面
粗さ等の精度)を得るためには、熟練した作業者が相当
の時間加工を行なうことが必要であった。また、機能面
が非球面である光学素子を製造する場合には、−層高度
な研削及び研摩の技術が要求され且つ加工時間も長くな
らざるを得なかった。
However, in the production of optical elements such as those described above, in order to obtain the desired surface accuracy (i.e., accuracy of surface shape and surface roughness) through grinding and polishing, skilled workers spend a considerable amount of processing time. It was necessary to do it. Furthermore, when manufacturing an optical element whose functional surface is an aspherical surface, highly sophisticated grinding and polishing techniques are required and the processing time is unavoidably long.

そこで、最近では、上記の様な伝統的な光学素子製造方
法に代って、所定の表面精度を有する成形用金型内に光
学素子材料を収容して加熱及び加圧することによシブレ
ス成形にて直ちに機能面を含む全体的形状を形成する方
法が行なわれる様になってきている。これによれば、機
能面が非球面である場合でさえも比較的簡単且つ短時間
で光学素子を製造することができる。この様なプレス成
形法は光学素子の連続製造に適する。
Therefore, recently, instead of the traditional optical element manufacturing method as described above, thinless molding has been developed, in which the optical element material is housed in a mold with a predetermined surface accuracy and then heated and pressurized. Nowadays, methods of immediately forming the overall shape, including the functional aspects, are being used. According to this, an optical element can be manufactured relatively easily and in a short time even when the functional surface is an aspherical surface. Such a press molding method is suitable for continuous production of optical elements.

以上の様なプレス成形において使用される型部材に要求
される性質としては、十分な硬度、良好な耐熱性、良好
な鏡面加工性及び成形時において光学素子材料と融着を
起さないこと等があげられる。
The properties required of mold members used in press molding as described above include sufficient hardness, good heat resistance, good mirror workability, and no fusion with optical element materials during molding. can be given.

そこで、従来、この様なプレス成形用型部材としては金
属、セラミックス、及びこれらに適宜の材料をコーティ
ングした材料等数多くの種類が提案されている。
Therefore, many types of mold members for press molding have been proposed in the past, such as metals, ceramics, and materials coated with appropriate materials.

たとえば、特開昭49−51112号公報には13Cr
マルテンサイト鋼を用いた型部材が開示されておシ、特
開昭52−45613号公報には炭化ケイ素(SiC)
を用いた型部材及び窒化ケイ素(st3N4)を用いた
型部材が開示されており、特開昭60−246230号
公報には超硬合金に貴金属をコーティングした型部材が
開示されている。
For example, in JP-A-49-51112, 13Cr
A mold member using martensitic steel is disclosed, and JP-A No. 52-45613 discloses a mold member using martensitic steel.
A mold member using silicon nitride (st3N4) and a mold member using silicon nitride (st3N4) have been disclosed, and JP-A-60-246230 discloses a mold member in which a cemented carbide is coated with a noble metal.

しかして、上記13Crマルテンサイト鋼は醪化しやす
く更に高温のプレス成形時においてF@がガラス材料中
に拡散してガラスが着色する難点がある。
However, the above-mentioned 13Cr martensitic steel has the disadvantage that it is easily solidified and, furthermore, F@ diffuses into the glass material during high-temperature press molding, causing the glass to become colored.

また、上記SiC−? 513N4は一般的には酸化さ
れにくいのであるが、高温ではある程度の酸化が生じ型
部材表面にSiO□の膜が形成されるためガラスとの融
着を生じやすく更に硬度が高すぎるため加工性が極めて
悪いという難点がある。更に、表面に貴金属をコーティ
ングした材料は硬度が低いために傷付きやすく且つ変形
しやすいという難点がある。
Moreover, the above SiC-? 513N4 is generally not easily oxidized, but at high temperatures it oxidizes to a certain extent and forms a SiO□ film on the surface of the mold member, which tends to cause fusion with glass and is too hard to work with. The problem is that it is extremely bad. Furthermore, materials whose surfaces are coated with precious metals have low hardness and are therefore easily damaged and deformed.

そこで、本発明は、上記従来技術に鑑み、容易に高精度
で製造でき且つプレス成形に際し精度劣化の少ない長寿
命の光学素子成形用型部材を提供することを目的とする
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide a mold member for molding an optical element that can be easily manufactured with high precision and has a long life with little deterioration in precision during press molding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、以上の如き目的を達成するものとして
、 光学素子成形用型部材において、型母材の少なくとも成
形面は炭化タングステンとその結合相としての炭化クロ
ム(Cr2C2)とからなる混合体によシ形成されてい
ることを特徴とする、光学素子成形用型部材、 が提供される。
According to the present invention, in order to achieve the above objects, in a mold member for molding an optical element, at least the molding surface of the mold base material is made of a mixture of tungsten carbide and chromium carbide (Cr2C2) as its binder phase. Provided is a mold member for molding an optical element, characterized in that the mold member is formed by a mold.

〔実施例〕〔Example〕

以下、図面を参照しながら本発明の具体的実施例を説明
する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による型部材の一実施例を示す概略断面
図でちる。本図において、30は型母材を示し、31は
該型母材の成形面に形成された炭化タングステンとその
結合相としての炭化クロムとからなる混合体(以下、炭
化タングステン−炭化クロム層という)を示す。
FIG. 1 is a schematic cross-sectional view showing one embodiment of a mold member according to the present invention. In this figure, 30 indicates a mold base material, and 31 a mixture of tungsten carbide and chromium carbide as its binder phase (hereinafter referred to as a tungsten carbide-chromium carbide layer) formed on the molding surface of the mold base material. ) is shown.

本発明において型母材の材料としては、硬質粒子として
の炭化タングステンとその結合相としてのクロムとから
なる超硬合金が好ましく用いられる。母材材料は予め切
削、研削、研摩等の加工によシ所望の外形とし、特に成
形面は所望の表面精度に仕上げておく。
In the present invention, as the material for the mold base material, a cemented carbide consisting of tungsten carbide as hard particles and chromium as its binder phase is preferably used. The base material is previously given a desired external shape by cutting, grinding, polishing, etc., and in particular, the molded surface is finished to the desired surface precision.

上記母材30の表面に炭化タングステン−炭化クロム層
31を形成するには、例えば母材30の表面に浸炭処理
が施される。
In order to form the tungsten carbide-chromium carbide layer 31 on the surface of the base material 30, the surface of the base material 30 is carburized, for example.

第2図は本発明に用いる型部材の浸炭処理前の成形面の
拡大断面図である。本図において、41は炭化タングス
テン粒子を示し、42はクロムを示す。
FIG. 2 is an enlarged sectional view of the molding surface of the mold member used in the present invention before carburizing treatment. In this figure, 41 indicates tungsten carbide particles, and 42 indicates chromium.

第3図は本発明による型部材の浸炭処理後の成形面の拡
犬訂1面図であり、43は炭化クロムを示すO 浸炭処理の条件は特に制限されないが、通常800〜1
000℃で0.5〜2時間程度である。
FIG. 3 is an enlarged one-dimensional view of the molding surface after carburizing the mold member according to the present invention, where 43 indicates chromium carbide.The carburizing conditions are not particularly limited, but usually 800 to 1
It takes about 0.5 to 2 hours at 000°C.

炭化タングステン−炭化クロム層の厚さは製造条件によ
シ適宜設定されるが、使用時の所望の特性に鑑みて十分
な耐久性が得られる厚さ、例えば1〜100μm程度と
すればよい・ 炭化タングステン−炭化クロム層は高温での耐酸化性も
高いのでガラス゛との融着性が低く離型性が良好である
ので、繰返し使用しても良好な精度の光学素子を得るこ
とができる。
The thickness of the tungsten carbide-chromium carbide layer is set appropriately depending on the manufacturing conditions, but it may be set to a thickness that provides sufficient durability considering the desired characteristics during use, for example, about 1 to 100 μm. The tungsten carbide-chromium carbide layer has high oxidation resistance at high temperatures, has low adhesion to glass, and has good mold releasability, so an optical element with good precision can be obtained even after repeated use.

以下、本発明による型部材の製造及びそれを用いたガラ
ス成形の実施例を示す。尚、同時に、比較のために、従
来の型部材の製造及びそれを用いたガラス成形の例をも
示す。
Hereinafter, examples of manufacturing a mold member according to the present invention and glass molding using the same will be shown. At the same time, for comparison, an example of manufacturing a conventional mold member and glass molding using the same is also shown.

超硬合金Cwc (90%)+Cr(10%):l型母
材材料として型母材を作シ、該母材の成形面に炭化タン
グステン−炭化クロム層を形成して、以下の通シ本発明
による型部材を製造した。また、比較のために、上記型
母材の成形面に層を形成しない型部材、超硬合金(WC
(90%)+Co(10%)、l 型母材材料とした型
部材及び焼結SICf!:母材材料とした型部材を製造
した。製造した型部材の一覧弐を第1倶に示す。尚、第
1表において、/161は本発明実施例であシ、42.
、%3及び慮4は比較例である。
Cemented carbide Cwc (90%) + Cr (10%): A mold base material is made as the l-type base material material, and a tungsten carbide-chromium carbide layer is formed on the molding surface of the base material, and the following standard is prepared. A mold part according to the invention was manufactured. In addition, for comparison, a mold member that does not form a layer on the molding surface of the mold base material, a cemented carbide (WC)
(90%) + Co (10%), mold member and sintered SICf with l type base material! : A mold member was manufactured using the base material. A list of the manufactured mold members is shown in Part 1. In Table 1, /161 indicates an embodiment of the present invention, and 42.
, %3 and consideration 4 are comparative examples.

第1表 先ず、型母材材料を切削加工し、次いで成形光学素子の
機能面(光学面)に対応する成形面を所望の表面精度に
加工した。型母材の成形面は凹面であシ、先ずダイヤモ
ンド砥石による研削で所望の曲率に加工した。
Table 1 First, the mold base material was cut, and then the molding surface corresponding to the functional surface (optical surface) of the molded optical element was processed to a desired surface precision. The molding surface of the mold base material was concave and was first ground to the desired curvature using a diamond grindstone.

次に、上記屑1については、第4図に示される装置を用
いて浸炭法によシ型母材の成形面上に炭化タングステン
−炭化クロム層を形成した。
Next, regarding the scrap 1, a tungsten carbide-chromium carbide layer was formed on the forming surface of the mold base material by carburizing using the apparatus shown in FIG.

第4図において、51は炉でちゃ、52はヒーターであ
シ、53はステンレス製容器であり、54は浸炭剤であ
シ、55は型母材であシ、56は温度センサーである。
In FIG. 4, 51 is a furnace, 52 is a heater, 53 is a stainless steel container, 54 is a carburizing agent, 55 is a mold base material, and 56 is a temperature sensor.

炭化タングステン−炭化クロム層の形成時には、上記の
様にして得られた型母材55をステンレス製容器53内
に置いた後、炉内温度800℃で2時間保持して浸炭処
理を行った。
When forming the tungsten carbide-chromium carbide layer, the mold base material 55 obtained as described above was placed in a stainless steel container 53 and then carburized by maintaining the furnace temperature at 800° C. for 2 hours.

次に、浸炭処理された型母材を鏡面加工した。Next, the carburized mold base material was mirror-finished.

得られた型部材の表面には第3図に示すような炭化タン
グステン−炭化クロム層が形成されていることがX線回
折によシ確認された。炭化タングステン−炭化クロム層
の厚さは約1μmであった。
It was confirmed by X-ray diffraction that a tungsten carbide-chromium carbide layer as shown in FIG. 3 was formed on the surface of the mold member obtained. The thickness of the tungsten carbide-chromium carbide layer was approximately 1 μm.

次に1以上の様にして製造された型部材を用いて、光学
ガラスのプレス成形を行なった。
Next, optical glass was press-molded using the mold member manufactured as described above.

第5図はプレス成形に用いた装置を示す断面図である。FIG. 5 is a sectional view showing the apparatus used for press molding.

第5図において、1は密閉容器であり、2はその蓋であ
シ、3,4は光学素子(両凸レンズ〕を成形するための
上記型部材であυ、3は上型部材であり、4は下型部材
である。5は上型押えであシ、6は胴型部材であυ、7
は型ホルダーであp、8はヒーターであり、9は下型突
き上げ棒であシ、10は該棒を駆動させるエアーシリン
ダーである。
In FIG. 5, 1 is a closed container, 2 is its lid, 3 and 4 are the mold members for molding the optical element (biconvex lens), and 3 is an upper mold member. 4 is a lower die member, 5 is an upper die presser, 6 is a body die member υ, 7
8 is a heater, 9 is a lower mold pushing rod, and 10 is an air cylinder for driving the rod.

11は油回転ポンプであ〕、12,13,14はパルプ
であシ、15は窒素ガス導入パイプであり、16はパル
プであり、17は排出/4’イブであシ、18はパルプ
であ、9.19は温度センサーでアシ、20は水冷パイ
プであシ、21は密閉容器1の台である。
11 is an oil rotary pump], 12, 13, and 14 are pulp, 15 is a nitrogen gas introduction pipe, 16 is pulp, 17 is a discharge/4' eve, and 18 is pulp. Ah, 9.19 is the temperature sensor, 20 is the water cooling pipe, and 21 is the stand for the sealed container 1.

フリント系光学ガラス(5F14 、軟化点5p=58
6℃、ガラス転移点Tg = 485℃)を所定重量の
球形状として成形のためのブランクを作成した。
Flint optical glass (5F14, softening point 5p=58
A blank for molding was prepared in a spherical shape with a predetermined weight and a temperature of 6° C. (glass transition point Tg = 485° C.).

密閉容器1の蓋2を開き、上型部材3及び上型押え5を
取外して下型部材4上罠上記ブランクを載せて、上型部
材3及び上型押え5を取付けた。
The lid 2 of the airtight container 1 was opened, the upper mold member 3 and the upper mold holder 5 were removed, the above-mentioned blank was placed on the trap of the lower mold member 4, and the upper mold member 3 and the upper mold holder 5 were attached.

更に蓋2を閉じてから、水冷パイプ20に水を流し、ヒ
ーター8に通電した。この時、窒素ガス用パルプ16、
パルプ18及び排気系パルプ12゜13.14を閉じて
おいた。次に、油回転ポンプ11を作動させ、パルプ1
2を開き、容器1内を排気した。容器1内の真9度が1
0′4Torrとなった後に、パルプ12を閉じ、パル
プ16.18を開いて窒素ガスをゴンペから密閉容器1
内へと導入した。所定温度になった後にエアーシリンダ
ー10を作動させて10 ’Q/cm”の圧力で5分間
プレス成形を行なった。加圧力を除去し、め5℃/分の
速度でガラス転移点以下【なるまで冷却し、その後20
℃/分以上の速度で冷却を行ない、温度が200℃以下
に下った後に、パルプ16.18を閉じ、リークパルプ
13を開いて密閉容器1内に空気を導入した。次に、蓋
2を開き、上型部材3及び上型押え5を取外して成形済
光学素子を取出した。
Furthermore, after closing the lid 2, water was allowed to flow through the water cooling pipe 20, and the heater 8 was energized. At this time, the nitrogen gas pulp 16,
The pulp 18 and the exhaust system pulp 12°13.14 were kept closed. Next, the oil rotary pump 11 is operated, and the pulp 1
2 was opened, and the inside of the container 1 was evacuated. True 9 degrees inside container 1 is 1
After reaching 0'4 Torr, close the pulp 12, open the pulp 16.
introduced inside. After the temperature reached a predetermined temperature, the air cylinder 10 was operated and press molding was performed for 5 minutes at a pressure of 10'Q/cm.The press molding was performed at a rate of 5°C/min to below the glass transition point. Cool to 20
Cooling was carried out at a rate of .degree. C./min or higher, and after the temperature dropped to 200.degree. C. or lower, the pulps 16 and 18 were closed, the leak pulp 13 was opened, and air was introduced into the closed container 1. Next, the lid 2 was opened, the upper mold member 3 and the upper mold holder 5 were removed, and the molded optical element was taken out.

第6図はプレス成形時のガラスの温度変化を示す図であ
る。
FIG. 6 is a diagram showing the temperature change of glass during press molding.

以上の様なプレス成形の前後における型部材3゜4の成
形面の光面粗さ及び成形された光学素子の光学面の表面
粗さ、ならびに成形光学素子と型部材3,4との離型性
について第2表に示す。
The optical surface roughness of the molding surface of the mold member 3゜4 before and after press molding as described above, the surface roughness of the optical surface of the molded optical element, and the release of the molded optical element from the mold members 3 and 4. The characteristics are shown in Table 2.

第2表 次に、融着発生のない41.Ai2及びム3について、
同一型部材を用いて10000回のプレス成形を行ない
、200回、1000回、5000回、10000回後
における型部材3,4の成形面の表面粗さ及び成形され
た光学素子の光学面の表面粗さについて第3表に示す。
Table 2 shows 41. No fusion occurs. Regarding Ai2 and Mu3,
Press molding was performed 10,000 times using the same mold member, and the surface roughness of the molding surfaces of mold members 3 and 4 and the surface of the optical surface of the molded optical element after 200, 1,000, 5,000, and 10,000 times. The roughness is shown in Table 3.

以上の様に、本発明実施例においては、繰返しプレス成
形に使用しても良好な表面精度を十分に維持でき、良好
な表面精度の光学素子が成形できた。
As described above, in the examples of the present invention, good surface precision could be sufficiently maintained even when used in repeated press molding, and optical elements with good surface precision could be molded.

上記実施例では成形される光学ガラスとしてフリント系
のものが用いられているが、その他のクラウン系等のガ
ラスについても同様に良好な精度での成形が可能である
In the above embodiments, a flint-based optical glass is used as the optical glass to be molded, but other glasses such as crown-based glasses can also be molded with good precision.

〔発明の効果〕〔Effect of the invention〕

以上の様な本発明によれば、型母材の成形面に炭化タン
グステン−炭化クロム層を形成することにより、繰返し
プレス成形に際し精度劣化が少なく寿命が長い光学素子
成形用型部材が提供される。
According to the present invention as described above, by forming a tungsten carbide-chromium carbide layer on the molding surface of the mold base material, it is possible to provide a mold member for molding optical elements that has a long life and less accuracy deterioration during repeated press molding. .

また1本発明型部材は、用いた型母材の加工性が良好で
あるので、製造が容易である。
Furthermore, the mold member of the present invention is easy to manufacture because the mold base material used has good workability.

【図面の簡単な説明】 第1図は本発明による型部材の一実施例を示す概略断面
図である。 第2図は本発明に用いる型部材の浸炭処理前の成形面の
拡大断面図である。 第3図は本発明による型部材の浸炭処理後の成形面の拡
大断面図である。 第4図は本発明による型部材の製造において炭化タング
ステン−炭化クロム層の形成に使用される装置を示す図
である。 第5図は光学素子のプレス成形装置の断面図である。 第6図はプレス成形時のガラスの温度変化を示す図であ
る。 3.4:型部材、30二型母材、31:炭化タングステ
ン−炭化クロム層、41;炭化タングステン粒子、42
ニクロム、43:炭化クロム、55:型部材。 代理人 弁理士 山 下 穣 平 第1図 第2図   第3図 第4図 第5図 第6図 力0尺 H今 M C分)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing an embodiment of a mold member according to the present invention. FIG. 2 is an enlarged sectional view of the molding surface of the mold member used in the present invention before carburizing treatment. FIG. 3 is an enlarged sectional view of the molding surface of the mold member according to the present invention after being carburized. FIG. 4 is a diagram showing an apparatus used for forming a tungsten carbide-chromium carbide layer in the production of a mold member according to the present invention. FIG. 5 is a sectional view of a press molding apparatus for optical elements. FIG. 6 is a diagram showing the temperature change of glass during press molding. 3.4: Mold member, 30 Type 2 base material, 31: Tungsten carbide-chromium carbide layer, 41; Tungsten carbide particles, 42
Nichrome, 43: Chromium carbide, 55: Mold member. Agent Patent Attorney Jo Taira Yamashita (Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6)

Claims (2)

【特許請求の範囲】[Claims] (1)光学素子成形用型部材において、型母材の少なく
とも成形面は炭化タングステンとその結合相としての炭
化クロムとからなる混合体により形成されていることを
特徴とする、光学素子成形用型部材。
(1) A mold member for molding an optical element, characterized in that at least the molding surface of the mold base material is formed of a mixture of tungsten carbide and chromium carbide as its binder phase. Element.
(2)前記型母材が炭化タングステンとその結合相とし
てのクロムとからなる超硬合金である、特許請求の範囲
第1項記載の光学素子成形用型部材。
(2) The mold member for molding an optical element according to claim 1, wherein the mold base material is a cemented carbide made of tungsten carbide and chromium as its binder phase.
JP33046887A 1987-12-26 1987-12-26 Mold member for molding of optical element Pending JPH01172542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33046887A JPH01172542A (en) 1987-12-26 1987-12-26 Mold member for molding of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33046887A JPH01172542A (en) 1987-12-26 1987-12-26 Mold member for molding of optical element

Publications (1)

Publication Number Publication Date
JPH01172542A true JPH01172542A (en) 1989-07-07

Family

ID=18232963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33046887A Pending JPH01172542A (en) 1987-12-26 1987-12-26 Mold member for molding of optical element

Country Status (1)

Country Link
JP (1) JPH01172542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223350A (en) * 1988-07-15 1993-06-29 Toshiba Tungaloy Co., Ltd. Mold material for molding of an optical part and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223350A (en) * 1988-07-15 1993-06-29 Toshiba Tungaloy Co., Ltd. Mold material for molding of an optical part and process for producing the same

Similar Documents

Publication Publication Date Title
JPH0353260B2 (en)
JPH01172542A (en) Mold member for molding of optical element
JPH0359016B2 (en)
JPS62207726A (en) Production of pressed lens
JPH0379299B2 (en)
JPS6131321A (en) Press forming die of optical parts or the like and its production
JP2785888B2 (en) Mold for optical element molding
JPS60135502A (en) Die material for molding glass lens
JPH0451495B2 (en)
JP2001278631A (en) Glass forming die manufacturing method of glass formed body and glass optical element
JPH0116282B2 (en)
JP2002348129A (en) Method for manufacturing molding die for optical glass element and method for molding optical glass element
JPH11268920A (en) Forming mold for forming optical element and its production
JPS63288924A (en) Die member for molding optical element
JPS62256732A (en) Molding tool for glass lens
JPS59116136A (en) Manufacture of optical element
JPS59123631A (en) Mold for molding optical element
JPH0521854B2 (en)
JPH04175230A (en) Production of optical element
JPH03271125A (en) Mold for molding glass
JPS63182225A (en) Production of optical glass element
JPS63185834A (en) Mold member for forming optical element
JPH08119643A (en) Die for forming optical element
JPH08210910A (en) Optical material and optical element for infrared sensor
JPH02137741A (en) Mold for molding optical glass elements