JPS6251211B2 - - Google Patents
Info
- Publication number
- JPS6251211B2 JPS6251211B2 JP57231163A JP23116382A JPS6251211B2 JP S6251211 B2 JPS6251211 B2 JP S6251211B2 JP 57231163 A JP57231163 A JP 57231163A JP 23116382 A JP23116382 A JP 23116382A JP S6251211 B2 JPS6251211 B2 JP S6251211B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molding
- mold member
- tungsten carbide
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2905/00—Use of metals, their alloys or their compounds, as mould material
- B29K2905/08—Transition metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2909/00—Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
- B29K2909/02—Ceramics
- B29K2909/04—Carbides; Nitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
Description
【発明の詳細な説明】
本発明は光学素子成形用型の作成方法に関する
ものである。レンズ、プリズム、フイルターなど
の光学素子は従来、多くはガラスの研摩処理によ
つて製造されている。しかし、研摩処理には相当
な時間と技能を要するものである。また、非球面
レンズを研摩処理で製造するには一層高度の研摩
技術が必要でまた処理時間も長くならざるを得な
いものである。このような研摩処理による光学素
子の製造方法に対して、加熱加圧による成形によ
つて光学素子を製造する方法がある。この成形方
法によれば、短時間に光学素子を製造することが
でき、また、非球面レンズも球面レンズと同じよ
うに容易且つ短時間に製造することができるもの
であるが、加熱加圧による成形方法においてもな
お改善されるべき問題点がある。それは、光学素
子として必要な表面精度を有する光学素子を型で
作るのは容易でなかつたことである。即ち、従
来、この型としてはグラフアイトから形成された
ものが多く使用されて来たが、グラフアイト製型
を用いた場合には、良好な表面精度を有する光学
ガラス素子を製造することができなかつた。本発
明は、上記のようなガラス成形用の型部材とし
て、炭化タングステンとコバルトを主成分とし且
つ炭化タングステン100重量部に対して少なくと
もコバルト3〜10重量部を含む材料を型部材の形
状に焼結成形し、さらに、これに熱間静圧プレス
処理(HIP処理)を加えて、炭化タングステンが
緻密に配置された成形表面を形成すること特徴と
する光学レンズ成形用の型の作成方法を提供する
ものである。即ち本発明によつて作成された光学
素子成形用型においては、炭化タングステンおよ
びコバルトを主成分とする材料から形成され、炭
化タングステンが緻密に配置された成形表面を有
するため、該型を使用することによつて、加熱加
圧により高い表面精度を有する光学素子を製造す
ることができる。前述のように、光学素子をつく
る型として、従来、グラフアイトから形成された
ものが多く使用されているが、グラフアイトは多
孔性であるために、いかに研摩しても、光学素子
として充分な表面精度をもつ素子をつくるに充分
な表面粗さの内壁表面をもつ型を得ることができ
なかつたが、本発明においては型として炭化タン
グステンおよびコバルトを主成分とするものを使
用することによつて、表面粗さRnax5/100μm以
下の内壁表面をもつ型を得ることができ、且つこ
のような表面粗さに正確に対応する表面精度をも
つ光学素子をつくることができる。従つて、本発
明により作成された型の内壁の表面粗さは、通
常、Rnax5/100μm以下、特にはRnax3/100μm
以下に設定されるものが好適である。このような
高い表面精度を有する型として、炭化タングステ
ンとコバルトの焼結体の表面に高い圧力をかけて
表面に表面精度に支障となるようなポア(巣)が
ない状態にし、さらに研摩して製造したものが好
適である。型を形成する炭化タングステンとコバ
ルトの組成比は適宜設定されるが、一般に、炭化
タングステン100(重量)部に対して、コバルト
は1〜25部、特には3〜10部の範囲が好適であ
る。また必要に応じてニツケルなどの他の成分を
適宜加えてもよい。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for making a mold for molding an optical element. Conventionally, many optical elements such as lenses, prisms, and filters are manufactured by polishing glass. However, polishing requires considerable time and skill. In addition, manufacturing an aspherical lens by polishing requires a more sophisticated polishing technique and requires a longer processing time. In contrast to such a method of manufacturing an optical element by polishing, there is a method of manufacturing an optical element by molding by heating and pressing. According to this molding method, optical elements can be manufactured in a short time, and aspherical lenses can also be manufactured easily and in a short time in the same way as spherical lenses. There are still problems that need to be improved in the molding method. The problem is that it is not easy to mold an optical element with the surface precision necessary for an optical element. That is, conventionally, molds made of graphite have often been used, but when a mold made of graphite is used, optical glass elements with good surface precision can be manufactured. Nakatsuta. The present invention provides a mold member for glass molding as described above, in which a material containing tungsten carbide and cobalt as main components and at least 3 to 10 parts by weight of cobalt per 100 parts by weight of tungsten carbide is sintered into the shape of the mold member. Provided is a method for creating a mold for molding an optical lens, which is characterized by forming a mold, and then applying hot isostatic pressing treatment (HIP treatment) thereto to form a molding surface in which tungsten carbide is densely arranged. It is something to do. That is, the mold for molding an optical element created according to the present invention is made of a material mainly composed of tungsten carbide and cobalt, and has a molding surface on which tungsten carbide is densely arranged, so this mold is used. In this way, an optical element having high surface precision can be manufactured by heating and pressing. As mentioned above, many molds made from graphite have traditionally been used as molds for making optical elements, but because graphite is porous, no matter how much it is polished, it cannot be used as an optical element. Although it has not been possible to obtain a mold with an inner wall surface rough enough to produce a device with surface precision, in the present invention, this can be achieved by using a mold whose main components are tungsten carbide and cobalt. As a result, it is possible to obtain a mold having an inner wall surface with a surface roughness of R nax 5/100 μm or less, and to produce an optical element having a surface precision that accurately corresponds to such surface roughness. Therefore, the surface roughness of the inner wall of the mold made according to the present invention is usually R nax 5/100 μm or less, particularly R nax 3/100 μm.
The following settings are preferable. In order to create a mold with such high surface precision, high pressure is applied to the surface of the sintered body of tungsten carbide and cobalt to ensure that there are no pores (cavities) that would impede the surface precision, and then the surface is polished. The manufactured one is suitable. The composition ratio of tungsten carbide and cobalt forming the mold is set appropriately, but in general, a range of 1 to 25 parts, particularly 3 to 10 parts of cobalt is suitable for 100 parts (by weight) of tungsten carbide. . Further, other components such as nickel may be added as appropriate.
このように、炭化タングステンにコバルトを加
えることによつて、より緻密で且つ高温において
形状変化を生じない型を得ることができる。然し
て、炭化タングステンおよびコバルトを主成分と
する材料は、線膨張係数が5×10-6でフリント系
光学ガラス(SF14)の8.2×10-6より小さくいわ
ゆる焼きじめが起らないこと、ガラスが型にくつ
つかないこと(離型性良)、熱伝導度がセラミツ
クスに比べ高いこと(0.91cal/sec/cal)硬度が
高く(Hv1500)耐久性が優れていること、及び
前述した高い鏡面性が得られること、という利点
を有している。 In this way, by adding cobalt to tungsten carbide, it is possible to obtain a mold that is denser and does not change shape at high temperatures. However, materials whose main components are tungsten carbide and cobalt have a coefficient of linear expansion of 5 x 10 -6 , which is smaller than 8.2 x 10 -6 of flint-based optical glass (SF14), and that so-called shrinkage does not occur. does not stick to the mold (good mold releasability), has higher thermal conductivity than ceramics (0.91 cal/sec/cal), has high hardness (Hv1500) and has excellent durability, and has the high mirror finish mentioned above. It has the advantage of providing flexibility.
本発明により作成された型によつて加熱加圧に
より成型された光学素子は後研摩が不要で、その
まま光学素子として用いることができるものであ
る。また成形工程である、加熱加圧条件は使用す
る各種ガラスやMgF2、CaF2、TiO2、ZnSなどの
結晶材料の種類によつて適宜設定されるが、ガラ
スの場合には加圧の際のガラスの温度は、ガラス
転移点以上である。型に収容する前に予め加熱し
ておいてもよいし、型に収容後に型と共に加熱し
てもよい。 An optical element molded by heat and pressure using a mold created according to the present invention does not require post-polishing and can be used as an optical element as it is. In addition, the heating and pressurizing conditions in the forming process are appropriately set depending on the type of glass used and the type of crystalline material such as MgF 2 , CaF 2 , TiO 2 , ZnS, etc.; The temperature of the glass is above the glass transition point. It may be heated in advance before being placed in the mold, or it may be heated together with the mold after being placed in the mold.
然して、加熱によつて酸化を生ずるのを防止す
るために、この成形工程は、真空中または窒素ガ
ス、ヘリウム等の不活性雰囲気中にて行なうのが
よい。 However, in order to prevent oxidation from occurring due to heating, this molding step is preferably carried out in a vacuum or in an inert atmosphere such as nitrogen gas or helium.
以下、本発明により作成された型を使用する光
学素子の製造の実施例、および従来のグラフアイ
ト製の型を使用する光学素子の製造に関する比較
例について説明する。 Hereinafter, an example of manufacturing an optical element using a mold made according to the present invention and a comparative example of manufacturing an optical element using a conventional mold made of graphite will be described.
実施例 1
1〜2μの粒径に粉砕した炭化タングステン
(WC)100重量部にコバルト(Co)5重量部を混
合し外径17mm厚さ15mmにプレス後、焼結した素材
を、熱間静圧プレス法(HIP)により気体(アル
ゴン)を圧力媒体として5000Kg/cm2の高圧をかけ
て緻密化した。Example 1 5 parts by weight of cobalt (Co) was mixed with 100 parts by weight of tungsten carbide (WC) pulverized to a particle size of 1 to 2μ, and the material was sintered after pressing into an outer diameter of 17 mm and a thickness of 15 mm. It was densified by pressure pressing (HIP) using gas (argon) as a pressure medium and applying a high pressure of 5000 kg/cm 2 .
次にカーブゼネレータ(球面創成機)を使用し
レンズの球面を創成するのと同じ要領で研削し表
面粗さをRnax10μm程度にした。さらに粒径10
μmのアルミナ砥粒を使つてラツピングして1μ
m程度の表面粗さにしこれを粒径0.5μmのダイ
ヤによつて磨き上げて第1図イに示す様にRmax
を0.03μm以下とした。 Next, using a curve generator (spherical surface generating machine), it was ground in the same manner as for generating the spherical surface of a lens, to obtain a surface roughness of about R nax 10 μm. Further particle size 10
Lapping to 1μ using μm alumina abrasive grains
Rmax is obtained by polishing the surface with a diamond of 0.5 μm in diameter as shown in Figure 1A.
was set to 0.03 μm or less.
レンズの成形装置と加工手順を第2図によつて
説明する。 The lens molding apparatus and processing procedure will be explained with reference to FIG.
第2図中、1は密閉容器、2はその蓋、3は光
学素子を成形するための上型、4はその下型、5
は上型をおさえるための上型おさえ、6は胴型、
7は型ホルダー、8はヒータ、9は下型をつき上
げるつき上げ棒、10は該つき上げ棒を作動する
エアシリンダ、11は油廻転ポンプ、12,1
3,14はバルブ、15は窒素ガス導入パイプ、
16はバルブ、17は排出パイプ、18はバル
ブ、19は温度センサ、20は水冷パイプ、21
は密閉容器を載せる台を示す。 In Fig. 2, 1 is a sealed container, 2 is a lid thereof, 3 is an upper mold for molding an optical element, 4 is a lower mold, 5
6 is the upper mold holder to hold the upper mold, 6 is the body mold,
7 is a mold holder, 8 is a heater, 9 is a lifting rod that lifts up the lower mold, 10 is an air cylinder that operates the lifting rod, 11 is an oil rotary pump, 12, 1
3 and 14 are valves, 15 is a nitrogen gas introduction pipe,
16 is a valve, 17 is a discharge pipe, 18 is a valve, 19 is a temperature sensor, 20 is a water cooling pipe, 21
indicates a stand on which a sealed container is placed.
光学素子を製造するにあたつて、前準備として
フリント系光学ガラス(SF14)を外径15.8mm厚
さ2mmの円板状にしたものを両面磨いておく(こ
れをブランクと呼ぶ)。密閉容器1の蓋2をあ
け、ブランク22を下型4の上にのせて型3をセ
ツトしてから密閉容器の蓋2を閉じ水冷パイプ2
0に水を流してヒータ8に通電する。このとき窒
素ガス用バルブ16および18は閉じ排気系バル
ブ12,13,14も閉じている。尚油廻転ポン
プ11は常に廻転している。 Before manufacturing an optical element, as a preliminary preparation, a disk-shaped piece of flint optical glass (SF14) with an outer diameter of 15.8 mm and a thickness of 2 mm is polished on both sides (this is called a blank). Open the lid 2 of the airtight container 1, place the blank 22 on the lower mold 4 and set the mold 3, then close the lid 2 of the airtight container and open the water cooling pipe 2.
0 and energize the heater 8. At this time, the nitrogen gas valves 16 and 18 are closed, and the exhaust system valves 12, 13, and 14 are also closed. Incidentally, the oil rotating pump 11 is constantly rotating.
バルブ12を開け排気をはじめ10-2Torr以下
になつたらバルブ12を閉じバルブ16を開いて
窒素ガスをボンベより密閉容器内に導入する。温
度が650℃になつたらエアシリンダ10を作動さ
せて10Kg/cm2の圧力で成形する。転移点以下にな
るまで加圧をつゞけこの間は冷却速度を10℃/
min位に制御する。その後は20℃/min以上の速
度で冷却を行い200℃以下に下がつたらバルブ1
6を閉じバルブ13を開いて真空槽1内に空気を
導入する。それから蓋2を開け上型おさえ5をは
ずして成形物を取り出す。 The valve 12 is opened and exhaust begins, and when the temperature becomes below 10 -2 Torr, the valve 12 is closed and the valve 16 is opened to introduce nitrogen gas from the cylinder into the sealed container. When the temperature reaches 650°C, the air cylinder 10 is activated and molding is performed at a pressure of 10 kg/cm 2 . Apply pressure until the temperature drops below the transition point, and during this time reduce the cooling rate to 10℃/
Control to min position. After that, cool at a rate of 20℃/min or more, and when the temperature drops to 200℃ or less, valve 1
6 and open the valve 13 to introduce air into the vacuum chamber 1. Then, open the lid 2, remove the upper mold presser 5, and take out the molded product.
上記のようにして、フリント系光学ガラス
(SF14)(軟化点SP=586℃、転移点Tg=485℃)
を使用して、第3図に示す形状および寸法のレン
ズを成形した結果、第1図イに示す表面粗さの型
とほぼ同じ表面粗さのレンズを得ることができ
た。 As above, flint optical glass (SF14) (softening point SP = 586℃, transition point Tg = 485℃)
As a result of molding a lens having the shape and dimensions shown in FIG. 3 using the mold, it was possible to obtain a lens having a surface roughness almost the same as that of the mold shown in FIG. 1A.
この時の成形条件すなわち時間−温度関係図を
第4図に示す。 FIG. 4 shows the molding conditions at this time, that is, a time-temperature relationship diagram.
実施例 2
実施例1と同様に1〜2μmの粒径に粉砕した
炭化タングステン100重量部に、コバルト5重量
部およびニツケル5重量部より成る材量を使用し
て、実施例1と同様にして表面粗さRmax0.03μ
m以下の型をつくつた。Example 2 In the same manner as in Example 1, a material consisting of 5 parts by weight of cobalt and 5 parts by weight of nickel was used in 100 parts by weight of tungsten carbide pulverized to a particle size of 1 to 2 μm in the same manner as in Example 1. Surface roughness Rmax0.03μ
I made a mold less than m.
実施例1と全く同じレンズ成形装置および加工
手順によつてレンズの成形をしたところ、実施例
1と同様の結果が得られた。 When a lens was molded using the same lens molding apparatus and processing procedure as in Example 1, the same results as in Example 1 were obtained.
比較例
従来のグラフアイト製の型を磨いて、上記の実
施例1と同じレンズを同じ装置によつて成形し
た。この場合には型の表面粗さは第1図ロに示す
如く、Rmax0.3μmで、成形されたレンズは第1
図ハに示すようにRmax0.2μmの表面粗さのもの
しか得られなかつた。Comparative Example A conventional graphite mold was polished and the same lens as in Example 1 above was molded using the same equipment. In this case, the surface roughness of the mold was Rmax 0.3 μm, as shown in Figure 1B, and the molded lens was
As shown in Figure C, only a surface roughness of Rmax 0.2 μm could be obtained.
上述の如く、本発明により作成された光学素子
成形用型は、炭化タングステンおよびコバルトを
主成分とし、必要に応じてニツケルを加えた材料
により形成したもので、成形される光学素子が型
に溶着せず、すなわち離型性に優れていて、特に
ニツケルを加えた場合、離型性がさらに向上する
ことが確認された。また、この型は光学性能に優
れていて、特にコバルトを3〜10部の範囲とした
場合に、成形時のガラスとコバルトの溶着が抑え
られ、緻密で且つ高温において形状変化を生じな
い型を得ることができる。さらに、この型はガラ
ス成形においても最も望まれる条件である加工性
能がよく、従来のグラフアイトから形成された型
に比して、Rnax3〜4/100μmの高度の鏡面仕上
を容易にすることができ、精密な光学素子の成形
を可能とする。 As mentioned above, the mold for molding an optical element created according to the present invention is made of a material mainly composed of tungsten carbide and cobalt, with nickel added as necessary, and the optical element to be molded is welded to the mold. In other words, it was confirmed that the mold releasability was excellent, and that the mold releasability was further improved especially when nickel was added. In addition, this mold has excellent optical performance, and especially when the cobalt content is in the range of 3 to 10 parts, welding of glass and cobalt during molding is suppressed, and the mold is dense and does not change shape at high temperatures. Obtainable. Furthermore, this mold has good processing performance, which is the most desired condition in glass molding, and makes it easier to achieve a high mirror finish with an R nax of 3 to 4/100 μm compared to molds made from conventional graphite. This enables precise molding of optical elements.
第1図イは、本発明により作成された型の表面
粗さの例を示す図、第1図ロ,ハは従来のグラフ
アイトの型の表面粗さおよび成形されたレンズの
表面粗さを示す図、第2図はレンズの成形装置を
示す断面図、第3図は成形されるレンズの一例の
形状および寸法を示す図、第4図は成形の際にお
ける時間−温度関係図である。
1……密閉容器、2……蓋、3……上型、4…
…下型、5……上型おさえ、6……胴型、7……
型ホルダー、8……ヒータ、9……つき上げ棒、
10……エアシリンダ、11……油廻転ポンプ、
12,13,14……バルブ、15……窒素ガス
導入パイプ、16……バルブ、17……排出パイ
プ、18……バルブ、19……温度センサ、20
……水冷パイプ、21……台。
Figure 1A shows an example of the surface roughness of a mold made according to the present invention, and Figures 1B and 1C show the surface roughness of a conventional graphite mold and the surface roughness of a molded lens. 2 is a sectional view showing a lens molding apparatus, FIG. 3 is a diagram showing the shape and dimensions of an example of a lens to be molded, and FIG. 4 is a time-temperature relationship diagram during molding. 1... airtight container, 2... lid, 3... upper mold, 4...
...lower mold, 5...upper mold press, 6...body mold, 7...
Mold holder, 8... Heater, 9... Lifting rod,
10...Air cylinder, 11...Oil rotary pump,
12, 13, 14... Valve, 15... Nitrogen gas introduction pipe, 16... Valve, 17... Discharge pipe, 18... Valve, 19... Temperature sensor, 20
...Water cooling pipes, 21... units.
Claims (1)
る成形表面を有する成形用型部材に入れ、前記の
光学ガラスおよび型部材を該光学ガラスの転移点
以上の温度に加熱し、型部材の成形表面を少なく
ともRnax5/100μm以下に保つて前記型部材に圧
力を加えて型部材の成形表面を前記光学ガラスの
加圧表面に転位することによつてレンズを成形す
る成形用型の作成方法であつて、前記型部材は、
炭化タングステンおよびコバルトを主成分として
含み、その組成比は炭化タングステン100重量部
に対して少なくともコバルト3〜10重量部を含む
ものとし、これを前記の型部材の形状に焼結成形
し、この焼結成形体を熱間静圧プレス法により緻
密化して、型部材の成形表面を炭化タングステン
が緻密に配置された成形表面に形成することを特
徴とする光学素子成形用型の作成方法。1. Put the optical glass into a mold member having a molding surface to be formed on the functional surface of the optical lens, heat the optical glass and the mold member to a temperature equal to or higher than the transition point of the optical glass, and heat the molding surface of the mold member. A method for creating a mold for molding a lens by applying pressure to the mold member and displacing the molding surface of the mold member to the pressurized surface of the optical glass while maintaining R nax at least 5/100 μm or less. The mold member is
It contains tungsten carbide and cobalt as main components, and the composition ratio is at least 3 to 10 parts by weight of cobalt per 100 parts by weight of tungsten carbide. 1. A method for making a mold for molding an optical element, comprising densifying a shape by hot isostatic pressing to form a molding surface of a mold member on which tungsten carbide is densely arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23116382A JPS59123631A (en) | 1982-12-28 | 1982-12-28 | Mold for molding optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23116382A JPS59123631A (en) | 1982-12-28 | 1982-12-28 | Mold for molding optical element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20539490A Division JPH03228835A (en) | 1990-08-02 | 1990-08-02 | Formation of optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59123631A JPS59123631A (en) | 1984-07-17 |
JPS6251211B2 true JPS6251211B2 (en) | 1987-10-29 |
Family
ID=16919290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23116382A Granted JPS59123631A (en) | 1982-12-28 | 1982-12-28 | Mold for molding optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59123631A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037287A (en) * | 1997-11-26 | 2000-03-14 | Praxair S.T. Technology, Inc. | Laser clad pot roll sleeves and bushings for galvanizing baths |
NL1032865C2 (en) * | 2006-10-03 | 2008-04-04 | Czl Tilburg B V | Injection molding tool for producing e.g. lenses or CD's, includes wear resistant hard metal layer applied by shockwave cladding |
CN104030548A (en) * | 2014-07-03 | 2014-09-10 | 中国科学院上海硅酸盐研究所 | Silicon carbide ceramic mold core for glass molding and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4429050Y1 (en) * | 1967-10-18 | 1969-12-02 | ||
US4026692A (en) * | 1975-12-15 | 1977-05-31 | Corning Glass Works | Press molding optical articles from acid hydrated glasses |
JPS52144016A (en) * | 1976-05-25 | 1977-12-01 | Corning Glass Works | Optical hydrated glass |
JPS53109516A (en) * | 1977-03-04 | 1978-09-25 | Nippon Electric Glass Co | Plunger for molding panel glass of picture tube |
JPS5756339A (en) * | 1980-09-18 | 1982-04-03 | Yamamura Glass Kk | Metallic mold for molding glass |
-
1982
- 1982-12-28 JP JP23116382A patent/JPS59123631A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4429050Y1 (en) * | 1967-10-18 | 1969-12-02 | ||
US4026692A (en) * | 1975-12-15 | 1977-05-31 | Corning Glass Works | Press molding optical articles from acid hydrated glasses |
JPS52144016A (en) * | 1976-05-25 | 1977-12-01 | Corning Glass Works | Optical hydrated glass |
JPS53109516A (en) * | 1977-03-04 | 1978-09-25 | Nippon Electric Glass Co | Plunger for molding panel glass of picture tube |
JPS5756339A (en) * | 1980-09-18 | 1982-04-03 | Yamamura Glass Kk | Metallic mold for molding glass |
Also Published As
Publication number | Publication date |
---|---|
JPS59123631A (en) | 1984-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2620875B2 (en) | Manufacturing method of glass molded products for precision optics | |
US4112143A (en) | Method of manufacturing an object of silicon nitride | |
US4168961A (en) | Method of molding glass elements | |
US4139677A (en) | Method of molding glass elements and element made | |
CN100469737C (en) | Manufacturing method of ceramic optical component | |
US4350528A (en) | Method for diffusion bonding workpieces and article fabricated by same | |
JPH0359016B2 (en) | ||
JPS6251211B2 (en) | ||
JPH0521854B2 (en) | ||
JPH0250059B2 (en) | ||
US5035725A (en) | Composite monolithic free abrasive grinding lap and a method of making the same | |
JPS6221733B2 (en) | ||
JPH0146453B2 (en) | ||
JPS6287B2 (en) | ||
JPH0379299B2 (en) | ||
KR100204927B1 (en) | A method and apparatus for optical glass | |
JPH0372017B2 (en) | ||
JP2004224580A (en) | Quartz glass molding die and method for producing the same | |
AU9115191A (en) | Composite monolithic lap and a method of making the same | |
JPH0451495B2 (en) | ||
CA1081961A (en) | Method of molding glass elements | |
JP4243437B2 (en) | Method for producing metal-ceramic composite material having a pore-less surface | |
JPS638050B2 (en) | ||
JPS649270B2 (en) | ||
JPS63288924A (en) | Die member for molding optical element |