JPS5875691A - Heat-exchanging method - Google Patents
Heat-exchanging methodInfo
- Publication number
- JPS5875691A JPS5875691A JP56172022A JP17202281A JPS5875691A JP S5875691 A JPS5875691 A JP S5875691A JP 56172022 A JP56172022 A JP 56172022A JP 17202281 A JP17202281 A JP 17202281A JP S5875691 A JPS5875691 A JP S5875691A
- Authority
- JP
- Japan
- Prior art keywords
- cold water
- liquefied
- ethylene
- fed
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0341—Heat exchange with the fluid by cooling using another fluid
- F17C2227/0348—Water cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0388—Localisation of heat exchange separate
- F17C2227/0393—Localisation of heat exchange separate using a vaporiser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/061—Level of content in the vessel
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は液化低級炭化水素を利用した熱交換方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchange method using liquefied lower hydrocarbons.
液化低級炭化水素は一般的に気化してガス状で使用する
が、液化低級炭化水素を気化する方法として、熱交換器
を設置し、熱源としてはスチームを使用して気化するの
が一般的である。Liquefied low hydrocarbons are generally vaporized and used in gaseous form, but the common method for vaporizing liquefied low hydrocarbons is to install a heat exchanger and use steam as the heat source. be.
この方法だと加熱源とし゛てスチームを必要とするだけ
でなく、液化低級炭化水素が気化する場合の潜熱も全く
利用されない。This method not only requires steam as a heating source, but also does not utilize any latent heat when the liquefied lower hydrocarbons are vaporized.
また化学工場では各種製造設備、例えば塩ビ製造設備等
において冷媒として冷水又は塩化カルシウムプラインが
使用されているが、これらの冷媒は冷凍設備を使用して
冷却されているのが現状である。Furthermore, in chemical factories, cold water or calcium chloride prine is used as a refrigerant in various manufacturing equipment, such as vinyl chloride manufacturing equipment, but these refrigerants are currently cooled using refrigeration equipment.
そこで本発明者等は、液化低級炭化水素が気する方法を
鋭意検討した結果、本発明を完成した。Therefore, the inventors of the present invention have completed the present invention as a result of intensive studies on methods for evaporating liquefied lower hydrocarbons.
即ち本発明は、冷却工程で使用され温度が高められた水
又は、塩化カルシウムプラインから選ばれた冷媒を、液
化低級炭化水素の気化工程に導き熱交換させることによ
り冷却したのち、これを前記冷却工程に循環することを
特徴とする熱交換方法である。That is, in the present invention, a refrigerant selected from water or calcium chloride prine, which has been used in the cooling process and whose temperature has been raised, is cooled by introducing it into the vaporization process of liquefied lower hydrocarbons and exchanging heat, and then cooled by the cooling process. This is a heat exchange method characterized by circulation throughout the process.
本発明で使用する液化低級炭化水素は炭素数1〜4の炭
化水素を主成分とするものであり、例えば液化エチレン
、液化天然ガス(LNG)、液化石油ガス(LPG)、
液化プロパン等があげられる。The liquefied lower hydrocarbons used in the present invention are mainly composed of hydrocarbons having 1 to 4 carbon atoms, such as liquefied ethylene, liquefied natural gas (LNG), liquefied petroleum gas (LPG),
Examples include liquefied propane.
また本発明で使用する冷媒は、水又は塩化カルシウムプ
ラインから選ばれたものであり、塩化ナトリウムプライ
ンは機器腐蝕の原因となるので適さない。Further, the refrigerant used in the present invention is selected from water or calcium chloride prine, and sodium chloride prine is not suitable because it causes equipment corrosion.
冷却工程とは冷却を必要とする設備を有する工程であり
、具体的には塩ビ重合設備、苛性ソーダ冷却器等を有す
る工程があげられ、前記冷媒をこれに循環する。The cooling process is a process that has equipment that requires cooling, and specifically includes a process that has vinyl chloride polymerization equipment, a caustic soda cooler, etc., and the refrigerant is circulated therethrough.
液化低級炭化水素の気化工程で熱交換され、冷却された
前記冷媒の温度は、その用途から水の場合好ましくは2
〜30℃、さらに好−ましくは3〜15℃であり、塩化
カルシウムプラインの場合−5〜−30℃とするのが好
ましい。このような温疲とするための方法としては、冷
媒の流量を調節する方法等がある。In the case of water, the temperature of the refrigerant that is heat-exchanged and cooled in the vaporization process of liquefied lower hydrocarbons is preferably 2.
-30°C, more preferably 3-15°C, and preferably -5-30°C in the case of calcium chloride prine. As a method for achieving such thermal fatigue, there is a method of adjusting the flow rate of the refrigerant.
液化低級炭化水素の気化工程で使用する熱交換器として
は公知の熱交換器が使用でき、例えばオープンラック型
熱交換器、満液型の蛇管式熱交換器等があげられる。As the heat exchanger used in the process of vaporizing the liquefied lower hydrocarbons, any known heat exchanger can be used, such as an open rack type heat exchanger, a flooded type corrugated tube type heat exchanger, and the like.
気化工程において液化低級炭化水素は気化熱に相当する
熱を吸収して気化し、一方冷媒はその熱を放出して冷却
され冷却工程に送られる。In the vaporization step, the liquefied lower hydrocarbon absorbs heat corresponding to the heat of vaporization and vaporizes, while the refrigerant releases the heat to be cooled and sent to the cooling step.
次に本発明の実施態様として、冷媒に水を、液化低級炭
化水素に液化エチレンを使用した場合について第1図に
より説1明する。Next, as an embodiment of the present invention, a case where water is used as the refrigerant and liquefied ethylene is used as the liquefied lower hydrocarbon will be described with reference to FIG.
蒸発器出口2よりガス状となって各エチレンガス1重用
工場に送る。It becomes a gas from the evaporator outlet 2 and is sent to each ethylene gas single-use factory.
水は冷水循環ライン4で蒸発器に必要な水量だけ循環し
、液化エチレンを蒸発するに必要な熱源としてエチレン
蒸発用戻り冷水送水ライン14より高温の戻り冷水を受
は入れ、14より受は入れた水は冷却後レベルコントロ
ールで冷水送水ライン7より冷水タンク8に送る。The water is circulated in the amount necessary for the evaporator through the cold water circulation line 4, and high-temperature return cold water is received from the ethylene evaporation return cold water supply line 14 as a heat source necessary to evaporate the liquefied ethylene. After cooling, the water is sent to a cold water tank 8 from a cold water supply line 7 under level control.
冷水は冷水送水ライン9より冷水使用機器1゜に送り、
加温されて冷水戻クライン11より冷凍機サクションタ
ンク12に戻す。The cold water is sent from the cold water supply line 9 to the cold water using equipment 1°.
The warmed cold water is returned to the refrigerator suction tank 12 from the cold water return line 11.
冷水の便用量が7のラインでエチレン蒸発器より戻る冷
水の量より多い場合は冷水冷凍機13を運転して不足分
を補う。又冷水使用機器1゜が停止した時、又熱負荷が
エチレン蒸発器3で必要な量より少ない時は、冷水加温
器5にスチームライン6より直接スチームを吹き込み、
エチレンを蒸発するに必要な熱を確保する。If the amount of cold water is greater than the amount of cold water returned from the ethylene evaporator in line 7, the cold water refrigerator 13 is operated to make up for the shortage. Also, when the cold water using equipment 1° is stopped, or when the heat load is less than the amount required by the ethylene evaporator 3, steam is blown directly into the cold water warmer 5 from the steam line 6,
Secure the heat necessary to evaporate ethylene.
次に、冷媒として塩化カルシウムプラインを、液化低級
炭化水素として液化エチレンを使用した場合の例を第2
図に示す。各工程は前記第1図の場合と同様であるが、
冷水冷凍機の代りにプラインクーラー13を使用し、フ
レオン冷凍機15との間で液フレオンライン16と戻り
ガス7レオンライン17をフレオンが循環する。Next, the second example shows the case where calcium chloride prine is used as the refrigerant and liquefied ethylene is used as the liquefied lower hydrocarbon.
As shown in the figure. Each step is the same as in the case of FIG. 1, but
A prine cooler 13 is used instead of a cold water refrigerator, and Freon is circulated between a Freon refrigerator 15, a liquid Freon line 16, a return gas 7, and a Leonine line 17.
塩化カルシウムブライン使用機器1oにおける塩化カル
シウムブラインの使用量がエチレン蒸発器より戻る塩化
カルシウムブラインの量より多い場合は、前記ブライン
クーラーを運転して不足分を補う。If the amount of calcium chloride brine used in the calcium chloride brine using equipment 1o is greater than the amount of calcium chloride brine returned from the ethylene evaporator, the brine cooler is operated to make up for the shortage.
本発明によれば、液ンヒ低級炭化水木が気化する際の潜
熱を有効利用することができると同村ン加熱に必要なス
チーム等の用役費用を節約又は不要とすることができ、
さらに水又は塩化カルシウムブラインを冷却する冷凍機
の動力を節約又は不要とすることができる。According to the present invention, it is possible to effectively utilize the latent heat when the low-grade hydrocarbonized water is vaporized, and the cost of utilities such as steam necessary for heating the liquid can be saved or eliminated.
Furthermore, the power of a refrigerator for cooling water or calcium chloride brine can be saved or eliminated.
次に、実施例をあげて本発明をさらに具体的に説明する
。Next, the present invention will be explained in more detail with reference to Examples.
実施例1
第1図に示す設備を使用して、エチレン蒸発量4,00
0 kg/H,エチレン蒸発器供給水温度32℃、エチ
レン蒸発器出口冷水温度5℃で操業した。冷水製造量は
、20.5t/Hとなった。Example 1 Using the equipment shown in Figure 1, the ethylene evaporation amount was 4,000.
The operation was carried out at 0 kg/H, an ethylene evaporator feed water temperature of 32°C, and an ethylene evaporator outlet cold water temperature of 5°C. The amount of cold water produced was 20.5t/H.
エチレン蒸発器入口液化エチレン温度−96℃(エチレ
ン蒸発器圧力12kg/c4・G)、出口エチレンガス
温度5℃であった。The liquefied ethylene temperature at the ethylene evaporator inlet was -96°C (ethylene evaporator pressure 12 kg/c4·G), and the outlet ethylene gas temperature was 5°C.
従来のスチーム加熱方式に比較して省エネルギー効果は
、スチーム減少量9 s Okg / Hs冷水冷凍機
動カ節約蓋170kwH/H%冷水循環ポンプ動力増2
0kvJH/Hであった。Energy saving effect compared to conventional steam heating method: Steam reduction: 9 s Okg/Hs Chilled water refrigeration power saving lid: 170 kwH/H% Chilled water circulation pump power increase: 2
It was 0kvJH/H.
従って、従来のスチームを使用する方式に比較り、テ、
’、f−!、節約量は238kg /エチレンIt。Therefore, compared to the conventional method using steam,
', f-! , the amount saved is 238 kg/It of ethylene.
動力節約量は37.5 kwH/エチレン1tとなった
0
実施例2
第1図に示す設備を使用して、エチレン蒸発t8,00
0kg/H,エチレン蒸発器供給水温度15℃、エチレ
ン蒸発器出口冷水温度4℃で操業した。冷水製造量は9
9t/Hとなった。エチレン蒸発器入口液化エチレン温
度−96℃、出口エチレンガス温度5℃であった。The amount of power saved was 37.5 kwH/1 t of ethylene.Example 2 Using the equipment shown in Figure 1, ethylene evaporation was performed for 8,00 t of ethylene.
The operation was carried out at 0 kg/H, an ethylene evaporator feed water temperature of 15°C, and an ethylene evaporator outlet cold water temperature of 4°C. The amount of cold water produced is 9
It became 9t/H. The liquefied ethylene temperature at the inlet of the ethylene evaporator was -96°C, and the ethylene gas temperature at the outlet was 5°C.
従来のスチーム加熱方式に比較して省エネルギー効果は
、スチーム減少量1.900kg /H。Compared to the conventional steam heating method, the energy saving effect is 1.900 kg/h of steam reduction.
冷水冷凍機動力節約量340 kwH/Hz冷水循環ポ
ンプ動力増20h什乍であった。The amount of power saved for the cold water refrigerator was 340 kwH/Hz, and the power for the cold water circulation pump was increased by 20 hours.
従って、従来のスチームを使用する方式に比較してスチ
ーム節約量は238kg/エチレンIt。Therefore, compared to the conventional method using steam, the amount of steam saved is 238 kg/It of ethylene.
動力節約量は40. OkwH/エチレン1tとなった
0Power saving amount is 40. OkwH/1 ton of ethylene became 0
第1図は冷媒として水を、液化低級炭化水素として液化
エチレンを使用゛した本発明の実施態様を示す設備の概
略図であり、第2図は冷媒として塩化カルシウムプライ
ンを、液化低級炭化水素として液化エチレンを使用した
設備の概略図である。
1・・・液化エチレン蒸発器入口
2・・・エチレンガス蒸発器出口
3・・・エチレン蒸発器
4・・・冷水又は塩化カルシウムプライン循環ライン8
・・・冷水タンク
10・・・冷水又は塩化カルシウムブライン使用機器1
3・・・冷水又は塩化カルシウムブライン冷凍機特許出
願人
東亜合成化学工業株式会社Figure 1 is a schematic diagram of equipment showing an embodiment of the present invention using water as the refrigerant and liquefied ethylene as the liquefied lower hydrocarbon, and Figure 2 is a schematic diagram of equipment showing an embodiment of the present invention using water as the refrigerant and liquefied ethylene as the liquefied lower hydrocarbon. 1 is a schematic diagram of equipment using liquefied ethylene. 1... Liquefied ethylene evaporator inlet 2... Ethylene gas evaporator outlet 3... Ethylene evaporator 4... Cold water or calcium chloride prine circulation line 8
...Cold water tank 10...Equipment using cold water or calcium chloride brine 1
3...Cold water or calcium chloride brine refrigerator patent applicant Toagosei Chemical Industry Co., Ltd.
Claims (1)
ルシウムプラインから選ばれた冷媒を、液化低級炭化水
素の気化工程に導き熱交換させることによね冷却したの
ち、これを繭記冷却工程に循環するととを特徴とする熱
交換方法。1. The refrigerant selected from water or calcium chloride prine, whose temperature has been raised during the cooling process, is guided to the liquefied lower hydrocarbon vaporization process and cooled by heat exchange, and then circulated to the Mayuki cooling process. A heat exchange method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56172022A JPS5875691A (en) | 1981-10-29 | 1981-10-29 | Heat-exchanging method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56172022A JPS5875691A (en) | 1981-10-29 | 1981-10-29 | Heat-exchanging method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5875691A true JPS5875691A (en) | 1983-05-07 |
Family
ID=15934065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56172022A Pending JPS5875691A (en) | 1981-10-29 | 1981-10-29 | Heat-exchanging method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5875691A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111692524A (en) * | 2020-06-19 | 2020-09-22 | 江苏科技大学 | LNG regasification experimental system and experimental method |
-
1981
- 1981-10-29 JP JP56172022A patent/JPS5875691A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111692524A (en) * | 2020-06-19 | 2020-09-22 | 江苏科技大学 | LNG regasification experimental system and experimental method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207881304U (en) | Cryogen cold energy use technique | |
JPH04110574A (en) | Method and apparatus for heating and cooling with refrigerant gas | |
CN1051971A (en) | Be used to regulate the method for air and supplying hot/cold water | |
US4307577A (en) | Air conditioning system making use of waste heat | |
US5507158A (en) | Device for indirect production of cold for refrigerating machine | |
JP2001081484A (en) | Liquefied-gas evaporation apparatus with cold-heat generation function | |
US6560979B2 (en) | Controlling method of absorption refrigerator | |
JPH08159594A (en) | Multiple effect absorption refrigerator | |
JPH08291899A (en) | Liquefied natural gas vaporizer and its cooling standby holding method | |
JPS5875691A (en) | Heat-exchanging method | |
JPH09159300A (en) | Air cooling absorption heat pump chiller using ammonia-water absorption cycle | |
KR102290401B1 (en) | Extremely low temperature chiller apparatus for semiconductor | |
CN103017402B (en) | A kind of device of recovering liquid gas vaporization cold | |
JP3397164B2 (en) | Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method | |
JP2003004334A (en) | Waste heat recovery air conditioner | |
CN103782120A (en) | Methods and apparatus for cold energy recovery | |
KR100997762B1 (en) | Thermostat with precooling and preheating | |
JPH05280825A (en) | Absorption heat pump | |
CN111550946A (en) | Absorption type water chilling unit for preparing low-temperature cold water | |
JPS6113545B2 (en) | ||
JP2001263851A (en) | Method for controlling absorption refrigerating machine | |
JPH0621730B2 (en) | Single-double-effect absorption refrigerator | |
JPH03241272A (en) | Method for air cooling/heating, or supplying cold/warm water | |
JP2001081483A (en) | Liquefied-gas evaporation apparatus with cold-heat generation function | |
JPH05280826A (en) | Absorption heat pump |