[go: up one dir, main page]

JPS5873238A - Mos logical circuit - Google Patents

Mos logical circuit

Info

Publication number
JPS5873238A
JPS5873238A JP56172232A JP17223281A JPS5873238A JP S5873238 A JPS5873238 A JP S5873238A JP 56172232 A JP56172232 A JP 56172232A JP 17223281 A JP17223281 A JP 17223281A JP S5873238 A JPS5873238 A JP S5873238A
Authority
JP
Japan
Prior art keywords
transistor
circuit
complementary
mos
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56172232A
Other languages
Japanese (ja)
Other versions
JPH0136736B2 (en
Inventor
Hiroyuki Yanaka
谷中 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56172232A priority Critical patent/JPS5873238A/en
Publication of JPS5873238A publication Critical patent/JPS5873238A/en
Publication of JPH0136736B2 publication Critical patent/JPH0136736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/09441Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET of the same canal type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To decrease the number of transistors (TRs) and to increase the degree of circuit integration, by using a part of P MOS TRs in common, in obtaining or more logical outputs out of several kinds of inputs. CONSTITUTION:In obtaining logical outputs of X=-(A.B) and Y=-(A.B+C. D.E) through the combination of complementary MOS TRs, a connecting point bwtween the source of a P type MOS TR and a drain of another P MOS TR is taken as an output point X. This output point is added with an output point Y of the P MOS TR circuit. An N type MOS TR circuit complementary with logic Y=- (A.B+C.D.E) is connected bwtween the output point Y and a reference poten tial. Thus, since the P type MOS TRs can be used in common for both logical circuits, the number of TRs can be saved for the number of common uses.

Description

【発明の詳細な説明】 本発明扛相補型MO8トランジスタの組合せにより小形
化し九論理回路に関するものであるO従来、数種の入力
から論理出力を2つ以上得る場合はそれぞれの入力信号
に対し、対称な構成をもつ相補型M08トランジスタ回
路を電場出力の数だけ会費とし、同一のトランジスタ構
成f:数個作らなければならなかった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a miniaturized nine logic circuit by combining complementary MO8 transistors. Conventionally, when obtaining two or more logic outputs from several types of inputs, for each input signal, A complementary M08 transistor circuit with a symmetrical configuration had to be charged for the number of electric field outputs, and several identical transistor configurations had to be made.

以上のことを図面を用いて説明する。The above will be explained using the drawings.

従来の論理回路は、第1図に示すように、j%1図(a
lのX:A −Hの回路および第1図(b)のY=A−
B−)C−D−E の回路から構成される。これら2つ
の出力會得る場合、従来線一般に互いに独立した2つの
対称な相補型M08トランジスタ回路により構成して、
その論理は第1表の真理値表第1表 真理値表 この場合、A、Bをゲートに人力するP型MOBトラン
ジスタを共通に作らなければならず同−論理出力を得る
のにトランジスタ数が多く必要であるという欠点があっ
た。
As shown in FIG. 1, the conventional logic circuit has j%1 (a
X of 1:A-H circuit and Y=A- of FIG. 1(b)
B-) Consists of C-D-E circuits. In order to obtain these two outputs, conventional lines are generally constructed by two mutually independent and symmetrical complementary M08 transistor circuits.
The logic is shown in the truth table in Table 1. In this case, P-type MOB transistors manually operated using A and B as gates must be made in common, and the number of transistors required to obtain the same logic output is The drawback is that a large number of them are required.

本発明の目的は、このような欠点を除去し、集積回路の
組合せにより小形化した論理回路を折供することにある
An object of the present invention is to eliminate such drawbacks and provide a miniaturized logic circuit by combining integrated circuits.

本発明によれば、P型MOSトランジスタ回路およびN
型MO8)ランジスタ回路を互に相補な論理関係で構成
した相補型MO8)ランジスタ回路を含むMO8論理回
路において、互いに縦タ:]接続されるP型MOB )
ランジスタのソースとドレインとの接続される複数の節
点に前記P型M(JSトランジスタ回路の論理に相補な
n型MOB )ランジスタ回路をそれぞれ付加して構成
すること全特徴とするMOB論理回路が得られる。
According to the present invention, a P-type MOS transistor circuit and an N
Complementary type MO8) Complementary type MO8) consisting of transistor circuits configured in a mutually complementary logical relationship In MO8 logic circuits including transistor circuits, P-type MOBs are connected vertically to each other
The MOB logic circuit is obtained by adding the P-type M (n-type MOB complementary to the logic of the JS transistor circuit) transistor circuit to each of the nodes where the source and drain of the transistor are connected. It will be done.

このように本発明によると、所定−理の相補型MO8)
ランジスタ回路はその節点く出力点)の数だけ別の論理
出力を取シ得るので、従来の対称相補型MOB トラン
ジスタの論理を構成に必要なトランジスタ数は、PWM
θSトランジ名夕を共通にして使用できるため、その数
だけトランジスタ数の低減がはかれ、その結果、同一機
能に対する集積度の向上が図られる。
Thus, according to the present invention, the complementary type MO8) of the predetermined principle
Since a transistor circuit can take as many different logic outputs as its nodes (output points), the number of transistors required to configure the conventional symmetric complementary MOB transistor logic is
Since the θS transistors can be used in common, the number of transistors can be reduced by that number, and as a result, the degree of integration for the same function can be improved.

次に図面を用i本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第2図は本発明の一実施例を示す回路接続図である。こ
の図に示すように1本発明による非対称なひとつの相補
型回路によれば、そのトランジスタ数は12個とを夛、
第1図(Jl) 、 (b)に示す従来の構成のものに
よるトランジスタ数の14個よりも。
FIG. 2 is a circuit connection diagram showing one embodiment of the present invention. As shown in this figure, according to one asymmetrical complementary circuit according to the present invention, the number of transistors is 12.
The number of transistors in the conventional configuration shown in FIG. 1 (Jl) and (b) is 14.

同−論理出力を得るに必要なMOS )ランジスタ数を
2個低減できる。
The number of MOS transistors required to obtain the same logical output can be reduced by two.

次に第2図の論理回路が、菖1図(a) 、 (b)に
示される2つの論理回路と同一出力をもつことを説明す
る。この回路はひとつの論理出力X=A−B Yt得る
対称な相補型論理回路において一個のP型MO8)ラン
ジスタのソースともう一個のP型肛トランジスタのドレ
インとの接続点を一つの出力点Xとし、さらにこの出力
点にP型MO8)ランジスタ回路のもつ出力点Y’(z
付加して構成される。
Next, it will be explained that the logic circuit in FIG. 2 has the same output as the two logic circuits shown in FIGS. 1(a) and 1(b). This circuit is a symmetrical complementary logic circuit that obtains one logic output X = A - B Yt. Furthermore, the output point Y'(z
Constructed by adding.

この出力点Yと基準電位との間に負荷抵抗を付710し
て得られる論理はY =A−B+C−D −E となっ
ており、この論理と相補なn型NO81−ランジスタ回
路を出力点Yと基準電位との間に増り付けるものである
The logic obtained by attaching a load resistor 710 between this output point Y and the reference potential is Y = A-B + C-D -E, and an n-type NO81 transistor circuit complementary to this logic is connected to the output point. This is added between Y and the reference potential.

本発明におけるこのような論理出力X、Yが互いに独立
で干渉することなく得られること全説明する。第2図で
、トランジスタ中ム、Qpi+の各ソースとドレインは
それぞれ接続され、トランジスタQPC、Qpo 、Q
pzの各ソースと各ドレインはそれぞれ接続されている
。また、トランジスタQfI@ハYiソースとしZtt
ドレインとし、トランジスタQ、、nはZ+eソースと
じ4をドレインとし、トランジスタQ、gは4をソース
とし基準電位全ドレインとしている。トランジスタQ、
ムはYiソースとじ4をドレインとし、トランジスタQ
、isはZ3をソースとし基準電位をドレインとし、ト
ランジスタQ* A’はXをソースとじ4管ドレインと
し、トランジスタQ−1fは4をソースとし基準電位を
ドレインとしている。
The fact that such logical outputs X and Y in the present invention are obtained independently and without interference will be fully explained. In FIG. 2, the sources and drains of transistors QPC, Qpo, and Qpi+ are connected, respectively.
Each source and each drain of pz are connected to each other. Also, if the transistor QfI@haYi source is set as Ztt
The transistors Q, . transistor Q,
The system has a Yi source, 4 is the drain, and the transistor Q
, is have Z3 as the source and the reference potential as the drain, transistor Q*A' has X as the source and 4-tube drain, and transistor Q-1f has 4 as the source and the reference potential as the drain.

第3図は、これらトランジスタ9ム、QPlをHA。FIG. 3 shows these transistors 9 and QP1 as HA.

トランジスタQpc、Qpo、Qi+IAt−HBm 
)ランジスタQnc、Qmp、QmmをHe、 )ラン
ジスタQ、ム、QamをHD、  トランジスタQml
 、墾lをHD’と置き換えた等価回路図である。この
トランジスタ8人が導通の時はトランジスタHD、HD
’は非導通、トランジスタHAが非導通の時紘トランジ
スタHD 、 HD’は導通、トランジスタHBが導通
の時扛トランジスタHC扛非導通、トランジスタH,B
が非導通の時はトランジスタHC紘導通となりトランジ
スタHA、。
Transistors Qpc, Qpo, Qi+IAt-HBm
) Transistors Qnc, Qmp, Qmm as He, ) Transistors Q, Mu, Qam as HD, transistor Qml
, is an equivalent circuit diagram in which HD' is replaced with HD'. When these 8 transistors are conductive, the transistor HD, HD
' is non-conducting, when transistor HA is non-conducting, transistor HD, HD' is conducting, when transistor HB is conducting, transistor HC is non-conducting, transistors H and B
When is non-conductive, transistor HC becomes conductive, and transistor HA becomes conductive.

HD 、 HD’とトランジスタHH,HCは互いに独
立である。その出力XK関してはトランジスタHBが導
通てあればトランジスタHCは非導通でありトランジス
タHD、HD扛同−人口でソースとドレインを共通とし
ているので、A−B となりトランジスタHBが非導通
であればトランジスタHe、HDのrOJJIJにかか
わらず出力がA−Bとな9.1−1力XはHB 、He
に依存しな%A6ま九出力Yに関r11.ては、トラ、
ジスタHAが導通の時トランジスタHI)’[非導通で
ありトランジスタHD’には依存せずトランジスタHA
が非導通の時はトランジスタHDが導通となりYは基準
電位となる0これによってYはトランジスタHD’に関
しては独立となり、第1図の論理回路(a) 、 (t
))と第2図の電場回路は等価といえる。
HD, HD' and transistors HH, HC are independent from each other. Regarding the output XK, if the transistor HB is conductive, the transistor HC is non-conductive, and since the transistors HD and HD share the same source and drain, A-B becomes, and if the transistor HB is non-conductive, then the transistor HC is non-conductive. Regardless of rOJJIJ of transistors He and HD, the output is A-B. 9.1-1 The power X is HB, He
It does not depend on the output Y. Well, a tiger.
When transistor HA is conductive, transistor HI)'[is non-conductive and does not depend on transistor HD';
When is non-conductive, transistor HD becomes conductive and Y becomes the reference potential. 0 As a result, Y becomes independent with respect to transistor HD', and the logic circuit (a), (t
)) and the electric field circuit in Figure 2 can be said to be equivalent.

このように本発明のMO8論理回路は、所定論理出力を
もつ相補型MOBト5ンジスタ回路において、PW!M
O8)jンジスタのソースとドレインとが接続される出
力点の節点にその論理出力を含む別の鍮理出力t−P型
M08トランジスタの論理と相補なN型MO8)ランシ
スター埋回路を付加することにより実現され、ある論理
出力から卓り得る別の論理出力の数はそのP型MOSト
ランジスタ論理回路のソースとドレインの頗点数に一致
する。
As described above, the MO8 logic circuit of the present invention is a complementary MOB transistor circuit having a predetermined logic output, and PW! M
O8) At the node of the output point where the source and drain of the transistor are connected, add another N-type MO8) run transistor buried circuit that is complementary to the logic of the output t-P type M08 transistor containing its logic output. The number of other logic outputs that can be derived from one logic output corresponds to the number of sources and drains of the P-type MOS transistor logic circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al) 、 (b)は従来のMO8論理回路の
回路図、第2図は本発明の一実施例の回路図、第3図は
第2図を説明する等価回路図である。図において、争ム
、QPB、QPC1QPD、QP冨・・・・・・P型M
08トラン・  ジスタ、QIIA、Q+am、QnC
,QmD、Qm!、QmA’、Qml’ +”1@’M
n型MO8)ランジスタ、X、Y・・・・・・出力点(
節点)、Zs −Zt −Zs 、 Z4 ””接点。 である。 第 1 凶
1(al) and (b) are circuit diagrams of a conventional MO8 logic circuit, FIG. 2 is a circuit diagram of an embodiment of the present invention, and FIG. 3 is an equivalent circuit diagram explaining FIG. 2. In the figure, QP, QPB, QPC1QPD, QPtomi...P type M
08 transistor, QIIA, Q+am, QnC
,QmD,Qm! , QmA', Qml'+"1@'M
n-type MO8) transistor, X, Y... Output point (
Node), Zs - Zt - Zs, Z4 "" contact. It is. First evil

Claims (1)

【特許請求の範囲】 同一半導体基板上の所定電源間にPIINO8)ランジ
スタ回路およびN11MO8トランジスタ回路を互いに
相補な論理関係で構成し九相補@’hlJ8トランジス
タ回路を含むMO8論理回路において。 互いに縦列接続されるp[MO8)?ンジスタのソース
とドレインとの接続される複数の節点に相補なh型MO
8)ランジスタ回路をそれぞれ付加して構成することを
特徴とするMO8論理回路0
[Scope of Claims] An MO8 logic circuit including nine complementary @'hlJ8 transistor circuits, in which a PIINO8) transistor circuit and an N11MO8 transistor circuit are arranged in a mutually complementary logical relationship between predetermined power supplies on the same semiconductor substrate. p[MO8) connected in cascade with each other? h-type MO complementary to multiple nodes connected to the source and drain of the transistor
8) MO8 logic circuit 0 characterized in that it is configured by adding transistor circuits to each
JP56172232A 1981-10-28 1981-10-28 Mos logical circuit Granted JPS5873238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56172232A JPS5873238A (en) 1981-10-28 1981-10-28 Mos logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56172232A JPS5873238A (en) 1981-10-28 1981-10-28 Mos logical circuit

Publications (2)

Publication Number Publication Date
JPS5873238A true JPS5873238A (en) 1983-05-02
JPH0136736B2 JPH0136736B2 (en) 1989-08-02

Family

ID=15938048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56172232A Granted JPS5873238A (en) 1981-10-28 1981-10-28 Mos logical circuit

Country Status (1)

Country Link
JP (1) JPS5873238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111059A (en) * 1984-06-27 1986-01-18 銭谷 利男 Low frequency treating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381061A (en) * 1976-12-27 1978-07-18 Fujitsu Ltd Logical circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381061A (en) * 1976-12-27 1978-07-18 Fujitsu Ltd Logical circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111059A (en) * 1984-06-27 1986-01-18 銭谷 利男 Low frequency treating device

Also Published As

Publication number Publication date
JPH0136736B2 (en) 1989-08-02

Similar Documents

Publication Publication Date Title
US4514649A (en) High-entrance high-speed logic operator which has a complex digital function and utilizes at least one quasi-normally off MESFET
JPH0552529B2 (en)
US4749886A (en) Reduced parallel EXCLUSIVE or and EXCLUSIVE NOR gate
EP0605253B1 (en) Rectifying transfer gate circuit
EP0083181B1 (en) An integrated logic circuit
US11152942B2 (en) Three-input exclusive NOR/OR gate using a CMOS circuit
JPH0876976A (en) Xor circuit, inversion selector circuit and adding circuit using these circuits
JPS5873238A (en) Mos logical circuit
JPH02291719A (en) Voltage level shift circuit and cmos function circuit
EP0233734B1 (en) Clock signal generating circuit
US4798980A (en) Booth's conversion circuit
JPH0470212A (en) Composite logical circuit
JP3468402B2 (en) Pass transistor circuit
US20220342634A1 (en) Compact, high performance full adders
JP2546398B2 (en) Level conversion circuit
EP0365332A2 (en) Three input logic gate circuit
JPH0377537B2 (en)
JPH03204219A (en) Cmos latch circuit
JPS61212118A (en) Coincidence detecting circuit
US6078190A (en) Threshold logic with improved signal-to-noise ratio
JP2655912B2 (en) Semiconductor integrated circuit
JPS5923923A (en) Semiconductor circuit
JPH0353810B2 (en)
JPH02274119A (en) Set/reset flip-flop circuit
JP2774165B2 (en) Semiconductor integrated circuit