JPS5848851A - high performance liquid chromatograph - Google Patents
high performance liquid chromatographInfo
- Publication number
- JPS5848851A JPS5848851A JP14614081A JP14614081A JPS5848851A JP S5848851 A JPS5848851 A JP S5848851A JP 14614081 A JP14614081 A JP 14614081A JP 14614081 A JP14614081 A JP 14614081A JP S5848851 A JPS5848851 A JP S5848851A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- valves
- pump
- mobile phase
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 62
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 description 7
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 210000005239 tubule Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/32—Control of physical parameters of the fluid carrier of pressure or speed
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は高速液体クロマトグラフ、特にミクロ高速液体
クロマトグラフィーに好適な高速液体クロマトグラフに
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high performance liquid chromatograph, particularly a high performance liquid chromatograph suitable for micro high performance liquid chromatography.
従来の高速液体クロマトグラフィーは、一般に内径4
mm前後、長さ100〜50cmのカラl、を用い、移
動相を毎分1.mt前後の流量で送液[7て分析を行な
っている。その分離能力の目安となる理論段数としては
、一方段前後のものが最も多く用いられているが、最近
、このカラムの理論段数を史に上げてより高分離の液体
クロマトクラフィーを実現する試みが盛んになっている
。これは、高速液体のクロマトグラフィーの普及につれ
て、分析対象が広がり、より高分11fffなカラムの
ニーズが増大して来たためであるが、その一つとして、
内径0.5 mm前後のステンレス製の細管に従来のカ
ラム充てX7剤金詰めた細管カラムを用いる方法が発表
されている。乙の場合、カラムの長さは1mから1.
Q I11程度で、理論段数は数十石段と従来のものよ
り一桁高い理論段数が得られている3、Jた、移動相の
流量は毎分1μlから数μtと極めて少々く、従来の1
00分の1から1000分σ月である。この移動相溶媒
の消費1■が少カいことは、省資源、省エネルギーの時
代の要請に合致するものであり、この点も大きなメリッ
トである。。Conventional high performance liquid chromatography generally uses an inner diameter of 4
Using a collar with a length of approximately 100 to 50 cm, the mobile phase was applied at a rate of 1.5 mm per minute. The analysis was conducted at a flow rate of around mt [7]. The number of theoretical plates, which is a measure of the separation capacity, is most often used to be around one column, but recently, attempts have been made to increase the number of theoretical plates of this column to the highest level in history to realize liquid chromatography with even higher resolution. is becoming popular. This is due to the spread of high-performance liquid chromatography, which has broadened the scope of analysis and the need for columns with a higher molecular weight of 11fff.
A method has been announced in which a stainless steel thin tube with an inner diameter of about 0.5 mm is used with a thin tube column filled with conventional column filler X7 agent gold. In case of B, the length of the column is 1m to 1.
With a Q I of about 11, the number of theoretical plates is several tens of stone steps, which is an order of magnitude higher than the conventional one.
It is from 1/00 to 1000 minutes σ month. This low consumption of mobile phase solvent meets the demands of the era of resource saving and energy saving, and this point is also a great advantage. .
ところが、このように極めて優れた特長をイN、、将来
ミクロ液体クロマトグラフィーの主流となることが予想
されるにもかかわらず、このような細管カラムヶ用いた
クロム高速液体り「J−7トグラフは、未だ市販が行な
われていない。これは、毎分数μlという微量送液を再
現性良く行なうこと、および正確かつ再現性の良いグラ
ジェント、即ち微量送液を行ないながら移動相の組成を
徐々に変えることの2つの問題が未だ十分に解決されで
いないことによると思われる。However, despite these extremely excellent features and the fact that it is expected to become the mainstream of micro liquid chromatography in the future, the J-7 tograph is , has not yet been commercially available.This is possible because it requires reproducible micro-volume pumping of a few microliters per minute, and an accurate and reproducible gradient, in which the composition of the mobile phase is gradually changed while micro-volume pumping. This seems to be due to the fact that two problems regarding change have not yet been fully resolved.
本発明の目的は、ピストン駆動を液圧で行なうことによ
り、正確で再現性の良い定流量微量送液が可能であると
共に、2台以上の定流量微量送液ボンプケノーケンンヤ
ルに順次駆動することにより、正確で再現性の良いグラ
ジェントケ行なうことが可能な高速液体クロマトグラフ
を提供することにある。The purpose of the present invention is to enable accurate and reproducible constant flow minute liquid delivery by driving the piston using hydraulic pressure, and to sequentially drive two or more constant flow minute liquid pumps. The object of the present invention is to provide a high performance liquid chromatograph capable of performing gradient analysis with accuracy and good reproducibility.
本発明は、移動相に接するピストンの先端面を小面積に
、かつ駆動用液体に接する後端面ヶ犬面積にすることに
より、大流量送液を利用して先端面で精度の高い微量送
液全行なえるようにすると共に、このようなピストンを
用いたポンプを2台以上組合せ、各ピストンの後端面の
加圧を、それぞれ予め定めた時間幅ずつ交互に行なうこ
とにより、各移動相の混合比を正確に制御できるように
したものである。The present invention utilizes a large amount of liquid to deliver a small amount of liquid with high precision at the tip surface by making the area of the tip surface of the piston in contact with the mobile phase small and the area of the rear end surface in contact with the driving liquid large. By combining two or more pumps using such pistons and alternately applying pressure to the rear end surface of each piston for a predetermined time period, mixing of each mobile phase can be achieved. This allows the ratio to be controlled accurately.
以T1実施例について説明する。The T1 embodiment will be described below.
第1図は、本発明の一実施例を示す構成図であり、この
基本構成は従来のものと変わらない。即ち、同図におい
て、1け移動相A12は移動相B13は送液ポンプA1
4は送液ポンプB、 5は混合器、6は試料注入器、
7はカラノ・、そして8が検出器である。FIG. 1 is a block diagram showing one embodiment of the present invention, and this basic structure is the same as the conventional one. That is, in the same figure, the mobile phase A12 is one digit, and the mobile phase B13 is the liquid pump A1.
4 is a liquid sending pump B, 5 is a mixer, 6 is a sample injector,
7 is a carano, and 8 is a detector.
−に記構成金布する高速液体クロマトグラフにおいて、
移動相A1および移動相B 2 妊、それぞれ送液ポン
プA3および送液ポツプB4によって送液され、混合器
5で混合される。この場合の混合比は、各ポンプからの
送液量を制御することにより任意に設定できる。混合器
5を出た移動相は、試料注入器6を経てカラム7に達し
、検出器8で試別各成分の検出が行なわれる。- In a high-performance liquid chromatograph having the configuration described in
A mobile phase A1 and a mobile phase B2 are sent by a liquid feeding pump A3 and a liquid feeding pot B4, respectively, and mixed in a mixer 5. The mixing ratio in this case can be arbitrarily set by controlling the amount of liquid sent from each pump. The mobile phase leaving the mixer 5 passes through a sample injector 6 and reaches a column 7, where a detector 8 detects each sampled component.
ここで、各ポンプのピストン径は3ないし58程度が適
当であり、これより細いと折損などのトラブルが発生し
て実用」二好ましくない。この場合、毎分数μlという
微量送液を行なうためには、例えば径が3+n+nのピ
ストンを用いた場合でも、その移動速度は毎分0.1な
いし1諭という低速になる。Here, the appropriate piston diameter for each pump is about 3 to 58 mm, and if it is smaller than this, troubles such as breakage may occur, which is undesirable for practical use. In this case, in order to transfer a small amount of liquid of several microliters per minute, even if a piston with a diameter of 3+n+n is used, the moving speed will be as low as 0.1 to 1 piston per minute.
ピストンの駆動には、通常送りねじやカムが使われるが
、このように低速でしかもむらなく送るという条件には
いずれも合致しない。Normally, a feed screw or a cam is used to drive the piston, but neither of these methods meet the requirements of feeding the piston evenly at such low speeds.
このため、本実施例においては、この微量送液手段とし
て、第2図に示すようなピストン9を用いた。なお、同
図には第1図の移動相A1を送液する送液ポンプA3に
ついてのみ示したが、移動相B2に送液する送液ポンプ
B4についても全く同様である。第2図において、ピス
トン9の後端面aは先端面すよりも大面積に形成しであ
る。また、両端部にはンール材10が装着してあり、加
圧室11、復帰室12およびポンプ室13の気密性が保
たれるようにしである。14〜17は弁、18.19は
送液管、20,21は排出管、22は吸収弁、23は排
出弁、24は吸入管、25は吐出管、26は導管、27
は圧力センサ、28は駆動用液、29は液溜、30は駆
動用液である。For this reason, in this example, a piston 9 as shown in FIG. 2 was used as this micro-liquid feeding means. Note that although only the liquid feeding pump A3 for feeding the mobile phase A1 in FIG. 1 is shown in the same figure, the same applies to the liquid feeding pump B4 for feeding the mobile phase B2. In FIG. 2, the rear end surface a of the piston 9 is formed to have a larger area than the front end surface. In addition, a seal material 10 is attached to both ends to maintain airtightness of the pressurizing chamber 11, the return chamber 12, and the pump chamber 13. 14 to 17 are valves, 18.19 are liquid feeding pipes, 20 and 21 are discharge pipes, 22 are absorption valves, 23 are discharge valves, 24 are suction pipes, 25 are discharge pipes, 26 are conduit pipes, 27
28 is a pressure sensor, 28 is a driving liquid, 29 is a liquid reservoir, and 30 is a driving liquid.
上記構成を有する送液ポツプA3において、送液は、ピ
ストン9を用い、ポンプ室13に満たされている移動相
Al’を押し出して行なう。この時、吸入弁22を閉じ
、吐出弁23f:開けておくことにより、移動相A1は
、ピストン9の移動速度に応じた流量で吐出管25より
吐出される。ピストン9の駆動は、加圧室11に送られ
る駆動用液28の圧力によって行なう。In the liquid feeding pot A3 having the above configuration, liquid feeding is performed by pushing out the mobile phase Al' filled in the pump chamber 13 using the piston 9. At this time, by closing the suction valve 22 and keeping the discharge valve 23f open, the mobile phase A1 is discharged from the discharge pipe 25 at a flow rate corresponding to the moving speed of the piston 9. The piston 9 is driven by the pressure of the driving liquid 28 sent to the pressurizing chamber 11.
ここで、ピストン9の移動相A1に接する後端面I〕は
、駆動用液28に接触する後端面よりも面積が小さくし
であるために、移動相A1の送液を′精密に制御するこ
とができる。即ち、今このピストン9の先端面aと後端
面1〕の面積比を例えば1000:1 に設定した場合
、ポンプ室13から毎分1μlの流量で移動相Alk送
液するためには、加圧室11に毎分1mtの流量で駆動
用液28を送ればよい。従って、必要な流量の1000
倍の流量を制御すれば良く、このような大流量送液は、
従来の高速クロマトグラフの送液ポンプを用いて十分に
実現できる。!、た、この場合、この流量範囲で±0.
5%以下という高い送液制度が容易に達成できる。即ち
、ピストン9を土0.5%以下という精度で移動させる
ことができる。Here, since the rear end surface I of the piston 9 in contact with the mobile phase A1 has a smaller area than the rear end surface in contact with the driving liquid 28, it is possible to precisely control the liquid feeding of the mobile phase A1. I can do it. That is, if the area ratio between the tip end surface a and the rear end surface 1 of the piston 9 is set to, for example, 1000:1, in order to pump the mobile phase Alk from the pump chamber 13 at a flow rate of 1 μl per minute, pressurization is required. The driving liquid 28 may be sent to the chamber 11 at a flow rate of 1 mt per minute. Therefore, 1000% of the required flow rate
All you have to do is control the flow rate twice as much, and such a large flow rate is
This can be fully realized using a conventional high-speed chromatograph liquid pump. ! , in this case, within this flow rate range ±0.
A high liquid delivery system of 5% or less can be easily achieved. That is, the piston 9 can be moved with an accuracy of 0.5% or less.
実際の運転に際し2ては、弁15.16に閉じ、弁14
,17を開けて駆動用ポンプ28で敢溜29の1駆動用
液30を加圧室11に送る。駆動用ポンプ28としては
、前述したように流量範囲、精度共に、従来の高速液体
クロマトグラフが十分使用できる。ピストン9ff:押
し終わった後、弁14.17f:閉じ、弁15.16を
開くと1.駆動溶液30は復帰室12に送られピストン
9は復帰する。この時吸入弁22.全開き、吐出弁23
を閉じておけば、移動相A 1はポンプ室13に満たさ
れる。During actual operation, valves 15 and 16 are closed and valve 14 is closed.
, 17 are opened, and the driving liquid 30 in the reservoir 29 is sent to the pressurizing chamber 11 using the driving pump 28. As the driving pump 28, a conventional high-performance liquid chromatograph can be used with sufficient flow rate range and accuracy as described above. Piston 9ff: After pressing, valves 14 and 17f: close, and when valves 15 and 16 are opened, 1. The driving solution 30 is sent to the return chamber 12 and the piston 9 returns. At this time, the suction valve 22. Fully open, discharge valve 23
If the pump chamber 13 is closed, the mobile phase A 1 will fill the pump chamber 13 .
ここで、加圧室11に、導管26を曲して圧力センサ2
7が設けである。一般にミクロ高速液体クロマトグラフ
では、微量送液のためクロマト流路のデッドボリューム
は4執力小さくすることが望ましい。従って、カラム圧
力をモニタするのに吐出管25の先で測定することは、
圧カセ/ザによるデッドボリュームが太きいため望まし
くない。Here, the pressure sensor 2 is connected to the pressure chamber 11 by bending the conduit 26.
7 is a provision. Generally, in a micro high-performance liquid chromatograph, it is desirable to reduce the dead volume of the chromato flow path by 40% to feed a small amount of liquid. Therefore, measuring at the end of the discharge pipe 25 to monitor the column pressure is
This is not desirable because the dead volume caused by the pressure cassette/the is large.
本実施例では、加圧室11の圧力を測定することにより
高圧側の圧力を間接測定することができる。即ち、圧カ
センザ27により測定した加圧室11の内部圧力にa
/ I)を乗じたものを、高圧側の圧ツバ即ちカラム圧
力としてモニタすることができる。この」:うにクロマ
!・流路系に圧カセンザを設けずにカジノ、圧力を測定
できる点も、送液ポンプの駆動に液体を用いる本発明の
長所の一つである。In this embodiment, by measuring the pressure in the pressurizing chamber 11, the pressure on the high pressure side can be indirectly measured. That is, the internal pressure of the pressurizing chamber 11 measured by the pressure sensor 27 is
/ I) can be monitored as the pressure peak on the high pressure side, that is, the column pressure. “This”: Uni Chroma!・One of the advantages of the present invention, which uses liquid to drive the liquid pump, is that pressure can be measured without providing a pressure sensor in the flow path system.
なお、ポンプ室13の容量は一分析に要する移動相量よ
りも大きめに設定する必要があり、一般に100μ1以
上が望捷しい。毎分1μtの流量で測定したとして、1
00μtだと100分間の連続送液ができる。大抵の分
析において、−分析当りの分析時間は100分以内であ
り、100μtを連続して送液できれば十分とdえる。The capacity of the pump chamber 13 needs to be set larger than the amount of mobile phase required for one analysis, and is generally desirably 100 μl or more. Assuming that the measurement was made at a flow rate of 1 μt per minute, 1
00 μt allows continuous liquid feeding for 100 minutes. In most analyses, the analysis time per analysis is within 100 minutes, and it is considered sufficient to be able to continuously feed 100 μt.
第3図は、第2図に示した送液ポンプを2台用いてグラ
ジェット全形成する機構を示した説明図である。第3図
において、2台の送液ポンプA3および+14が管31
によって並列に接続しである。FIG. 3 is an explanatory diagram showing a mechanism for completely forming a gradient using the two liquid feeding pumps shown in FIG. 2. In FIG. 3, two liquid pumps A3 and +14 are connected to the pipe 31.
Connect in parallel.
送液ポンプA3は移動相A1を、送液ポンプB4は移動
相B2をそれぞれ送液する。図中、送液ポンプA3の系
については第2図と同一部分は同一番号を用い、また送
液ポンプB 4の系については送液ポンプA3の各部に
相当する部分はダッシュを伺した同一番号を用いて示し
である。第3図において、両移動相の混合比の制御は次
のようにして行なう。先ず、送液ポンプA3およびB4
にそれぞれ移動相AlおよびB2を満たす。次に、吸入
弁22.22’を閉じ、吐出弁23.23’を開けてお
く。一方、弁16.16’および15゜15′を閉じ、
弁17.17’を開ける。次に、駆動用ポンプ28の送
液を開始すると同時に、弁14または14′τ開く。今
、弁14が開けば送液ポンプA3によって移動相A1が
送液され、弁14′が開けば、送液ポンプB4によって
移動相B2が送液される。従って、弁14.14’(z
交互に所定の時間ずつ開閉することにより、移動相A1
およびB2を任意の割合で送液することができる。即ち
、両移動相A1およびB2の任意の混(9)
合液が作成できる。両者は混合器5で混合され、試別注
入器6を経てカラム7に導かれ、更に排出器8′Ir:
通って排出される。カラム7は細管カラノ・である。こ
のような弁14.14’の開閉時間の制御は、例えばマ
イクロコンピュータを利用することにより極めて容易に
実現するととが可能である。The liquid feed pump A3 feeds the mobile phase A1, and the liquid feed pump B4 feeds the mobile phase B2. In the figure, for the system of liquid pump A3, the same parts as in Figure 2 are given the same numbers, and for the system of liquid pump B4, the parts corresponding to the parts of liquid pump A3 are the same numbers with dashes. This is shown using . In FIG. 3, the mixing ratio of both mobile phases is controlled as follows. First, liquid feed pumps A3 and B4
are filled with mobile phases Al and B2, respectively. Next, the suction valve 22.22' is closed and the discharge valve 23.23' is left open. Meanwhile, valves 16, 16' and 15° 15' are closed;
Open valve 17.17'. Next, at the same time as the driving pump 28 starts to feed liquid, the valve 14 or 14'τ is opened. If the valve 14 is opened, the mobile phase A1 is fed by the liquid feeding pump A3, and if the valve 14' is opened, the mobile phase B2 is fed by the liquid feeding pump B4. Therefore, valve 14.14'(z
By alternately opening and closing for a predetermined period of time, the mobile phase A1
and B2 can be fed at any ratio. That is, any mixture of both mobile phases A1 and B2 can be prepared. The two are mixed in a mixer 5, led to a column 7 via a sampling injector 6, and then to an ejector 8'Ir:
It passes through and is discharged. Column 7 is tubule Calano. Such control of the opening/closing time of the valves 14, 14' can be realized very easily by using, for example, a microcomputer.
なお、駆動用液30は、弁17.17’から排出される
もの、およびピスト7999′が復帰する時に弁16.
16’から排出されるもの紫、管31全通して液溜29
に導くようにしたことにより、循環1〜て使用すること
が可能である。Note that the drive fluid 30 is that which is discharged from valves 17 and 17', and that which is discharged from valves 16 and 17 when piston 7999' returns.
The liquid discharged from 16' is purple, passing through the entire pipe 31 to the liquid reservoir 29.
By leading to 1 to 2 cycles, it is possible to use the 1 to 3 cycles.
以上説明したように、本発明によれば、精度の高い極微
量送液を再現性良く行なうことができると共に、正確で
再現性の良いグラジェントも可能となる。即ち、高速液
体クロマトグラフの機能をそのま1完全に微量化でき、
従来の高速液体クロマトグラフを用いた系を本発明によ
るミクロ高速液体クロマトグラフに置き換えることが可
能である。本発明によれば、移動相溶媒の消費量は従来
(10)
の1000分の1程度と憧めて少なく、1日の運転で数
1111の溶媒を消費するにすぎず、省t1ひ20而′
7′著しい効宋を発揮する3、1だ、細・1tギヤピラ
リカラノ、が1史川−(゛きるため、理論段数が大幅に
上列(−2、分析性能が著しく向上するなど種々優れ/
こ効果金有する。As explained above, according to the present invention, it is possible to perform extremely precise liquid feeding with good reproducibility, and also to achieve an accurate and highly reproducible gradient. In other words, the functions of a high-performance liquid chromatograph can be completely miniaturized.
It is possible to replace a system using a conventional high performance liquid chromatograph with a micro high performance liquid chromatograph according to the present invention. According to the present invention, the amount of mobile phase solvent consumed is as low as about 1/1000 of the conventional method (10), and only several 1111 solvents are consumed in one day of operation, saving 1 and 20 times less time. ′
7'The 3,1, thin, 1t gear pirarikarano, which exhibits remarkable effectiveness, is 1 Fumikawa-(゛), so the number of theoretical plates is significantly higher (-2, the analytical performance is significantly improved, etc.)
This effect has gold.
図面のlYi’i i1’−な説明lYi’i i1’-Description of the drawing
Claims (1)
積を有するピストンを備えた複数の移動相送液ポンプを
配置し、各ポンプは、それぞれその前記ピストンの後端
面に予め設定した時間幅に従って順次供給される1駆動
用液体の圧力によって間歇的に駆動することを特徴とす
る高速液体クロマトグラフ。1 A plurality of mobile phase liquid feeding pumps each having a piston having a small area at the tip end in contact with the mobile phase and a large area at the rear end surface are arranged, and each pump has a piston with a piston having a small area at the tip end in contact with the mobile phase and a large area at the rear end surface. A high-performance liquid chromatograph characterized in that it is driven intermittently by the pressure of one driving liquid that is sequentially supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14614081A JPS5848851A (en) | 1981-09-18 | 1981-09-18 | high performance liquid chromatograph |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14614081A JPS5848851A (en) | 1981-09-18 | 1981-09-18 | high performance liquid chromatograph |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5848851A true JPS5848851A (en) | 1983-03-22 |
Family
ID=15401040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14614081A Pending JPS5848851A (en) | 1981-09-18 | 1981-09-18 | high performance liquid chromatograph |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5848851A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04232491A (en) * | 1990-06-01 | 1992-08-20 | Raytest Isotopenmessgeraete Gmbh | Apparatus and method for measuring radioactivity of ion eluent |
JPH04294252A (en) * | 1990-12-06 | 1992-10-19 | Internatl Business Mach Corp <Ibm> | Apparatus and method for detecting and measuring contaminant |
JPH0510959A (en) * | 1991-07-04 | 1993-01-19 | Sanuki Kogyo Kk | Compound liquid mixture feeding device for physical/ chemical machine |
EP1456536A1 (en) * | 2001-12-21 | 2004-09-15 | Waters Investments Limited | Hydraulic amplifier pump |
-
1981
- 1981-09-18 JP JP14614081A patent/JPS5848851A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04232491A (en) * | 1990-06-01 | 1992-08-20 | Raytest Isotopenmessgeraete Gmbh | Apparatus and method for measuring radioactivity of ion eluent |
JPH04294252A (en) * | 1990-12-06 | 1992-10-19 | Internatl Business Mach Corp <Ibm> | Apparatus and method for detecting and measuring contaminant |
JPH0510959A (en) * | 1991-07-04 | 1993-01-19 | Sanuki Kogyo Kk | Compound liquid mixture feeding device for physical/ chemical machine |
EP1456536A1 (en) * | 2001-12-21 | 2004-09-15 | Waters Investments Limited | Hydraulic amplifier pump |
EP1456536A4 (en) * | 2001-12-21 | 2009-11-25 | Waters Technologies Corp | Hydraulic amplifier pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6962658B2 (en) | Variable flow rate injector | |
US7927477B2 (en) | Precision flow control system | |
US7465382B2 (en) | Precision flow control system | |
US6712085B2 (en) | Method for the provision of fluid volume streams | |
US4003679A (en) | High pressure pump with metering | |
US10677766B2 (en) | Volumetric flow regulation in multi-dimensional liquid analysis systems | |
US9354208B2 (en) | Apparatus for generating small flow rates in a channel | |
JPS5848851A (en) | high performance liquid chromatograph | |
GB1136779A (en) | Method and device for metering liquids into capillary tubes | |
WO2002101381A1 (en) | Liquid chromatograph and analyzing system | |
JP4480808B2 (en) | Liquid feeding method and apparatus such as liquid chromatograph | |
US3138290A (en) | Automatic diluting apparatus | |
CN108445120A (en) | Binary Gradient Solvent Delivery System for Chromatography | |
SU1352222A1 (en) | Method of metering liquid to gas chromatograph | |
EP2626697B1 (en) | Liquid chromatography device | |
RU2167422C2 (en) | Method of gas chromatographic analysis and device for its realization | |
US11618000B2 (en) | Reactor with a pathway extension valve | |
JPS60172694A (en) | Liquid precision transfer compounding device | |
SU763781A1 (en) | Batcher for sampling and feeding samples to gas chromatograph | |
FR2305713A1 (en) | Metering pipette with exchangeable ends - having piston which protrudes into pipette to reduce dead space | |
SU1681234A1 (en) | Device for feeding liquid samples into capillary column | |
CN119406682A (en) | High-precision two-component plunger valve and application method thereof | |
SU744322A1 (en) | Apparatus for determining dosing volume of micrometering devices | |
SU1057781A1 (en) | Method of producing volatile substance vapor microconcentrations | |
JPH04161836A (en) | Micro quantitative dilution device |