[go: up one dir, main page]

JPS58195139A - Fractionation processing method in densitometer - Google Patents

Fractionation processing method in densitometer

Info

Publication number
JPS58195139A
JPS58195139A JP57078994A JP7899482A JPS58195139A JP S58195139 A JPS58195139 A JP S58195139A JP 57078994 A JP57078994 A JP 57078994A JP 7899482 A JP7899482 A JP 7899482A JP S58195139 A JPS58195139 A JP S58195139A
Authority
JP
Japan
Prior art keywords
sample
abnormal
fraction
measurement
fractionation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57078994A
Other languages
Japanese (ja)
Other versions
JPH0231819B2 (en
Inventor
Toshio Onuki
大貫 敏夫
Tomio Karasaki
唐崎 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jokoh Co Ltd
Original Assignee
Jokoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jokoh Co Ltd filed Critical Jokoh Co Ltd
Priority to JP57078994A priority Critical patent/JPS58195139A/en
Publication of JPS58195139A publication Critical patent/JPS58195139A/en
Publication of JPH0231819B2 publication Critical patent/JPH0231819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain perfect data with all abnormal specimens, by the constitution wherein the operation for remeasurement of the specimens that cause something abnormal in fractionation is accomplished automatically. CONSTITUTION:When initial data is inputted to a CPU100 by operating an input key, an optical detection part 12 measures the density in the fractionated components for each of specimens a1-an on a migration membrane 1 in accordance with the command of the CPU100. The detection signal thereof is loaded through an amplifier 103 and an AD converter 104 into the CPU. At the same time, a command is inputted from the CPU100 to a function generator 105 and after the arithmetic processing, the results thereof are printed out from a printer 106 and a divided density chart is plotted. If abnormality in division arises in any of the specimens during the course of such density measurement, the position thereof, the number of divisions, the number of the specimen, etc. are stored in the CPU100, and the remeasurement of the specimen showing abnormality is accomplished automatically and satisfactorily upon ending of the density measurement with all the specimens a1-an.

Description

【発明の詳細な説明】 この発明は濃度計における濃度測定方法に関l〜、更に
詳しくは電気泳動された検体試料のいずれかに分画異常
が生じた際、その再測定が分画感度を切替え調整しつつ
順次自動的に行えるようにした分画処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring concentration using a densitometer, and more specifically, when a fractional abnormality occurs in any of the electrophoresed specimen samples, re-measurement improves the fractional sensitivity. The present invention relates to a fractionation processing method that can be sequentially and automatically performed while switching and adjusting.

周知の如く、濃度計は電気泳動法によって検体をセルロ
ースアセテート膜などの支持体上で分画し、得られた試
料(泳動パターン)から血清蛋白等の各成分濃度を自動
測定し、かつこれを記録する装置であり、近年では1日
当りの検体数の著増に伴い、病院、医療又は検査センタ
ー等の施設においては、専ら多検体用のものが使用され
ている。
As is well known, a densitometer uses electrophoresis to fractionate a sample on a support such as a cellulose acetate membrane, and automatically measures the concentration of each component such as serum protein from the obtained sample (electrophoresis pattern). It is a device for recording, and in recent years, with the remarkable increase in the number of specimens per day, facilities such as hospitals, medical care, or testing centers have exclusively used devices for multiple specimens.

このような濃度計においては、第1図で示す如く、複数
個(10〜20個程度)の検体を同一平面支持体上の横
方向j(いわゆるX軸方向)に一定間隔をあけて配置し
、かつ検体ごとの複数個の成分を縦方向(いわゆるY軸
方向)の直線上に泳動させた試料を例えばカセット等の
枠体内に保持し、この枠体を平面内で上記縦・横、軸方
向に移動させることにより、複数試料の分画濃度を自動
測定し、この測定値を分画濃度図と共に自動記録するよ
うにしている゛。又、このような□多数検体用の濃度計
は、上記検体を保持した枠体す:::□11−数個設備
することにより、例えば数十以上の多数検体を逐次連続
処理する構成のものが多い。
In such a densitometer, as shown in Fig. 1, a plurality of specimens (approximately 10 to 20 specimens) are arranged at regular intervals in the horizontal direction j (the so-called X-axis direction) on the same flat support. , and a sample in which multiple components of each sample are migrated on a straight line in the vertical direction (the so-called Y-axis direction) is held in a frame such as a cassette, and the frame is aligned in a plane along the vertical, horizontal, and vertical axes. By moving the sensor in this direction, the fractional concentrations of multiple samples are automatically measured, and these measured values are automatically recorded along with a fractional concentration diagram. In addition, such a □concentration meter for multiple samples is one that is configured to sequentially and continuously process a large number of samples, for example, several dozen or more, by installing several frames holding the above-mentioned samples:::□11- There are many.

ところで、このような濃度測定において行われる電気泳
動は、通常血清蛋白等の検体試料を(アルブミン、α1
.α3.β、r)の順で各グロブリン毎に5分wtK分
離泳動させ泳動パターンを得るものであるが、実際は上
記支持膜に加えられる電流電圧の変動や周囲温度、PH
、イオン強度等の泳動条件あるいは試料の塗布条件等に
よって本来5分画となるべき泳動パターンが、例えば4
分画又は6分画等の如く増減変動することがあり、5分
画での値力を求められず、そのため得られた測定結果が
不正確かつ信頼性に欠けるものとなり、史には検体の全
てについて必要な臨床データが1、褐られないという不
具合が生ずる。
By the way, the electrophoresis performed in such concentration measurement is usually carried out on sample samples such as serum proteins (albumin, α1, etc.).
.. α3. Although each globulin is subjected to wtK separation for 5 minutes in the order of β, r) to obtain a migration pattern, in reality, changes in the current and voltage applied to the support membrane, ambient temperature, and pH
, due to electrophoresis conditions such as ionic strength or sample application conditions, an electrophoresis pattern that should normally consist of 5 fractions may become, for example, 4 fractions.
There may be fluctuations in fractions or 6 fractions, etc., and the value of the 5 fractions cannot be determined, resulting in inaccurate and unreliable measurement results. A problem arises in that the necessary clinical data for everything is not available.

そのため、このような分画異常が生じた異常検体につい
て再測定を行い正規の5分画となるように基本的泳動パ
ターンのピーク以外に生じたピ〜り部分すなわヤ゛分画
点を(アルブミン、α1.α、。
Therefore, in order to re-measure the abnormal sample in which such a fractionation abnormality has occurred, and to obtain the normal 5 fractions, we have removed the peaks that occurred outside the peak of the basic electrophoresis pattern, i.e., the yellow fraction point ( Albumin, α1.α,.

β、γ)のい肇:れかのグロブリンに含めて計算し:1
゜ 71す+ttmuv施す0があ6・ヒ6がべ  1の分
画処理の作業は、従来主としてオペレータが  1泳動
パターン及び泳動像を見て目視により手動操作によって
行っていたため、作業が極めてやつがいで時間と労力を
要し効率の悪いものとなっていた。
β, γ) Noi Hajime: Calculated by including it in Reka's globulin: 1
゜71su + ttmuv applied 0 ga 6 hi 6 gabe Previously, the work of fractionation processing in step 1 was carried out manually by the operator, who looked at the electrophoresis pattern and the electrophoresis image visually, making the work extremely difficult. This required time and effort and was inefficient.

この発明は以上のような従来の欠点に鑑みなされたもの
で、分画異常の生じた検体の再測定操作が自動的にかつ
正規の5分画状態に確実に修正分離されて行え、全ての
異常検体につき完全な測定データが得られるようにする
ことを目的とするものである。
This invention was developed in view of the above-mentioned drawbacks of the conventional art, and allows re-measurement of samples with abnormal fractionation to be automatically and reliably corrected and separated into the normal 5-fraction state. The purpose is to obtain complete measurement data for abnormal specimens.

以下この発明の一実施例を図面を参照して詳細に説明す
る。
An embodiment of the present invention will be described in detail below with reference to the drawings.

先ず、本発明が適用される濃度計における濃度測定操作
につ(・て説明する。
First, the concentration measurement operation in the concentration meter to which the present invention is applied will be explained.

この操作は以下に示す手順より行われる。This operation is performed according to the procedure shown below.

(a)m1図に示す多検体、例えば2o検体の試料が分
画された泳動膜1の最初の試料への中心線をその全長に
渉り走査し、この走査による電圧変化に換模し、濃度計
内蔵のメモリに記憶させてお(。これらの記憶値から濃
度の最も濃い点として判別されるアルブミンの中心点P
(第2図、第8図参照)を求め、移動の始点0(この位
置は後述する光学系検出部12の位置付けにより求めら
れる)からの距離fを算出し、その位置を確定した後上
記濃度計内蔵のCPUに記憶させる。このfは次式より
上記CPUによって容易に算出される。
(a) The center line to the first sample of the electrophoretic membrane 1 in which multiple samples, for example 20 samples, are fractionated as shown in the m1 diagram is scanned over its entire length, and the voltage change due to this scanning is simulated. The center point P of albumin, which is determined as the point with the highest concentration from these stored values, is stored in the memory built into the densitometer.
(see Figures 2 and 8), calculate the distance f from the starting point 0 of movement (this position is determined by the positioning of the optical system detection unit 12, which will be described later), and after determining the position, the above-mentioned concentration Store it in the built-in CPU. This f is easily calculated by the CPU using the following equation.

ここに、Fは始点Oから終点Qまでの試料の全長、N、
、N、は夫々始点Oより点Q及びP間のサンプリング数
である。
Here, F is the total length of the sample from the starting point O to the ending point Q, N,
, N are the numbers of samples from the starting point O to the points Q and P, respectively.

次(・で、次試料Bへの位置合せを行う際、貴び上記ア
ルブミンの中心点Pの位置まで試料搬送台を縦軸方向に
移動し、ここで停止させる。
Next, when aligning to the next sample B, the sample carrier is moved in the vertical axis direction to the position of the center point P of the albumin and stopped there.

(i))次に、上記試料搬送台を横軸(X軸)方向に移
動させながら(a)項四様に光学系検出部により電圧変
化を検出し、この電圧の変化量より次試料Bのアルブミ
ンを濃度の最も濃い箇処として判別を続け、これをCP
Uに記憶させておく。この場合、P点の横軸方向の軌跡
はY′−Y′である。
(i)) Next, while moving the sample carrier in the horizontal axis (X-axis) direction, the optical system detecting section detects the voltage change in the manner described in (a), and based on the amount of change in voltage, the next sample B Continuing to identify albumin as the area with the highest concentration, this is determined as CP.
Let U remember it. In this case, the trajectory of point P in the horizontal axis direction is Y'-Y'.

(C)  更に、試料搬送台の横軸方向への移動を続け
、試料Bとの中間点R(試料A、B間の透明部分で第4
図に示すように電圧値がピーク、すなわち濃度が最も薄
い点)で停止させる。
(C) Further, continue moving the sample transport table in the horizontal axis direction until it reaches the midpoint R with sample B (the 4th point in the transparent area between samples A and B).
As shown in the figure, the voltage value is stopped at the peak (ie, the point where the concentration is the lowest).

(d)  次試料Bのアルブミンの中心点Sを決定する
ために、CPUに下記の編集操作を行わせる。
(d) In order to determine the albumin center point S of the next sample B, the CPU is caused to perform the following editing operation.

上記(b)及び(C)項に記載の記憶値よりアルブミン
の分画範囲81〜S、を特定する(第4図参照)7この
範囲亀〜S、における電圧レベルは実際には第5図に示
すように相当量変動しており、一様ではない。したがっ
て、濃度の変化のみでは中心点Sの判定はできない。こ
のためには、上記電圧変動(極大点及び極小点)の検出
に一定の条件、例えば極大値と極小値との差(変化量)
を設定し、レベル変動の極端なものはキャンセルするこ
とにより、データの変動を少な(するとともに、設定し
た変動範囲の変化量より小さい、データは同一データと
して処理する。以上の編集1、操作を行うことによりS
、〜S2の値が同一の少1.1ニタとなり、B試料の中
心点Sは範囲5j−S、の中間点として決定することが
できる(第6図)。
From the stored values described in (b) and (C) above, the albumin fractionation range 81 to S is specified (see Figure 4).7 The voltage level in this range 81 to S is actually shown in Figure 5. As shown in the figure, it fluctuates considerably and is not uniform. Therefore, the center point S cannot be determined based only on changes in density. For this purpose, certain conditions must be met to detect the voltage fluctuations (maximum and minimum points), such as the difference (amount of change) between the maximum and minimum values.
By setting and canceling extreme level fluctuations, data fluctuations are minimized (at the same time, data that is smaller than the amount of change in the set fluctuation range is treated as the same data. S by doing
, ~S2 become the same small 1.1 nita, and the center point S of the B sample can be determined as the midpoint of the range 5j-S (FIG. 6).

(e)  次に、試料搬送台を試料Bのアルブミンの中
心点Sまで戻し、更に試料搬送台を縦軸方向に移動して
この搬送台を移動開始点Oまで戻すことにより、以後試
料のアルブミンAtからγの各グロブリンに至る全分画
成分の濃度測定が可能となる。
(e) Next, the sample carrier is returned to the center point S of the albumin of the sample B, and further the sample carrier is moved in the vertical axis direction to return this carrier to the movement start point O. It becomes possible to measure the concentration of all fraction components from At to each γ globulin.

以後上記方法を繰返すことにより次資料C以下の濃度測
定が行われる。
Thereafter, by repeating the above method, the concentration measurement in the following document C is performed.

冑、上記光学系検出部におけるスリットとしては、例え
ば第7図(a)、(b)に示すように、相互に直角の関
係位置にあるスリット2.3が設けられたスリット板4
を支持枠5に矢印6,7方向にスライド1丁能に装着し
たものが用いられる。このスリット2は縦軸方向、すな
わち試料の分画方向と直交するようになつ文おり、専ら
濃度測定用のスリットして用(・もれる。又、スリット
3は横軸方向、1なわち各検体のi己列方向と直交して
おり、縦・1カー、oエヵ−6,1ヨ。−”!77)&
L”Cutい11 らiする。                    
     tかくして、スリット8により、縦・横軸方
向の試料間隔を自動的に検出しつつ各検体試料の分画濃
度が連続的に測定される。
As a slit in the optical system detection section, for example, as shown in FIGS. 7(a) and 7(b), a slit plate 4 is provided with slits 2.3 located at right angles to each other.
The support frame 5 is equipped with one slide in the directions of arrows 6 and 7. This slit 2 is perpendicular to the vertical axis direction, that is, the fractionation direction of the sample, and is used exclusively as a slit for concentration measurement. It is perpendicular to the i-column direction of the specimen, vertical, 1 car, o eka - 6, 1 yo.-"!77) &
L”Cut 11 I want to do it.
In this way, the fractional concentration of each specimen sample is continuously measured by the slit 8 while automatically detecting the sample interval in the vertical and horizontal axis directions.

同、これらスリットとしては、これに限らす本出出願人
等が先に提案した如く、その他各種構成のものが採用可
能である。
Similarly, these slits are not limited to this, but as previously proposed by the present applicant, it is possible to adopt various other configurations.

又、本実施例においては、上記濃度測定にあたり、光学
系検出部を固定し、これに対して試料搬送台を縦・横軸
方向に移動するように説明するが、これと反対に、試料
搬送台を固定しこれに対して光学系検出部を縦・横軸方
向に移動させるようにしてもよい。この場合においても
上述と同様にして濃度測定が何ら支障な(行えることは
勿論である。
In addition, in this example, the optical system detecting section is fixed and the sample transport table is moved in the vertical and horizontal axes directions in the above concentration measurement. The table may be fixed and the optical system detection unit may be moved in the vertical and horizontal directions with respect to the table. In this case as well, the concentration can be measured in the same manner as described above (of course, it is possible to do so without any problem).

そして、本実施例においては、第8図に示すように泳動
膜を固定保持したカセット10が濃度計の試料搬送台l
l上に載置され、光学系検出部12に対して横軸(X軸
)方向及び縦軸(Y軸)方向に順次所定のタイミングで
移送されるようになっている。この移送は、例えばX軸
方向にはラック・ピニオン機構で、又Y軸方向にはタイ
ミングベルトで夫々ステッピングモータにより躯動され
て行われる。この場合、泳動処理工程で泳動パターンが
形成されたカセット10中の泳動膜1が、透明化処理さ
れた後、このカセツ)10が試料搬送台ll上に載置さ
れる。
In this embodiment, as shown in FIG.
1, and is arranged to be sequentially transferred in the horizontal axis (X-axis) direction and the vertical axis (Y-axis) direction with respect to the optical system detection unit 12 at a predetermined timing. This transfer is performed, for example, by a rack and pinion mechanism in the X-axis direction and by a timing belt in the Y-axis direction, which are moved by stepping motors. In this case, after the electrophoretic membrane 1 in the cassette 10 on which the electrophoretic pattern has been formed in the electrophoretic treatment process is subjected to a transparent treatment, the cassette 10 is placed on the sample carrier 11.

次に、本発明における分画処理方法について説明する。Next, the fractionation processing method in the present invention will be explained.

(冑、本実施例中、分画異常とは、検体の泳動パターン
が正規の5分画(アルブミンα皇。
(In this example, abnormal fractionation refers to the 5 fractions in which the electrophoresis pattern of the specimen is normal (albumin alpha).

α2.β、rの各グロブリン)に分離されず、分画数が
5分画に対し4分画以下又は6分画以上に増減変動した
状態をいう。) 先ず、第9図に示す1枚の泳動膜1上に泳動されたn個
の検体al〜anの全てについて予め選択した分画感度
でもって濃度測定が行われ、第2図に示すような分画濃
度図が各検体毎に作成されると同時に、その測定結果が
濃度計に設けた記録装診により報告用の記録紙にプリン
トアウトされる。
α2. β, r globulin) is not separated, and the number of fractions increases or decreases from 5 fractions to 4 fractions or less or 6 fractions or more. ) First, the concentration of all n samples al to an electrophoresed on a single electrophoresis membrane 1 shown in FIG. 9 was measured using a pre-selected fractional sensitivity, and At the same time that a fractional concentration map is created for each sample, the measurement results are printed out on report paper using a recording device attached to the densitometer.

この濃度測定は上述の測定手順にしたがって行わ才1 
る 。
This concentration measurement was carried out according to the measurement procedure described above.
Ru.

上記分画感度は、本例ではHfl (@^)、H(^)
M(中)、L(低)、LL(最低)の5段階に切替え調
整可能となっており、後述する如く、検体a、〜a、の
いずれかに分画異常が生じた際、その異常に応じて濃度
計内蔵のCPUの指令により自動的に切替えられるよう
になっている。この切替えは、検体の分画数が5分画よ
り多い場合には分画感度のレベルを(L→LL、 M−
、L、 H,M )の如く下げ、又5分画より少ない場
合は(L→M、M、H,H→HH)の如く上げることに
より行われる。
In this example, the above fractional sensitivity is Hfl (@^), H(^)
It can be switched and adjusted to 5 levels: M (medium), L (low), and LL (lowest), and as described later, when a fractionation abnormality occurs in either sample a or ~a, the abnormality can be adjusted. It is designed to be automatically switched according to a command from the CPU built into the densitometer. This switching changes the fraction sensitivity level (L→LL, M-
, L, H, M), or if it is less than 5 fractions, increase it as (L→M, M, H, H→HH).

そして、濃度測定の開始にあたり、オペレータが図示し
ない感度切替え用のキーを操作することにより、H(高
)、M(中)、L(低)の8段階の中から任意のレベル
の分画感度が予め選択設定される。その後、この選択さ
れた感度の下で全ての検体a、〜an  について濃・
度測定が行われる。
At the start of concentration measurement, the operator selects an arbitrary level of fractionation sensitivity from among eight levels: H (high), M (medium), and L (low) by operating a sensitivity switching key (not shown). is selected and set in advance. Then, under this selected sensitivity, all samples a, ~an
degree measurements are taken.

このとき、これら検体的〜anのいずれかに分画異常が
生じて(・たとする。l、、jlllgすえば第10図
に示す:・: ように、検体a、が4分画4118@体a、が6分画、
又検体a?が7分画に分画されていたとする。
At this time, suppose that a fractional abnormality occurs in one of these specimens ~an (・). a, 6 fractions,
Sample a again? Suppose that it is fractionated into 7 fractions.

この場合は、これら異常検体al+allea?を除き
他の検体の全てについて分画濃度図と共に測定一方、こ
れら異常検体at + 36 + ”Iにっし・ては、
第1の検体a1がらの位置とその検体番号、すなわち、
第1検体alがも何番目の検体に分画異常か生じている
が、及びその間の距離はいくらであるかが、濃度計内蔵
のCPUに記憶され、かつ同時に各異常検体の分画数が
このCPUで判別され記憶される。
In this case, these abnormal samples al+allea? On the other hand, for these abnormal samples at + 36 + "I,
The position of the first specimen a1 and its specimen number, that is,
The number of fraction abnormalities in the first sample al and the distance between them are stored in the built-in CPU of the densitometer, and at the same time, the number of fractions in each abnormal sample is stored in the CPU. It is determined and stored by the CPU.

その後、すべての検体al−anにつき濃度測定が行わ
れ試料搬送台11が測定終端位置に達すると、この搬送
台11が第10図の矢印13で示すように測定開始位置
に移動復帰するとともに、同第10図の仮想線で示す如
(光学系検出部12が第1の検体a@・の位置に位置決
めされる。
Thereafter, when the concentration is measured for all the samples al-an and the sample carrier 11 reaches the measurement end position, the carrier 11 moves back to the measurement start position as shown by the arrow 13 in FIG. As shown by the imaginary line in FIG. 10, the optical system detection section 12 is positioned at the position of the first specimen a@.

その後、各異常検体a! h a6 r a?につき成
分濃度の111定が?、われる。この再測定は以下のよ
うにして行われ − 先ず、上記CPUに記憶された記憶値に基づい  jて
試料搬送台11が検体a1の位置を基準としてX軸方向
に距離らだけ移動制御され、光学系検出部12が異常検
体a、の位置に位置付けされる。
After that, each abnormal specimen a! h a6 r a? What is the 111 constant of the component concentration? , be caught. This re-measurement is carried out as follows - First, based on the memory value stored in the CPU, the sample transport table 11 is controlled to move by a distance in the X-axis direction with respect to the position of the specimen a1, and the optical The system detection unit 12 is positioned at the position of the abnormal sample a.

このとき同時に分画感度が検体a、の分画数4に応じて
自動的に“低″から“高″レベルに所定幅で切替え設定
′される。この設定は上記CPUの指令により上記記憶
値に基づいて行われる。その後、この分画感度でもって
検体a、の再測定が上記測定手順にしたがって行われこ
の異常検体a、についての測定結果が分画濃度図と共に
記録される。
At the same time, the fractionation sensitivity is automatically switched and set in a predetermined range from a "low" level to a "high" level in accordance with the number of fractions 4 of the sample a. This setting is performed based on the stored value according to a command from the CPU. Thereafter, sample a is remeasured using this fractional sensitivity according to the measurement procedure described above, and the measurement results for this abnormal sample a are recorded together with the fractional concentration diagram.

この測定結果に基づいて正規の5分画に分画修正された
か否かが自動的に判別される。
Based on this measurement result, it is automatically determined whether or not the fraction has been corrected to the regular 5 fractions.

そして、これにより第1回目の測定時に第11図(a)
の矢印(イ)で示すように、例えばアルブミンA4とα
1間に分画異常すなわち分画点が表われていなかったα
1の部分が、第11図(b)に示すように明瞭に修正分
離され5分画としての測定データが得られると検体a、
の再測定が完了する。
As a result, during the first measurement, Fig. 11(a)
As shown by the arrow (a), for example, albumin A4 and α
α that no fractionation abnormality, that is, no fractionation point appeared during 1
When part 1 is clearly corrected and separated as shown in Figure 11(b) and measurement data as 5 fractions are obtained, sample a,
remeasurement is completed.

一方、再測定によっても正規の5分画状態に修正分離さ
れない場合にはこれが自動的に判別されて、図外の表示
部に分画修正を再度行う旨および分画点を入力すべき当
該α、の部分に相当する分画順番番号の指示、例えばメ
ツセージ′″PUSH8LOW&[=3″というような
指示が表示され、試料搬送台11が検体a、の測定開始
位置に6期状態におかれる。次いで、外部キー人力によ
り分画修正操作、例えば“8LOW″キーを操作した後
、“〔=〕(イコール)″キーを操作すると、上記第1
1図(a)に示すと同様のデータが極めて緩やかな測定
速度でプリントアウトされる・したがって、その過程で
再測定で表われなかったα虞に相当する異常分画部分に
外部キー人力により分画点を加えれば、第11図(b)
に示す如くα1の部分が分画修正された5分画での濃度
図が得られると共に正規の5分画に修正された後の測定
データが得られ検体a、の再測定が完了する。
On the other hand, if the corrected and separated state is not corrected to the normal 5-fraction state even after re-measurement, this will be automatically determined and a message indicating that the fraction will be corrected again will be displayed on the display outside the figure, as well as the corresponding α fraction point at which the fractional point should be entered. An instruction of the fractionation order number corresponding to the part , for example, a message ``PUSH8LOW&[=3'' is displayed, and the sample transport table 11 is placed in the 6th stage state at the measurement start position of sample a. Next, when the fraction correction operation is performed manually using an external key, for example, the "8LOW" key is operated, and the "[=] (equal)" key is operated, the above-mentioned first
As shown in Figure 1 (a), similar data is printed out at an extremely slow measurement speed. Therefore, in the process, the abnormal fraction corresponding to α that did not appear in the remeasurement is manually separated using an external key. If we add the pixels, we get Figure 11(b)
As shown in FIG. 2, a concentration map of the 5 fractions in which the α1 portion has been corrected is obtained, and measurement data after the correction to the normal 5 fractions is obtained, thus completing the remeasurement of the sample a.

次いで、試料搬送台11が、検体a1の位置を基準とし
てX軸方向に距離Z2+すなわち検体a2から距1m<
tt−tt)だけ移動制御され、光学系検出部12が次
の異常検体a、の測定開始位置に位置付けされる。この
場合、検体alIの分画数は6であり、したがってこの
位置付けと同時にこの分画数6に対応して分画感度が、
上記CPUの指令により自動的に”高″から“低″レベ
ルに所定幅で切替え調整され、その後、この分画感度の
下で検体a、の再測定が上述した測定手順にしたがって
自動的に行われ、その測定結果が分画濃度図と共に記録
されるとともに、この測定結果に基づいて、上述と同様
にこの異常検体a、が正規の5分画に分画修正されたか
否かが自動的に判別される。
Next, the sample transport table 11 is moved in the X-axis direction from the position of the sample a1 by a distance Z2+, that is, a distance of 1 m< from the sample a2.
tt-tt), and the optical system detection unit 12 is positioned at the measurement start position of the next abnormal sample a. In this case, the number of fractions of sample alI is 6, and therefore, at the same time as this positioning, the fractionation sensitivity corresponding to this number of fractions is 6.
The above CPU command automatically switches and adjusts the level from "high" to "low" within a predetermined range, and then re-measurement of sample a is automatically performed under this fractional sensitivity according to the measurement procedure described above. The measurement results are recorded together with the fractional concentration map, and based on the measurement results, it is automatically determined whether or not the abnormal sample a has been corrected to the normal 5 fractions, as described above. It is determined.

そして、これにより第12図(a)の矢印(ロ)で示す
ように、第1回目の測定時に例えばβグロブリンの部分
に生じていた異常分画点f→が低減圧縮され、第12図
(b)に示すように5分画状態に分画修正されこの5分
画での測定データが得られると検体a1の再測定が完了
する。
As a result, as shown by the arrow (b) in FIG. 12(a), the abnormal fractionation point f→ that occurred in the β-globulin portion during the first measurement is reduced and compressed, and as shown in FIG. As shown in b), when the fraction is corrected to the 5-fraction state and measurement data for the 5-fraction is obtained, the re-measurement of the sample a1 is completed.

他方、再測定によっても正規′:の5分画に分画修E8
htly゛&に&“・l N’ 2−、、で’+J ”
 Q K T ’ような処理がなされる。
On the other hand, even after re-measurement, the fraction was corrected to the normal 5 fraction of E8.
htly゛&ni&“・l N' 2-,, de'+J”
A process like Q K T ' is performed.

先ず上記表示部に“再度分画修正を行う旨の指示、例え
ばメツセージ“ P’R,NO,、\(フラクショノ番
号ゼロ)″・というような指示が表示される。すると、
光学系検出部12が検体a6の測定開始位置に位置付け
された状態で試料搬送台11が待期状態すなわち“キー
人力待ち”の状態におかれる。次いで外部キー人力によ
り上記βグロブリンの部分に生じた異常分画点C)を消
去する操作を行う。この操作は、当該異常分画点eつに
相当する分画順番番号すなわち第12図(a)で示す左
方から数えた分画順番である(5)番を、例えばキー人
力により“[5) (=E″の如く入力することにより
行われる。この操作により検体a、につき再度CPUの
内部で分画演算が行われ異常分画点(ハ)の部分が自動
的に演算消去されて第12図(b)に示すような5分画
に分画修正された測定データならびにその濃度iが自動
記録されプリントアウトされる。これによって検体a、
05分画状態での測定データが得シれるとその再測定が
完了する。
First, an instruction to ``perform fraction correction again,'' such as the message ``P'R, NO, \ (fraction number zero)'' is displayed on the display section. Then,
With the optical system detection unit 12 positioned at the measurement start position of the sample a6, the sample transport table 11 is placed in a standby state, that is, in a "waiting for key human power" state. Next, an operation is performed to erase the abnormal fraction C) occurring in the β globulin portion using the external key manually. In this operation, the fractionation order number corresponding to the abnormal fractionation points e, that is, number (5), which is the fractionation order counted from the left as shown in FIG. ) (This is done by inputting something like ``=E''. With this operation, the fraction calculation is performed again in the CPU for sample a, and the part of the abnormal fraction point (c) is automatically deleted by the calculation. The measurement data corrected into 5 fractions as shown in Figure 12(b) and its concentration i are automatically recorded and printed out.As a result, sample a,
When the measurement data in the 05 fraction state is obtained, the re-measurement is completed.

その後、更に試實ニー送台11が、検体a−位置を基準
としてX軸方向に距離5 、すなわち検体a、から距離
C1m1x)だけ移動制御されるとともに、光学系検出
部12が検体avの測定位置に位置付けされ、次いで上
記検体a、と同様の手順により5分画に修正する分画処
理がなされその成分濃度の再測定が行われる。
Thereafter, the trial knee feed table 11 is further controlled to move by a distance 5 in the X-axis direction based on the sample a position, that is, a distance C1m1x from the sample a, and the optical system detection unit 12 performs measurement of the sample av. Then, a fractionation process is performed to correct the sample into 5 fractions using the same procedure as for sample a, and its component concentration is remeasured.

なお、試料搬送台11の移動制御、あるいは各検体の光
学系検出部12に対する位置決め制御など、各部の動作
制御は上記第1回目の測定の際の記憶値に基づいて濃度
計内蔵のCPUの指令により試料搬送台11をX軸およ
びY軸方向に駆動するパルスモータ(図示せず)を駆動
制御することによって行われる。
The operation control of each part, such as the movement control of the sample transport table 11 or the positioning control of each sample with respect to the optical system detection part 12, is performed by commands from the CPU built in the densitometer based on the memorized values from the first measurement. This is performed by controlling a pulse motor (not shown) that drives the sample transport table 11 in the X-axis and Y-axis directions.

かくして、各異常検体al+al+a?の全てについて
成分濃度の再測定がなされ、これら検体a、。
Thus, each abnormal specimen al+al+a? The component concentrations were remeasured for all of these specimens a.

a6.a7の全てにつき正規の5分画に分画修正された
パターンについてその測定結果が分画濃度図と共に記録
装置で報告用の記録紙に記録されプリントアウトされる
a6. The measurement results of the pattern corrected to the regular 5 fractions for all a7 are recorded and printed out on report paper by the recording device along with the fractional density diagram.

そして、本実施例方法によれば、分画感度の切替え調整
をはじめ一連の再測定操作が全て自動制御により行われ
るため、従来のような手作業に頼る部分がほとんどなく
なり、測定作業の省力化を図ることができる。しかも、
上記各部の動作は濃度計内蔵のCPUの指令に基づいて
制御されるため、操作が誤りなく正確に行える。
According to the method of this embodiment, a series of remeasurement operations, including switching and adjusting the fractionation sensitivity, are all performed under automatic control, which eliminates most of the manual work required in the past, resulting in labor-saving measurement work. can be achieved. Moreover,
Since the operations of the above-mentioned parts are controlled based on commands from the CPU built into the densitometer, operations can be performed accurately and without errors.

尚、上記実施例においては、検体al −aoの中で検
体”!+all+a?の8検体に分画異常が生じ場合に
つき説明したが、本発明はこれに限らず、異′常検体の
数の如何を問わず上記と同様の手順でその再測定を行う
ことができるものである。又、手記実施例においては、
当初のa度測定が完了後、(・つたん光学系検出部12
を第1の検体a、の測定開始位置に位置させ、その後異
常分画が生じた検体の再測定を行うように説明したが、
この光学系検出部12を1回目の測定が完了した後、第
1の異常検体a2の位置に直接に位置付けするように構
成することも可能である。
In the above example, the case where abnormal fractionation occurred in 8 samples "!+all+a?" among samples al-ao was explained, but the present invention is not limited to this, and the present invention is not limited to this. Regardless of the method, re-measurement can be performed using the same procedure as above.In addition, in the handwritten example,
After the initial a degree measurement is completed, (Tsutan optical system detection unit 12
Although it was explained that the sample a was positioned at the measurement start position of the first sample a, and then the sample in which the abnormal fraction occurred was remeasured.
It is also possible to configure the optical system detection section 12 to be positioned directly at the position of the first abnormal specimen a2 after the first measurement is completed.

次に、第13図は本発明方法を実施する場合の基本的処
理フロー図であり、第14図は本発明方法を実施する場
合に用いられる装置の全体構成を小すCPUを中心とし
たブロック図である。
Next, FIG. 13 is a basic processing flow diagram when implementing the method of the present invention, and FIG. 14 is a block diagram centered on the CPU that makes up the overall configuration of the device used when implementing the method of the present invention. It is a diagram.

第18図、第14図において、操作パネル101に配設
されたスタート/ストップスイッチを操作して装置を駆
動し、同パネル101のキーボード部(図示せず)に設
けられたデータ入カキ−を操作して初期データをCP 
U 100に入力すると、このCP U 100からパ
ルスモータ等からなる機構部】02に制御信号が送出さ
れるとともに、光学系検出部12がOP U 100の
指令により作動する。これにより、泳動膜l上に泳動さ
れた各検体a、〜ao毎の分画成分の濃度測定が行われ
る。このとき、光学系検出部12で受光検出された検出
信号が増幅器103により増幅された後、A/D変換器
104で数値信号に変換されてOPU 100に取込ま
れる。それと同時に、CPU100から関数発生器10
5に指令信号が送出され、ここでこの変換された数値信
号に対して各種演算処理がなされた後、その結果がOP
 U 100を通、:l、てプリンター106からプリ
ントアウトされる。ノ外つ、これと同時に、1・′  
へ 分画濃度図が作成されるのである。そして、上記濃度測
定過程でいずれかの検体に分画異常が生じた場合には、
上述の如く、その位置、分画数、あるいは検体番号など
がOP U 100に記憶されるのである。その後、す
べての検体a、−aoにつ(゛て製置測定が完了すると
、OP U 100の指令に基ついて上述の手順にした
がって分画異常が生じた検体の再測定が自動的にかつ完
全に行われるのである。
In FIGS. 18 and 14, the start/stop switch provided on the operation panel 101 is operated to drive the device, and the data input keys provided on the keyboard portion (not shown) of the same panel 101 are operated. Operate and convert initial data to CP
When input to U 100, a control signal is sent from this CPU 100 to a mechanical unit 02 consisting of a pulse motor, etc., and the optical system detection unit 12 is operated according to the command from OPU 100. Thereby, the concentration of the fractionated components of each of the samples a to ao electrophoresed on the electrophoresis membrane l is measured. At this time, a detection signal received and detected by the optical system detection section 12 is amplified by the amplifier 103, and then converted into a numerical signal by the A/D converter 104 and taken into the OPU 100. At the same time, from the CPU 100 to the function generator 10
A command signal is sent to 5, and after various arithmetic processing is performed on this converted numerical signal, the results are sent to OP.
The image is printed out from the printer 106 through the U 100 :l. At the same time, 1・'
A fractional concentration map is created. If a fractionation abnormality occurs in any of the samples during the above concentration measurement process,
As mentioned above, the position, fraction number, specimen number, etc. are stored in the OPU 100. Thereafter, once the in-place measurements have been completed for all samples a and -ao, re-measurement of the sample with a fractionation abnormality will be automatically and completely performed in accordance with the above-mentioned procedure based on the instructions from OPU 100. It is carried out in

そして、異常検体のすべてについて再測定が行われ、こ
れら全てについて測定テークが得られると全動作が完了
し、装置が停止する。
Then, all of the abnormal samples are remeasured, and when measurement takes are obtained for all of them, all operations are completed and the apparatus is stopped.

そして本例では、上記各種操作に伴うメツセージあるい
はその操作手順などが、表示器107のディスプレイ上
に表示されると同時に、プリンタ10Bからプリントア
ウトされ、誤操作によるエラーの検出あるいはそのデバ
ッグ的な処理が行えるようになっており、操作の確実性
が保持できるのである。同、この場合、分画感度のレベ
ルの切替り、1 え調整等が1,9 P U 100の指令に基づ(・て
自動的に行われるこ電は上述の説明の辿りである。
In this example, messages accompanying the various operations described above or their operating procedures are displayed on the display of the display unit 107 and printed out from the printer 10B at the same time, so that errors caused by erroneous operations can be detected or debugged. This allows the operation to be performed with certainty. Similarly, in this case, the switching of the fractional sensitivity level, the adjustment, etc. are automatically performed based on the commands of the PU 100, as described above.

′11 以上説明した通り、この発明に係る分画処理力  I法
にあっては、上記検体試料の濃度測定にあたり、検体の
いずれかに分画異常が生じた際、その分画異常に応じて
分画感度のレベルが上下に所定幅で自動的に切替え調整
され、かつこの分画感度のレベルを上下に調整しつつ各
異常検体毎の再測定が順次自動的に行えるため、これら
異常検体の再測定が従来の手動操作によるものに比べて
極めて迅速、確実かつ極めて容易に行える効果がある。
'11 As explained above, in the fraction processing power I method according to the present invention, when a fractional abnormality occurs in any of the specimens when measuring the concentration of the specimen sample, the The level of fractionation sensitivity is automatically switched up and down within a predetermined range, and re-measurement for each abnormal sample can be automatically performed sequentially while adjusting the level of fractionation sensitivity up and down. This method has the effect that remeasurement can be performed extremely quickly, reliably, and extremely easily compared to conventional manual operations.

したがって本発明方法によれば、この再測定の作業効率
が従来に比べて大幅に向上する効果を有する。
Therefore, the method of the present invention has the effect of significantly improving the work efficiency of this remeasurement compared to the conventional method.

しかも、この発明にあっては、各異常検体毎に正規の5
分画pc分画修正された状態で確実に再測定を行うこと
ができるため、常時すべての検体について完全確実な測
定データを得ることができ、測定データの信頼性が向上
する効果もある。
Moreover, in this invention, each abnormal sample has a regular 5
Since re-measurement can be reliably performed with the fraction pc fraction corrected, completely reliable measurement data can be obtained for all specimens at all times, which also has the effect of improving the reliability of the measurement data.

又、この発明にあっては、上記再測定操作がほぼ自動的
に完全確実に行えるため、濃度計における測定操作の完
全自動化を図ることができ、大幅な省力化が可能となる
ため、多数検体の迅速処理が要望される臨床検査の分野
に寄与する効果は大きし・。
In addition, in this invention, the above-mentioned re-measurement operation can be performed almost automatically and completely reliably, making it possible to completely automate the measurement operation in the densitometer, making it possible to significantly save labor. The effect of contributing to the field of clinical testing, which requires rapid processing, is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多数検体の泳動パターンの一例を示す図、第2
図〜第8図は本発明における濃度測定方法な説明する図
であって、第2図は分画濃度図、第8図は試料間隔が相
違する場合の泳動パターン及び試料間隔の検出動作を説
明する図、第4図〜第6図は第8図に示す場合の電圧レ
ベル図、第7図(a)、Φ)は本発明方法で用いられる
スリットの説明図であって、(a)は切替え前、(b)
は切替え後を示す。第8図は本発明方法が適用される濃
度計の要部説明図、第9図〜第12図(a)、 (b)
は本発明方法における異常検体の再測定1′#4序を説
明する図、第18図は本発明方法を実施する場合の基本
的処理フロー図、第14図は本濃度計の全体構成を示す
CPUを中心としたブロック図である。 l ・・・・・・泳動膜(支持体)、11・・・・・・
・・試料搬送台、12・・・・・・光学系検出部、a、
%a、・・・・・・検体、am I a@’ l a9
・・・・・・異常検体、(1)、eつ・・・・・・分画
異常部分。 第1図 一−ヤ× 第2図 第3図 第4図 □ □i″ ・1ご assi 第5図 第7図 (G)         (b) 第9図 第10図 第11図 (0) (b) 第12図 (0) (b) 手続補正書(方式) 昭和57年5月17δ 特許庁 島 1)春 樹 殿 3、 補正をする者 事件との関係  特許出願人 4、代理人
Figure 1 shows an example of the electrophoresis pattern for multiple samples;
Figures 8 to 8 are diagrams explaining the concentration measurement method according to the present invention, in which Figure 2 is a fractional concentration diagram, and Figure 8 explains the electrophoresis pattern and sample interval detection operation when the sample intervals are different. Figures 4 to 6 are voltage level diagrams for the case shown in Figure 8, Figure 7(a) and Φ) are explanatory diagrams of the slit used in the method of the present invention, Before switching (b)
indicates after switching. Figure 8 is an explanatory diagram of the main parts of a densitometer to which the method of the present invention is applied, Figures 9 to 12 (a), (b)
Figure 18 is a diagram explaining the re-measurement 1'#4 of an abnormal sample in the method of the present invention, Figure 18 is a basic processing flow diagram when implementing the method of the present invention, and Figure 14 shows the overall configuration of the present densitometer. It is a block diagram centered on the CPU. l... Electrophoresis membrane (support), 11...
...Sample transport table, 12...Optical system detection section, a,
%a,...specimen, am I a@' l a9
・・・・・・Abnormal specimen, (1), etsu ・・・・・・Abnormal fractionation part. Figure 1 - Y × Figure 2 Figure 3 Figure 4 □ □i'' ・1assi Figure 5 Figure 7 (G) (b) Figure 9 Figure 10 Figure 11 (0) (b ) Figure 12 (0) (b) Procedural amendment (method) May 17, 1980 Patent Office Shima 1) Haruki Tono 3, person making the amendment Relationship with the case Patent applicant 4, agent

Claims (1)

【特許請求の範囲】[Claims] (1)  複数の検体を同一平面支持体上の横方向に一
定間隔をあけて配置し、かつ検体ごとの複数の成−分を
縦方向の直線上に泳動させた試料を光学検出部に対し上
記縦軸及びこれと直交する横軸方向に移動させ、若しく
は上記光学系検出部を試料に対し縦・横軸方向に移動さ
せることにより泳動された試料の分画濃度を測定する濃
度計におし・て、下記(a)乃至(d)に記載の方法に
より分画異常が生じた異常検体の成分濃度を再測定する
ことを%像とする濃度計における分画処理方法。 (a)  予め選択設定した分画感度により上記支持体
上の全ての検体につき濃度測定を行い、分画異常の生じ
た異常検体の位置とその検体番号とを検出・記憶させた
後、試料搬送台又は光学系検出部を測定開始位置に移動
復帰させ又は上記異常検体の位置に位置付けする。 Φ)次(・で、上記記憶値に基づいて試料搬送台又は光
学系検出部を駆動制御すると共に、当該異常検体の分画
数の多寡に応じて分画感度を上下に自動的に切替え調整
してこの異常検体の成分濃度の再測定を行う。 (C)  この再測定結果により異常検体が正規の5分
画に分画修正されたか否かを自動判別し、更に分画異常
が生じた場合、その旨ならびに再度分画修正すべき旨の
指示を自動表示する。 (d)  次いで、外部入力により上記異常検体の分―
1数の多寡に応じて分画異常部分に分画点を加入し又は
分画点を消去演算する動作を行わせる。
(1) A plurality of specimens are arranged at regular intervals in the horizontal direction on the same planar support, and a plurality of components of each specimen are migrated in a straight line in the vertical direction. The densitometer measures the fractional concentration of the electrophoresed sample by moving it along the vertical axis and the horizontal axis perpendicular thereto, or by moving the optical detection section along the vertical and horizontal axes relative to the sample. Therefore, a fraction processing method in a densitometer in which the percentage image is obtained by re-measuring the component concentration of an abnormal specimen in which a fraction abnormality has occurred by the methods described in (a) to (d) below. (a) Measure the concentration of all the samples on the support using the fractionation sensitivity selected and set in advance, and after detecting and storing the position of the abnormal sample where the fractionation abnormality has occurred and its sample number, transport the sample. The table or optical system detection unit is moved back to the measurement starting position or positioned at the position of the abnormal specimen. Φ) Next (・), the sample transport table or optical system detection unit is driven and controlled based on the above memorized values, and the fractionation sensitivity is automatically switched up or down depending on the number of fractions of the abnormal sample. The component concentration of the abnormal sample is re-measured using the lever. (C) Based on the re-measurement results, it is automatically determined whether the abnormal sample has been corrected to the regular 5 fractions, and if further abnormal fractions occur. , automatically displays an instruction to that effect and to correct the fraction again. (d) Next, by external input, the fraction of the abnormal sample mentioned above is automatically displayed.
Depending on the number of fraction points, an operation is performed to add a fraction point to the fraction abnormal portion or to delete the fraction point.
JP57078994A 1982-05-10 1982-05-10 Fractionation processing method in densitometer Granted JPS58195139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57078994A JPS58195139A (en) 1982-05-10 1982-05-10 Fractionation processing method in densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57078994A JPS58195139A (en) 1982-05-10 1982-05-10 Fractionation processing method in densitometer

Publications (2)

Publication Number Publication Date
JPS58195139A true JPS58195139A (en) 1983-11-14
JPH0231819B2 JPH0231819B2 (en) 1990-07-17

Family

ID=13677444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57078994A Granted JPS58195139A (en) 1982-05-10 1982-05-10 Fractionation processing method in densitometer

Country Status (1)

Country Link
JP (1) JPS58195139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684244A (en) * 1985-09-03 1987-08-04 Helena Laboratories Corporation Method of scanning optical density patterns
JPS63236952A (en) * 1987-03-16 1988-10-03 ヘレナ、ラボラトリーズ、コーポレーション Electrophoretic device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684244A (en) * 1985-09-03 1987-08-04 Helena Laboratories Corporation Method of scanning optical density patterns
JPS63236952A (en) * 1987-03-16 1988-10-03 ヘレナ、ラボラトリーズ、コーポレーション Electrophoretic device and method

Also Published As

Publication number Publication date
JPH0231819B2 (en) 1990-07-17

Similar Documents

Publication Publication Date Title
JPS628142B2 (en)
JPS58195139A (en) Fractionation processing method in densitometer
ATE105780T1 (en) DIAGNOSTIC SYSTEM FOR A DIGITAL CONTROL DEVICE.
US11295406B2 (en) Image management device
JPS58120153A (en) Measuring method for density in densitometer
JPH08145975A (en) System controller for analyzer
JPS6229954Y2 (en)
JPH04329358A (en) Automatic starter for automatic analyzer
JPS59152021A (en) Wire cut electric discharge machining equipment
JPH06265512A (en) Method for calibrating electrolyte analyzer
EP0114896A1 (en) Function diagnosis system
JPH0434699B2 (en)
JP2770456B2 (en) Automatic calibration method for sensitivity of measuring equipment
JP3016328B2 (en) Measurement area correction device in measurement equipment
JPH0272651A (en) General-purpose measuring system for quality assurance
JPH0760140B2 (en) X-ray analyzer
JP3430712B2 (en) Protein amino acid sequencer
JPS62161469A (en) Automatic measuring and recording method for welding condition
JPH07104406B2 (en) Digital measuring instrument automatic calibration system
JPS61218948A (en) Analyzing instrument
JPS6142816B2 (en)
JPS5845540A (en) Detecting method for central part of inspection body in densitometer
JPS6259772B2 (en)
JPS59205613A (en) Sequence monitor device
JPH07129680A (en) Tact related information generating device in production line