JPH06265512A - Method for calibrating electrolyte analyzer - Google Patents
Method for calibrating electrolyte analyzerInfo
- Publication number
- JPH06265512A JPH06265512A JP7894993A JP7894993A JPH06265512A JP H06265512 A JPH06265512 A JP H06265512A JP 7894993 A JP7894993 A JP 7894993A JP 7894993 A JP7894993 A JP 7894993A JP H06265512 A JPH06265512 A JP H06265512A
- Authority
- JP
- Japan
- Prior art keywords
- calibration
- measurement
- electrolyte analyzer
- point calibration
- calibrating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003792 electrolyte Substances 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 15
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 239000000523 sample Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000012491 analyte Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、全血、血清、血漿、
尿、透析液などに含まれるNa+ ,K+ ,Cl- などの
電解質を分析する分析計の校正方法に関する。The present invention relates to whole blood, serum, plasma,
The present invention relates to a calibration method of an analyzer for analyzing electrolytes such as Na + , K + , Cl − contained in urine, dialysate and the like.
【0002】[0002]
【従来の技術】血液に含まれるNa+ などの電解質を分
析する電解質分析計として、例えば実公平3−4853
0号公報などに開示された所謂流通型の電解質分析計が
ある。図3は、このような電解質分析計の構成を概略的
に示すもので、この図において、1はサンプリング部で
ある。このサンプリング部1は次のように構成されてい
る。すなわち、2は測定部で、被検体に含まれるK+ ,
Cl- ,Na+ のイオン濃度をそれぞれ検出するための
カリウム電極K,塩素電極Cl、ナトリウム電極Naお
よびこれらのイオン電極K,Cl,Naに共通の比較電
極Rと、測定部1の入口側に設けられる液検出センサL
Bよりなる。なお、前記各イオン電極K,Cl,Naの
詳細な構造は、例えば実公平3−21481号公報、実
公平4−8363号公報、実公平4−8364号公報な
どに記載されているところである。2. Description of the Related Art As an electrolyte analyzer for analyzing electrolytes such as Na + contained in blood, for example, Jpn.
There is a so-called flow-through type electrolyte analyzer disclosed in Japanese Laid-Open Patent Publication No. 0. FIG. 3 schematically shows the structure of such an electrolyte analyzer, and in this figure, 1 is a sampling unit. The sampling unit 1 is configured as follows. That is, 2 is a measurement unit, which is K + contained in the subject,
A potassium electrode K, a chlorine electrode Cl, a sodium electrode Na and a reference electrode R common to these ion electrodes K, Cl and Na for detecting the ion concentrations of Cl − and Na + , respectively, and an inlet side of the measuring unit 1. Liquid detection sensor L provided
It consists of B. The detailed structure of each of the ion electrodes K, Cl and Na is described in, for example, Japanese Utility Model Publication No. 3-21481, Japanese Utility Model Publication 4-8363, Japanese Utility Model Publication 4-8364.
【0003】3は測定部2より下流側に設けられ、測定
部2に対して被検体、標準液および比較電極内部液(例
えばKCl溶液)などを適宜導入するためのペリスタポ
ンプである。4は測定部2より上流側に設けられるロー
タリバルブよりなる液切換部で、液と液との間に空気ま
たは不活性ガスよりなる気泡を介在させるものである。
5は液切換部4より上流側に設けられ、複数のサンプル
カップ6を保持するターンテーブル7およびサンプルカ
ップ6内に収容された被検液を吸い上げるサンプルプロ
ーブ8よりなるサンプルチェンジャーである。Reference numeral 3 denotes a peristaltic pump which is provided on the downstream side of the measuring unit 2 and which appropriately introduces an analyte, a standard solution, a reference electrode internal solution (for example, a KCl solution) into the measuring section 2. Reference numeral 4 denotes a liquid switching unit composed of a rotary valve provided on the upstream side of the measuring unit 2 for interposing bubbles of air or an inert gas between the liquids.
Reference numeral 5 denotes a sample changer which is provided on the upstream side of the liquid switching unit 4 and which includes a turntable 7 that holds a plurality of sample cups 6 and a sample probe 8 that sucks up the test liquid contained in the sample cup 6.
【0004】9は上述のように構成されたサンプリング
部1の各部を制御するサンプリング部制御部で、測定部
2からのLBセンサ信号、K信号、Cl信号、Na信
号、R信号が入力される。そして、10はCPUで、サ
ンプリング部制御部9を始め、図外の表示装置やプリン
ターなどの出力装置などを含む装置全体を制御すると共
に、サンプリング部制御部9からの信号や図外の入力装
置からの入力に基づいて演算したり、その結果をメモリ
するものである。Reference numeral 9 is a sampling section control section for controlling each section of the sampling section 1 configured as described above, and receives the LB sensor signal, K signal, Cl signal, Na signal, and R signal from the measuring section 2. . Reference numeral 10 denotes a CPU, which controls the entire device including a sampling unit control unit 9 and an output device such as a display device and a printer (not shown), and a signal from the sampling unit control unit 9 and an input device (not shown). It calculates based on the input from and stores the result.
【0005】なお、11,12はイオン濃度が異なる標
準液を収容した容器、13は比較電極内部液を収容した
容器、14は測定部2から排出される廃液を収容する容
器である。Reference numerals 11 and 12 are containers containing standard solutions having different ion concentrations, 13 is a container containing the reference electrode internal solution, and 14 is a container containing the waste liquid discharged from the measuring section 2.
【0006】このように構成された電解質分析計によれ
ば、ターンテーブル7に被検体を収容したサンプルカッ
プ6を載置し、測定スイッチ(図外)を押すだけで、複
数の被検体における電解質濃度を自動的に測定すること
ができる。According to the electrolyte analyzer configured as described above, the sample cup 6 containing the analytes is placed on the turntable 7 and the measurement switch (not shown) is simply pressed to remove the electrolytes in the analytes. The concentration can be measured automatically.
【0007】[0007]
【発明が解決しようとする課題】ところで、上述の電解
質分析計においては、被検体における電解質濃度を自動
的に測定を連続的に行っているうちに、イオン電極K,
Cl,Naの不斉電位が、図4(A)に示すように、ド
リフトすることがある。この不斉電位のドリフトは、ゼ
ロ点の変化と考えることができ、これは一点校正によっ
て校正を行うことができる。By the way, in the above-described electrolyte analyzer, while the electrolyte concentration in the subject is automatically measured continuously, the ion electrode K,
The asymmetric potentials of Cl and Na may drift as shown in FIG. This drift of the asymmetric potential can be considered as a change of the zero point, which can be calibrated by a one-point calibration.
【0008】なお、イオン電極においては、不斉電位の
ドリフトの他に、感度も変化するが、これは傾きが変化
するものと考えることができ、この感度校正は、2点、
つまり、イオン濃度の異なる2つの標準液(図3におい
て符号11,12で示す容器に収容されている)を用い
て、例えば1日1回程度校正を行うものであるが、ここ
では関係がないので詳しい説明は省略する。Incidentally, in the ion electrode, the sensitivity changes in addition to the drift of the asymmetric potential, but it can be considered that this changes in the inclination.
That is, calibration is performed, for example, about once a day using two standard solutions having different ion concentrations (contained in the containers denoted by reference numerals 11 and 12 in FIG. 3), but this is not relevant here. Therefore, detailed description is omitted.
【0009】さて、前記不斉電位のドリフトを補正する
ため、従来のこの種の電解質分析計にあっては、n個の
被検体を測定する毎に一点校正を行うことができるよう
に構成されている。この場合、n=1にした場合、つま
り、被検体を1つ測定する毎に一点校正を行うようにし
た場合、精度の高い測定を行うことができるが、測定毎
に校正するため、時間がかかるといった不都合がある。In order to correct the drift of the asymmetric potential, a conventional electrolyte analyzer of this type is constructed so that a one-point calibration can be performed every time n analytes are measured. ing. In this case, when n = 1, that is, when one-point calibration is performed every time one object is measured, highly accurate measurement can be performed, but since the calibration is performed for each measurement, There is such an inconvenience.
【0010】そこで、一般的には、電解質分析計におい
ては、被検体を10〜20測定する毎に校正を行うよう
にしているが、校正後と校正前とにおいて同一の被検体
を測定しても測定値が異なる。図4(B)はこのことを
説明するための図で、例えば5被検体毎に校正を行った
場合、ある被検体の校正前の測定値は同図において符号
p1 に示すようになっているが、同じ被検体を校正後に
測定した値は同図において符号p2 で示すようになり、
校正後急に値が変わったように見え、測定全体として考
えてみた場合、測定精度が悪いといった不都合があっ
た。Therefore, generally, in the electrolyte analyzer, the calibration is performed every 10 to 20 measurements of the analyte, but the same analyte is measured after the calibration and before the calibration. Also have different measured values. FIG. 4B is a diagram for explaining this. For example, when calibration is performed for every 5 test objects, the measured value of a test object before calibration is as shown by reference numeral p 1 in the figure. However, the value measured after calibrating the same subject is as indicated by the symbol p 2 in the figure,
It seems that the value suddenly changed after the calibration, and when considering the measurement as a whole, there was a problem that the measurement accuracy was poor.
【0011】本発明は、上述の事柄に留意してなされた
もので、その目的は、精度の高い測定値を短時間に得る
電解質分析計の校正方法を提供することにある。The present invention has been made in consideration of the above matters, and an object thereof is to provide a method for calibrating an electrolyte analyzer which can obtain a highly accurate measured value in a short time.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するた
め、本発明においては次のような手段を採用している。
一つの手段は、校正毎の電位差をそれらの校正が行われ
るまでの間の測定数で除算し、この除算によって得られ
た値を用いて各測定値を補正するようにしている。他の
手段は、校正毎の電位差をそれらの校正が行われるまで
の時間で除算し、この除算によって得られた値を用いて
各測定値を補正するようにしている。In order to achieve the above object, the present invention employs the following means.
One means is to divide the potential difference for each calibration by the number of measurements until those calibrations are performed, and to correct each measurement value using the value obtained by this division. Another means is to divide the potential difference for each calibration by the time until the calibration is performed, and use the value obtained by this division to correct each measured value.
【0013】[0013]
【作用】測定値をメモリしておき、校正毎の電位差(ド
リフト量)を測定数で除算し、その係数を用いて、メモ
リしていた測定値を補正するのである。今、同一サンプ
ルを測定したときの電極出力について、図2を例にして
説明する。この図において、Aは測定電極の出力の変化
を表すグラフ、また、Bは一点校正電位の変化を表すグ
ラフである。そして、測定直前の一点校正電位をEf 、
n個測定後の一点校正電位をEn 、最初の一点校正後a
個目の測定電位をEa 、校正間隔をnとすると、演算後
のa個目の電位Ea ’は、下記の式で表される。 Ea ’=Ea −(En −Ef )×a/(n+1) なお、校正間隔nとは、一点校正と次の一点校正との間
に測定する測定数と同じで、図2に示した例では、n=
5となる。The measured value is stored in memory, the potential difference (drift amount) for each calibration is divided by the number of measurements, and the coefficient is used to correct the stored measured value. Now, the electrode output when the same sample is measured will be described with reference to FIG. 2 as an example. In this figure, A is a graph showing changes in the output of the measurement electrode, and B is a graph showing changes in the one-point calibration potential. Then, the one-point calibration potential immediately before measurement is E f ,
The one-point calibration potential after measuring n pieces is E n , and after the first one-point calibration a
Letting E a be the measured electric potential of the second piece and n be the calibration interval, the a-th electric potential E a ′ after the calculation is expressed by the following equation. E a '= E a − (E n −E f ) × a / (n + 1) Note that the calibration interval n is the same as the number of measurements performed between one point calibration and the next one point calibration. In the example shown, n =
It becomes 5.
【0014】そして、前記関係式を用いて各測定値を補
正することにより、図4(C)に示すように、ドリフト
が補正された測定値を得ることができる。Then, by correcting each measured value using the above relational expression, it is possible to obtain a measured value with the drift corrected, as shown in FIG. 4 (C).
【0015】[0015]
【実施例】以下、本発明の実施例を、図面を参照しなが
ら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0016】本発明に係る電解質分析計の校正方法が適
用される電解質分析計の構成は、図3に示した電解質分
析計と変わるところがなく、図1のフローチャートで示
される手順によって校正が行われるように、プログラム
されている。すなわち、この図1は、ターンテーブル7
に保持されているサンプルカップ6全体、つまり、1タ
ーンテーブル分の測定に適用される測定および構成の手
順を示すものである。The configuration of the electrolyte analyzer to which the method for calibrating the electrolyte analyzer according to the present invention is applied is the same as that of the electrolyte analyzer shown in FIG. 3, and the calibration is performed by the procedure shown in the flow chart of FIG. As programmed. That is, FIG. 1 shows the turntable 7
3 shows the procedure of the measurement and configuration applied to the measurement of the entire sample cup 6 held in, that is, one turntable.
【0017】そして、前記電解質分析計においては、そ
のターンテーブル7には最大60の被検体(サンプルカ
ップ6)を載せることができ、一点校正は例えば30被
検体目で行われるように初期設定されている。もっと
も、一点校正が行われる間隔、つまり、何番目の被検体
のときに一点校正を行うかは任意であり、1〜60まで
可変できる。そして、前記フローチャートに示すよう
に、測定の最初と最後には必ず一点校正が行われ、演算
できるように構成されている。測定結果は、一点校正が
行われた時点でそれまでの値を一気にプリントアウトさ
れる。また、画面には、演算前の値が1被検体毎に表示
され、被検体などの異常がないかを参考にモニターでき
る。なお、この値はプリントアウトされた結果とは異な
る。In the electrolyte analyzer, a maximum of 60 subjects (sample cups 6) can be placed on the turntable 7, and one-point calibration is initially set to be performed at the 30th subject. ing. However, the interval at which the one-point calibration is performed, that is, the number of the subject to be subjected to the one-point calibration is arbitrary and can be varied from 1 to 60. Then, as shown in the flow chart, one-point calibration is always performed at the beginning and the end of the measurement so that the calculation can be performed. As for the measurement results, the values up to that point are printed out at once when the one-point calibration is performed. In addition, the value before calculation is displayed for each subject on the screen, and it can be monitored with reference to whether there is any abnormality in the subject. This value is different from the printed result.
【0018】このように構成された電解質分析計におい
ては、測定中に何回か一点校正を行い、それらの間でド
リフトした値を測定値にフィードバックして演算を行う
ことにより、イオン電極K,Cl,Naのドリフトを補
正することができる。すなわち、同一サンプルを測定し
たときの電極出力について、図2を例にして説明する
と、測定直前の一点校正電位をEf 、n個測定後の一点
校正電位をEn 、最初の一点校正後a個目の測定電位を
Ea 、校正間隔をnとすると、演算後のa個目の電位E
a ’は、下記の式で表される。 Ea ’=Ea −(En −Ef )×a/(n+1)In the electrolyte analyzer thus constructed, the one-point calibration is performed several times during the measurement, and the value drifted between them is fed back to the measured value to perform the calculation, whereby the ion electrode K, Cl and Na drifts can be corrected. That is, the electrode output when the same sample is measured will be described with reference to FIG. 2 as an example. The one-point calibration potential immediately before the measurement is E f , the one-point calibration potential after measuring n pieces is E n , and the first one-point calibration potential is a. Let E a be the measured potential and the calibration interval be n.
a 'is represented by the following formula. E a '= E a − (E n −E f ) × a / (n + 1)
【0019】この関係式を用いて各測定値を補正するこ
とにより、図4(C)に示すように、ドリフトが補正さ
れた測定値を得ることができる。By correcting each measured value using this relational expression, it is possible to obtain a measured value with the drift corrected, as shown in FIG. 4 (C).
【0020】ところで、上述の実施例においては、校正
毎の電位差をそれらの校正が行われるまでの間の測定数
で除算し、この除算によって得られた値を用いて各測定
値を補正するようにしている。これは、測定数毎の時間
がほぼ等しいということに基づいているのであるが、図
4からも理解されるように、実際には測定時間間隔(あ
る時点における一点校正から次に一点校正が行われるま
での時間)に基づいて演算する方がより正確な結果が得
られる。By the way, in the above-described embodiment, the potential difference for each calibration is divided by the number of measurements until the calibration is performed, and each measurement value is corrected using the value obtained by this division. I have to. This is based on the fact that the time for each measurement is almost the same, but as can be understood from FIG. 4, the measurement time interval (one-point calibration at one point to the next one-point calibration is actually performed. It is possible to obtain a more accurate result by performing the calculation based on the time until it is given.
【0021】そこで、例えば図2に示す例において、測
定直前の時間(一点校正電位Ef を示した時間)を基準
とし、この基準時間からa個目までの時間をat 、基準
時間後n個測定後一点校正を行うまでの時間をnt とす
るとき、前記関係式は、下記のように表される。 Ea ’=Ea −(En −Ef )×at /nt [0021] Thus, for example, in the example shown in FIG. 2, the measurement immediately before the time (time indicated a point calibration potential E f) as a reference, time a t from this reference time to a -th reference time after n When the time required to perform one-point calibration after individual measurement is n t , the relational expression is expressed as follows. E a '= E a - ( E n -E f) × a t / n t
【0022】この関係式を用いて各測定値を補正するこ
とにより、ドリフトが補正された測定値を得ることがで
きる。By correcting each measured value using this relational expression, a measured value with drift corrected can be obtained.
【0023】[0023]
【発明の効果】以上説明したように、本発明において
は、従来の校正方法と異なり、精度の高い測定値を得る
ことができる。そして、被検体を1つ測定する毎に一点
校正を行う場合に比べて、短時間で測定することができ
る。As described above, in the present invention, unlike the conventional calibration method, it is possible to obtain a highly accurate measured value. Then, the measurement can be performed in a shorter time than in the case where one-point calibration is performed every time one object is measured.
【図1】本発明に係る電解質分析計の校正方法の手順の
一例を示すフローチャートである。FIG. 1 is a flow chart showing an example of a procedure of a calibration method for an electrolyte analyzer according to the present invention.
【図2】同一の被検体を測定したときの電極出力図であ
る。FIG. 2 is an electrode output diagram when the same subject is measured.
【図3】本発明方法が適用される電解質分析計の構成を
概略的に示す図である。FIG. 3 is a diagram schematically showing a configuration of an electrolyte analyzer to which the method of the present invention is applied.
【図4】(A)はドリフトした場合の同一の被検体を測
定した場合の測定値を示す図、(B)は5被検体毎に校
正を行った場合の測定値を示す図、(C)は本発明方法
における関係式を用いて補正を行った後の測定値を示す
図である。FIG. 4A is a diagram showing measured values when the same subject is measured when drifting, FIG. 4B is a diagram showing measured values when calibration is performed every five subjects, and FIG. [Fig. 4] is a diagram showing measured values after correction using a relational expression in the method of the present invention.
Claims (2)
正を行うことにより、イオン電極の不斉電位のドリフト
を補正するようにした電解質分析計の校正方法におい
て、校正毎の電位差をそれらの校正が行われるまでの間
の測定数で除算し、この除算によって得られた値を用い
て各測定値を補正するようにしたことを特徴とする電解
質分析計の校正方法。1. A method for calibrating an electrolyte analyzer in which a drift of an asymmetric potential of an ion electrode is corrected by performing a one-point calibration after continuously measuring a plurality of analytes, and the potential difference for each calibration is calculated. The method for calibrating an electrolyte analyzer is characterized in that the measurement value is divided by the number of measurements until the calibration is performed, and each measurement value is corrected using the value obtained by this division.
正を行うことにより、イオン電極の不斉電位のドリフト
を補正するようにした電解質分析計の校正方法におい
て、校正毎の電位差をそれらの校正が行われるまでの時
間で除算し、この除算によって得られた値を用いて各測
定値を補正するようにしたことを特徴とする電解質分析
計の校正方法。2. A method for calibrating an electrolyte analyzer in which a drift of an asymmetric potential of an ion electrode is corrected by performing a one-point calibration after continuously measuring a plurality of analytes, and the potential difference for each calibration is calculated. The method for calibrating an electrolyte analyzer is characterized in that it is divided by the time until the calibration is performed, and each measured value is corrected using the value obtained by this division.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7894993A JP2869610B2 (en) | 1993-03-13 | 1993-03-13 | Calibration method of electrolyte analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7894993A JP2869610B2 (en) | 1993-03-13 | 1993-03-13 | Calibration method of electrolyte analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06265512A true JPH06265512A (en) | 1994-09-22 |
JP2869610B2 JP2869610B2 (en) | 1999-03-10 |
Family
ID=13676147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7894993A Expired - Fee Related JP2869610B2 (en) | 1993-03-13 | 1993-03-13 | Calibration method of electrolyte analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2869610B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914565A (en) * | 2012-11-14 | 2013-02-06 | 深圳市锦瑞电子有限公司 | Calibrating method of electrolyte analyzer |
JP2014095675A (en) * | 2012-11-12 | 2014-05-22 | Omron Healthcare Co Ltd | Electrochemical sensor, and sensor head |
CN107688047A (en) * | 2017-08-18 | 2018-02-13 | 梅州康立高科技有限公司 | The method of calibration calibration ion concentration after a kind of |
KR101855007B1 (en) * | 2016-12-09 | 2018-05-04 | 광운대학교 산학협력단 | Methods of calibration for enhancing accuracy of sensor signals |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102809590B (en) * | 2011-06-02 | 2014-10-08 | 深圳中科优瑞医疗科技有限公司 | Lithium-ion test method of electrolyte analyzer |
-
1993
- 1993-03-13 JP JP7894993A patent/JP2869610B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014095675A (en) * | 2012-11-12 | 2014-05-22 | Omron Healthcare Co Ltd | Electrochemical sensor, and sensor head |
CN102914565A (en) * | 2012-11-14 | 2013-02-06 | 深圳市锦瑞电子有限公司 | Calibrating method of electrolyte analyzer |
KR101855007B1 (en) * | 2016-12-09 | 2018-05-04 | 광운대학교 산학협력단 | Methods of calibration for enhancing accuracy of sensor signals |
CN107688047A (en) * | 2017-08-18 | 2018-02-13 | 梅州康立高科技有限公司 | The method of calibration calibration ion concentration after a kind of |
CN107688047B (en) * | 2017-08-18 | 2019-08-23 | 梅州康立高科技有限公司 | A method of rear calibration calibration ion concentration |
Also Published As
Publication number | Publication date |
---|---|
JP2869610B2 (en) | 1999-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101256133B1 (en) | Method and apparatus for detection of abnormal traces during electrochemical analyte detection | |
JP2800981B2 (en) | Biosensing meter with fail-safe function to prevent false display | |
JP2511062B2 (en) | Gas verification method and device | |
US7949473B2 (en) | Method for detecting erroneous measurement results obtained with ion-selective electrodes | |
US4039933A (en) | Continuous calibration system and method for analytical instruments | |
CA2535833A1 (en) | Method and apparatus for assay of electrochemical properties | |
KR950019728A (en) | Ion concentration measuring device and ion concentration measuring method | |
EP1247092B1 (en) | Mobile hand-held unit comprising a reusable biosensor | |
US4309112A (en) | Rate measurement analyzer | |
JP2869610B2 (en) | Calibration method of electrolyte analyzer | |
Wu et al. | Versatile microcomputer-controlled titrator | |
US6463394B1 (en) | Method for calibration and measurement in a micro-dialysis system, and a micro-dialysis system | |
JP3206999B2 (en) | Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same | |
EP2241883A2 (en) | Method and apparatus for estimating features of target materials by using kinetic change information | |
JPH05322843A (en) | Electrolyte analyzer using ion electrode | |
JPS5838745B2 (en) | How to detect measured values in automatic blood gas analysis | |
JPH04191650A (en) | Measuring apparatus for ion | |
JPH0643133A (en) | Biochemical analyzer | |
EP1906179A1 (en) | Method for detecting erroneous measurement results obtained with ion selective electrodes | |
EP1906180B1 (en) | Method for detecting erroneous measurement results obtained with ion selective electrodes | |
JPS5840698B2 (en) | Ion concentration analysis method | |
JPH08220049A (en) | Electrolyte measuring method and device | |
US20240125727A1 (en) | Electrochemical measurement with additional reference measurement | |
US20240210351A1 (en) | Method for calibrating a sensor during operation, sensor with implemented method for calibration | |
JPH08178885A (en) | Method and apparatus for measuring concentration of ion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |