JPS58120153A - Measuring method for density in densitometer - Google Patents
Measuring method for density in densitometerInfo
- Publication number
- JPS58120153A JPS58120153A JP310182A JP310182A JPS58120153A JP S58120153 A JPS58120153 A JP S58120153A JP 310182 A JP310182 A JP 310182A JP 310182 A JP310182 A JP 310182A JP S58120153 A JPS58120153 A JP S58120153A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- concentration
- abnormal
- fractionation
- sensitivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/86—Investigating moving sheets
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は濃度計における餌度測定方法に関し、更に詳
しくは電、気泳動された検体試料のいずれかに分画異常
が生じた際、その再測定が分画感度を切替え調整しつつ
順次自動的に行えるようにした護度測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring bait content in a densitometer, and more specifically, when an abnormality in fractionation occurs in either electrophoresed or electrophoresed specimen, re-measurement improves the fractionation sensitivity. The present invention relates to a method for measuring the degree of protection that can be performed automatically in sequence while making switching adjustments.
周知の如く、濃度計は電気泳動法によって検体をセルロ
ースアセテート膜などの支持体上で分画し、得られた試
料(泳動パターン)から血清蛋白等の各成分濃度を自動
測定し、かつこれを記録する装置であり、近年では1日
当りの検体数の著増に伴い、病院、医療又は検査センタ
ー等の施設においては、専ら多検体用のものが使用され
ている。As is well known, a densitometer uses electrophoresis to fractionate a sample on a support such as a cellulose acetate membrane, and automatically measures the concentration of each component such as serum protein from the obtained sample (electrophoresis pattern). It is a device for recording, and in recent years, with the remarkable increase in the number of specimens per day, facilities such as hospitals, medical care, or testing centers have exclusively used devices for multiple specimens.
このような濃度計においては、第1図で示す如く、複数
fli1(10〜20個程度)の検体を同一平面支持体
上の横方向(いわゆるX軸方向)に一定m1隔をを・け
て配置し、かつ検体ごとの複数個の成分を縦方向(いわ
ゆるYI1411方向)の直線上に泳動させた試料を例
えばカセット等の枠体内に保持し、この枠体を平面内で
上記縦・横軸方向に移動させることにより、複数試料の
分画濃度を自動測定し、この測定値を万画濃度図と共に
自動記録するようにしている。又、このような多数検体
用の濃度計は、上記検体を保持した枠体を複数個設備す
ることにより、例えば数十以上の多数検体を逐次連続測
定する構成のものが多い。In such a densitometer, as shown in Fig. 1, a plurality of specimens (approximately 10 to 20 specimens) are placed at regular intervals of m1 in the lateral direction (so-called X-axis direction) on the same flat support. A sample in which a plurality of components of each sample are electrophoresed in a straight line in the vertical direction (the so-called YI1411 direction) is held in a frame such as a cassette, and the frame is held in a plane along the vertical and horizontal axes. By moving the sensor in the direction, the fractional concentrations of multiple samples are automatically measured, and the measured values are automatically recorded together with a densitometry map. Furthermore, many of these densitometers for multiple samples are configured to sequentially and continuously measure a large number of samples, for example, several dozen or more, by installing a plurality of frames holding the above-mentioned samples.
ところが、このような従来の績度副定においては、以下
のような電気泳動法に関連する問題が指摘されていた。However, in such conventional performance sub-determination, the following problems related to the electrophoresis method have been pointed out.
この電気泳動け、通常血清蛋白等の検体試料を(アルブ
ミン、α1.α2.β、γ)の順で各グロブリン毎に5
分画に分離泳動させ泳動パターンを得るものであるが、
上記支持膜に加えられる電流重圧の変動や、周囲温度、
湿度等の泳動条件あるいは試料の塗布条件などに起因し
て本来5分画となるべき泳動パターンが、例えば4分画
、6分画等に増減変動し正規の5分画に分離されない検
体が生ずることがあり、得られた測定結果が不正確かつ
信頼性に欠けるものとなり臨床テークの信頼性が低下す
るとともに、誤判の原因ともなりかねない問題が生じて
いた。During this electrophoresis, sample samples such as serum proteins are usually separated into 50% of each globulin in the order of (albumin, α1, α2, β, γ).
The electrophoresis pattern is obtained by separating and electrophoresing the fractions.
Fluctuations in the current pressure applied to the support membrane, ambient temperature,
Due to electrophoresis conditions such as humidity or sample coating conditions, the electrophoresis pattern that should normally consist of 5 fractions changes to, for example, 4 fractions, 6 fractions, etc., resulting in some samples not being separated into the normal 5 fractions. As a result, the measurement results obtained may be inaccurate and unreliable, reducing the reliability of clinical trials and causing problems that may lead to misjudgments.
そこで従来は、支持膜上の全ての検体につきいったん濃
度測定を行った後、オペレータが分画異常が生じた検体
毎に手動操作によりこれを正規の5分画に分離させて再
測定を行うようにしていた。Conventionally, the concentration of all samples on the support membrane was measured once, and then the operator manually separated each sample with a fractional abnormality into five regular fractions and re-measured the sample. I was doing it.
しかしながら、これによると手動操作であるため、作業
が極占ってやっかいになるとともに、作業に時間と労力
を要する欠点があり、しかもこの再測定のためにオペレ
ータによる常時監視が必要となり、多数検体の濃度測定
を自動化する場合の障害となっていた。However, this method requires manual operation, which makes the work extremely cumbersome and requires time and effort.Furthermore, constant monitoring by the operator is required for re-measurement, and large numbers of samples must be monitored. This has been an obstacle when automating concentration measurements.
この発明はかかる従来の欠点に鑑みなされたもので、上
記再測定操作が自動的にかつ正確に行えるようにするこ
とを目的とするものである。The present invention was made in view of such conventional drawbacks, and an object of the present invention is to enable the above-mentioned re-measurement operation to be performed automatically and accurately.
以下この発明の一実施例を図面を参照して詳細に説明す
る。An embodiment of the present invention will be described in detail below with reference to the drawings.
先ず、本発明が適用される濃度計における濃度測定操作
について説明する。First, a concentration measurement operation in a concentration meter to which the present invention is applied will be explained.
この操作は以下に示す手順により行われる。This operation is performed by the procedure shown below.
(a)第1図に示す多検体、例えば20検体の試料が分
画された泳動膜1の最初の試料Aの中心線をその全長に
渉り走査1−1この走査による電圧変化に換算1.、濃
度計内蔵のメモリに記憶させておく。(a) Scanning the center line of the first sample A of the electrophoretic membrane 1 in which a large number of samples, for example 20 samples, as shown in FIG. .. , stored in the densitometer's built-in memory.
これらの記憶値から濃度の最も濃い点と1〜て判別され
るアルブミンの中心点P(第2図、第3図参照〕を求め
、移動の始点0(この位置は後述する 5−
光学系検出部12の位置付けにより求められる°)から
の距離fを界出し、その位U′tを確定した後上記濃度
計内蔵のCPUに記憶させる。このfは次式上り上記c
puによって容易に算出される。From these stored values, the center point P of albumin, which is identified as the point with the highest concentration (see Figures 2 and 3), is determined, and the starting point 0 of the movement (this position will be described later) is determined. 5- Optical system detection Determine the distance f from the position (°) determined by the positioning of the part 12, determine U't to that extent, and store it in the CPU built in the densitometer.
It is easily calculated by pu.
2 f=−−XF N。2 f=--XF N.
ここに、Fは始点Oから終点Qまでの試料の全長、N、
、N2は夫々始点0より点Q及び2間のサンプリング数
である。Here, F is the total length of the sample from the starting point O to the ending point Q, N,
, N2 are the sampling numbers between the starting point 0 and points Q and 2, respectively.
次いで、次試料Bへの位置合せを行う際、再び上記アル
ブミンの中心点Pの位置まで試料搬送台を縦軸方向に移
動し、ここで停止させる。Next, when aligning to the next sample B, the sample transport table is again moved in the vertical axis direction to the position of the center point P of the albumin and stopped there.
(b)次に、上記試料搬送台を横軸(X輔)方向に移動
させなから(a)項四様に光学系検出部により電圧変化
を検出し、この電圧の変化量より次試料Bのアルブミン
を濃度の最も−い箇処として判別を続け、これをCPU
に記憶させておく。この場合、P点の横軸方向の軌跡は
Y’−Y’である。(b) Next, without moving the sample carrier in the horizontal axis (X) direction, the optical system detecting section detects the voltage change as described in (a), and based on the amount of change in voltage, the next sample B Continuing to identify albumin as the highest concentration point, the CPU
Let me remember it. In this case, the locus of point P in the horizontal axis direction is Y'-Y'.
(c)更に、試料搬送台の横軸方向への移動を続け、試
料Bとの中間点R(試料A、B間の透明部分で= 6−
第4図に承すように屯圧値がピーク、すなわち濃度が最
も薄い点)で停止させる。(c) Further, the sample carrier continues to move in the horizontal axis direction until it reaches the midpoint R with sample B (at the transparent part between samples A and B = 6- as shown in Figure 4). Stop at the peak, i.e. the point at which the concentration is the lowest.
(d)次試料Bのアルブミンの中心点Sを決定するため
に、CPUに下記の編集操作を行わせる。(d) In order to determine the albumin center point S of the next sample B, the CPU is caused to perform the following editing operation.
上記(b)及びjc)項に記載の記憶値よりアルブミン
の分画範囲81〜S2を特定する(第4図参照〕。The albumin fractionation range 81 to S2 is specified from the stored values described in items (b) and jc) above (see FIG. 4).
この範囲81〜S2における電圧レベルは実際には第5
図に示すように相当量変動しており、一様ではない。し
たがって、濃度の変化のみでは中心点Sの判定はできな
い。このためには、上記電圧変動(極大点及び極小点〕
の検出に一定の条件、例えば橙犬値と極小値との差(変
化量)を設定し、レベル変動の極端なものはキャンセル
することにより、データの変動を少なくするとともに、
設定した変動範囲の変化量より小さいデータは同一デー
タとして処理する。以上の編集操作を行うことにより8
1〜S2の値が同一のデータとなり、B試料の中心点S
は範囲S1〜S2の中間点として決定することができる
(第6図)。The voltage level in this range 81 to S2 is actually the fifth
As shown in the figure, it fluctuates by a considerable amount and is not uniform. Therefore, the center point S cannot be determined based only on changes in density. For this purpose, the above voltage fluctuation (maximum point and minimum point)
By setting certain conditions for detection, such as the difference (amount of change) between the orange dog value and the local minimum value, and canceling extreme level fluctuations, data fluctuations can be reduced.
Data smaller than the amount of change in the set variation range is treated as the same data. By performing the above editing operations, 8
The values of 1 to S2 are the same data, and the center point S of sample B
can be determined as the midpoint of the range S1-S2 (FIG. 6).
(e)、次に、試料搬送台を試料Bのアルブミンの中心
点S−4で戻し、更に試料搬送台を原軸方向に移動して
この搬送台を移動開始点0まで戻すことにより、以後試
料のアルブミンhWからrの各グロブリンに至る全分画
成分の濃度fi11定か可能となる。(e) Next, the sample carrier is returned to the albumin center point S-4 of sample B, and the sample carrier is further moved in the direction of the original axis to return this carrier to the movement start point 0. It becomes possible to determine the concentration fi11 of all fraction components from albumin hW to each globulin r in the sample.
以後上記方法を繰返すことにより次試料C以下の濃度測
定が行われる。Thereafter, by repeating the above method, the concentration of the next sample C and subsequent samples is measured.
尚、−1m ’i’+1−.’光学系検出部におけるス
リットとしては、例えば第7図(a) 、 (b)に示
すように、相互に直角の関係位置にあるスリット2,3
が設けられたスリット板4を支持枠5に矢印6,7方向
にスライド可能に装着したものが用いられる。このスリ
ット2は縦軸方向、すなわち試料の分画方向と直交する
ようになっており、専ら濃度測定用のスリットとして用
いられる。又、スリット3は横軸方向、すなわち各検体
の配列方向と直交しており、縦・横軸方向の試料間隔検
出用のスリットと1〜て用いられる。In addition, -1m'i'+1-. 'The slits in the optical system detection section are, for example, slits 2 and 3 located at right angles to each other, as shown in FIGS. 7(a) and 7(b).
A slit plate 4 provided with a slit plate 4 is mounted on a support frame 5 so as to be slidable in the directions of arrows 6 and 7. This slit 2 is arranged perpendicular to the vertical axis direction, that is, the direction of fractionation of the sample, and is used exclusively as a slit for concentration measurement. Further, the slit 3 is perpendicular to the horizontal axis direction, that is, the arrangement direction of each specimen, and is used as a slit 1 for detecting sample spacing in the vertical and horizontal axis directions.
かくして、スリット3により、縦・横軸方向の試料間隔
を自動的に検出しつつ各検体試料の分画感度が連続的に
測定される。Thus, the slit 3 allows the fractionation sensitivity of each specimen sample to be continuously measured while automatically detecting the sample spacing in the vertical and horizontal directions.
尚、こわらスリットとしては、これに限らず本出願人等
が先に提案した如く、その他各種構成のものが採用口」
能である。In addition, the stiff slit is not limited to this, and as previously proposed by the applicant, other various configurations may be used.
It is Noh.
又、本実施例においては、上記濃度測定にあたり、光学
系検出部を固定し、これに対して試料搬送台を縦・横軸
方向に移動するように説明するが、とねと反対に、試料
搬送台を固定しこれに対して光学系検出部を糸失・横軸
方向に移動させるようにしてもよい。この場合において
も上述と同様にして礫度測定が何ら支障なく行えること
は勿論である。In addition, in this example, when measuring the concentration, the optical system detection section is fixed and the sample transport table is moved in the vertical and horizontal directions relative to it. The transport table may be fixed and the optical system detection unit may be moved in the direction of the yarn loss/horizontal axis relative to the conveyance table. In this case as well, it goes without saying that the gravel level measurement can be performed without any problem in the same manner as described above.
そして、本実施例においては、第8図に示すように泳動
膜を固定保持したカセット10が濃度計の試料搬送台1
1上に載置され、光学系検出部12に対して横軸(X軸
)方向及び縦軸(Y@)方向に順次υ[定のタイミング
で移送されるようになっている。この移送は、例えばX
軸方向にはラック・ピニオン機構で、又Y軸方向にはタ
イミングベルトで夫々ステッピングモータにより駆動さ
、11て行われる。この場合、泳動処理工程で泳動バク
−9−
ンが形成されたカセット10中の泳動膜1が、透明化処
理された後、このカセット10が試料搬送台11上に載
置される。In this embodiment, as shown in FIG.
1, and is sequentially transferred to the optical system detection unit 12 in the horizontal axis (X-axis) direction and the vertical axis (Y@) direction at a fixed timing υ. This transfer, for example,
This is performed by a rack and pinion mechanism in the axial direction and a timing belt in the Y-axis direction, each driven by a stepping motor. In this case, the electrophoretic film 1 in the cassette 10 on which the electrophoretic backbone has been formed in the electrophoresis process is subjected to a transparent treatment, and then the cassette 10 is placed on the sample carrier 11.
次に、本発明における濃度測定方法について説明する。Next, the concentration measuring method according to the present invention will be explained.
(尚、本実施例中、分画異常とは、検体の泳動パターン
が正規の5分画(アルブミン、α1゜α2.β、γの各
グロブリン)に分離されず、分画数が5分画に対し増減
変動した状態をいう。)先ず、第9図に示す1枚の泳動
膜1上に泳動されたn個の検体a、〜anの全てにつ(
八て予め選択した分画感度でもって濃度測定が行われ、
第2図に示すような分画濃度図が各検体毎に作成される
と同時に、その測定結果が濃度計に設けた記録装置によ
り報告用の記録紙にプリントアウトされる。(In this example, abnormal fractionation means that the electrophoresis pattern of the sample is not separated into the normal 5 fractions (albumin, α1, α2, β, and γ globulins), and the number of fractions is 5 fractions. First, all of the n samples a, ~an migrated on one electrophoretic membrane 1 shown in FIG.
Concentration measurements are then carried out with a pre-selected fractional sensitivity.
A fractional concentration map as shown in FIG. 2 is created for each sample, and at the same time, the measurement results are printed out on report paper by a recording device installed in the densitometer.
この濃度測定は上述の測定手順にしたがって行われる。This concentration measurement is performed according to the measurement procedure described above.
上記分画感度は、本例でけHH(最高)、H(高)、M
…、L低、LL(最低)の5段階に切替え調整可能とな
っており、後述する如く、検体a 。In this example, the above fractional sensitivities are HH (highest), H (high), M
..., L low, and LL (lowest).
〜anのいずれかに分画異常が生じた際、その異10−
常に応じてliA度計内蔵のCPUの指令により自動的
に切替えられるようになっている。この切替えは、検体
の分画数が5分画より多い場合には分画感度のレベル(
L→LL、M−+L、H→M)の如く下げ、又5分画よ
り少ない場合は(L−+M、M→H、f(−→HH)の
如く上げることにより行われる。When a fractional abnormality occurs in any of the 10- and 10-an, it is automatically switched according to the instructions from the CPU built in the liA meter. This switching is necessary when the number of fractions of the sample is more than 5 fractions, the level of fractionation sensitivity (
It is carried out by lowering as in L→LL, M−+L, H→M), and increasing as in (L−+M, M→H, f(−→HH)) if it is less than 5 fractions.
そして、濃度測定の開始にあたり、オペレータが図示し
ない感度切替え用のキーを操作することにより、H@、
M…、L低の3段階の中から任意のレベルの分画感度が
予め選択設定される。その後、この選択された感度の下
で全ての検体a1〜anKつ(八て浸度測定が行われる
1、このとき、これら検体a1〜anのいずれかに分画
異常が生じていたとする。例えば第10図に示すように
、検体a2が4分画、検体a、が6分画。To start concentration measurement, the operator operates a sensitivity switching key (not shown) to select H@,
An arbitrary level of fractionation sensitivity is selected and set in advance from three levels: M..., L low. Thereafter, under this selected sensitivity, all the specimens a1 to anK (8) are subjected to immersion measurement. At this time, it is assumed that a fractionation abnormality has occurred in any of these specimens a1 to an. For example, As shown in FIG. 10, sample a2 is divided into 4 fractions, and sample a is divided into 6 fractions.
又検体a7が7分画に分画されていたとする。It is also assumed that sample a7 is fractionated into seven fractions.
この場合は、これら異常検体a2+a5+a?を除き他
の検体の全てについて分画a度図と共に測定結果が記録
される。In this case, these abnormal specimens a2+a5+a? The measurement results are recorded along with the fraction a diagram for all other analytes.
=11=
一方、これら異常検体a2+a5+a?については、第
1の検体a1からの位置とその検体番号、すなわち、第
1検体a1から何番目の検体に分画異常が生じているか
、及びその間の距離はいくらであるかが、を農度計内蔵
のCPUに記憶され、かつ同時に各異常検体の分画数が
このCPUで判別され記憶される。=11= On the other hand, these abnormal samples a2+a5+a? For, the position from the first sample a1 and its sample number, that is, which sample from the first sample a1 has a fractionation abnormality, and what is the distance between them is the agricultural degree. It is stored in the built-in CPU of the meter, and at the same time, the fraction number of each abnormal sample is determined and stored by this CPU.
その後、すべての検体a1〜an につき濃度測定が行
われ試料搬送台11が測定終端位置に達すると、この搬
送台11が第10図の矢印13で示すように測定開始位
置に移動復帰するとともに、同第10図の仮舊、線で示
す如く光学系検出部12が第1の検体a1の位置に位置
決めされる。Thereafter, when the concentration is measured for all the samples a1 to an and the sample transport table 11 reaches the measurement end position, the transport table 11 moves back to the measurement start position as shown by the arrow 13 in FIG. As shown by the blank line in FIG. 10, the optical system detection section 12 is positioned at the position of the first specimen a1.
その後、各異常検体a2+a5+a?につき成分濃度の
再測定が行われる。この再測定は以下のようにして行わ
れる。After that, each abnormal specimen a2+a5+a? The component concentration will be remeasured. This re-measurement is performed as follows.
先ず、旧記CPUに記憶された記憶値に基づいて試料搬
送台11が検体a1の位置を基準としてX軸方向に距離
tまたけ移動制御され、光学系検出部12が異常検体a
2の位置に位置付けされる。First, the sample transport table 11 is controlled to move over a distance t in the X-axis direction with the position of the sample a1 as a reference based on the memory value stored in the old CPU, and the optical system detection unit 12 detects the abnormal sample a.
It is located at position 2.
12−
このとき同時に分画感度が検体a2の分画数4に応じて
自動的にパ低”から高”レベルに所定幅で切替え設定さ
れる。この設定は上記CPUの指令により上記記憶値に
基づいて行われる。その後、この分画感度でもって検体
a2の再測定が上記測定手順にしたがって行われる。12- At the same time, the fractionation sensitivity is automatically switched from a low level to a high level in a predetermined range according to the number of fractions 4 of the sample a2. This setting is performed based on the stored value according to a command from the CPU. Thereafter, sample a2 is remeasured using this fractional sensitivity according to the above measurement procedure.
これにより、第1回目の測定時に、第11 囚(a)の
矢印(イ)で示すように、例えばアルブミンAtとα2
間に分画異常、すなわち分画が表われていなかったα1
の部分が、同第11図(b)に示すように分画感度のレ
ベルを上げることによって明瞭に分画され、この検体a
2につき正規の5分画に分画された正常な#に度図が描
画される。As a result, during the first measurement, for example, albumin At and α2
α1, in which there was a fractional abnormality, that is, no fraction appeared in between.
As shown in Fig. 11(b), the part of sample a is clearly fractionated by increasing the level of fractionation sensitivity.
A degree diagram is drawn on the normal # divided into 5 regular fractions per 2.
次いで、試料搬送台11が、検体a8の位置を基準とし
てX軸方向に距離Z2+すなわち検体a2から距離(t
2−41)だけ移動制御され、光学系検出部12が次の
異常検体a、の測定開始位置に位置付けされる。この場
合、検体a、の分画数は6であり、したがってこの位置
付けと同時にこの分画数6に対応して分画感度が、上記
CPUの指13−
令により自動的に゛高パから“′低′″レベルに所定幅
で切替え調整され、その後、この分画感度の下で検体a
、の再測定が上述した測定手順にしたがって自動的に行
われる。すると、第12図(a)の矢印(ロ)で示すよ
うに、第1回目の測定時に例えばβグロブリンの部分に
生じていた異常分画し→が、分画感度のレベルを所定幅
下げることによって低減圧縮され、第12図(b)に示
すように、この検体a、について正規の5分画に分画さ
れた正常な分画濃度図が描画されるのである。Next, the sample transport table 11 moves a distance Z2+ in the X-axis direction based on the position of the sample a8, that is, a distance (t
2-41), and the optical system detection unit 12 is positioned at the measurement start position of the next abnormal sample a. In this case, the number of fractions for sample a is 6, and therefore, at the same time as this positioning, the fractionation sensitivity is automatically changed from ``high'' to ``low'' in accordance with the instruction from the CPU. ’” level at a predetermined width, and then, under this fractionation sensitivity, sample a
, is automatically remeasured according to the measurement procedure described above. Then, as shown by the arrow (b) in FIG. 12(a), the abnormal fractionation that occurred in the β-globulin portion during the first measurement, for example, causes the level of fractionation sensitivity to be lowered by a predetermined width. As shown in FIG. 12(b), a normal fractional concentration map is drawn for this sample a, which is divided into five normal fractions.
その後、更に試料搬送台11が、検体a、の位置を基準
としてX軸方向に距離t3、すなわち検体a、から距離
(z、−22)だけ移動制御されるとともに、光学系検
出部12が検体a7の測定位置に位置付けされ、次いで
上記と同様の手順により分画感度の調整がなされた後、
この検体a7の成分?! IFの再測定が行われる。Thereafter, the sample carrier 11 is further controlled to move by a distance t3 in the X-axis direction based on the position of the sample a, that is, a distance (z, -22) from the sample a, and the optical system detection unit 12 After being positioned at the measurement position of a7 and then adjusting the fractionation sensitivity by the same procedure as above,
What are the components of this sample a7? ! IF is remeasured.
尚、1記試料搬送台11の移動制御、あるいは各検体の
光学系検出部12に対する位置決め制御など、各部の動
作制御は上記@1回目の測定の際14−
の記憶値に基づいて濃度計内蔵のCPUの指令によ多試
料搬送台11をX軸及びY軸方向に駆動するパルスモー
タ(図示せず)を駆動制御することによって行われる。In addition, the operation control of each part, such as the movement control of the sample transport table 11 or the positioning control of each sample with respect to the optical system detection part 12, is performed using the built-in densitometer based on the memorized value of 14- at the time of the first measurement. This is performed by driving and controlling a pulse motor (not shown) that drives the multi-sample transport platform 11 in the X-axis and Y-axis directions in accordance with instructions from the CPU.
かくして、分画感度のレベルを適宜上下に所定幅切替え
調整することによって、各異常検体a2+a5+a7の
全てについて成分濃度の再測定が行われ、これら検体a
2〜a?の全てにつき正規の5汁画に分画された正常な
濃度図が描画されるとともに、その測定結果が配録装置
で報告用の記録紙に6己録され、かつプリントアウトさ
れるのである。In this way, by appropriately adjusting the level of fractionation sensitivity by switching up or down within a predetermined range, the component concentrations of all of the abnormal samples a2+a5+a7 are remeasured, and these sample a
2~a? A normal concentration map divided into five regular fractions is drawn for all of the samples, and the measurement results are recorded on report paper using a recording device and printed out.
そして、本発明方法によれば、分画感度の切替え調整を
けじめ、これら一連の再測定操作が人手を介することな
く全て自動制御により行われるため、従来のような手作
業に頼る部分が全くなくなり、測定作業の省力化を図る
ことができるのである。According to the method of the present invention, the switching and adjustment of fractionation sensitivity and a series of remeasurement operations are all performed under automatic control without human intervention, so there is no need to rely on manual labor as in the past. Therefore, it is possible to save labor in measurement work.
しかも、上記各部の動作は濃度計内蔵のCPUの指令に
基づいて゛呻制御されるため、各部の操作が誤りなく正
確に行えるのである。Furthermore, since the operations of the above-mentioned parts are controlled based on commands from the CPU built into the densitometer, each part can be operated accurately without errors.
尚、上記実施例ておいてば、検体a、〜a、の中で、波
体a2+ +a?の3検体に分画異常が生じ5
、場合につき説明したが、本発明けこれに限らず、異常
検体の数の如何を問わず上記と同様の手順で再測定を行
うことができるものである。又、上記実施例においては
、当初の濃度測定が完了した後、いったん光学系検出部
12を第1の検体a、の測定開始位置に位置させ、その
後異常分画が生じた検体の角測定を行うように説明した
が、この光学系検出部12を第1の異常検体a2の位置
に直接位置付けするように構成することも可能である。In addition, in the above example, among the samples a, ~a, the wave body a2+ +a? Although the case has been explained above, the present invention is not limited to this, and re-measurement can be performed using the same procedure as above regardless of the number of abnormal samples. . Further, in the above embodiment, after the initial concentration measurement is completed, the optical system detection section 12 is once positioned at the measurement start position of the first sample a, and then the angle measurement of the sample in which the abnormal fraction has occurred is performed. Although the optical system detecting section 12 is described as being performed, it is also possible to configure the optical system detecting section 12 to be directly positioned at the position of the first abnormal specimen a2.
次に、第13図は本発明方法を実施する場合の基本的処
理フロー図であり、第14図は本発明方法を実施する場
合に用いられる装置の全体構成を示すCPU1中心とし
たブロック図である。Next, FIG. 13 is a basic processing flow diagram when implementing the method of the present invention, and FIG. 14 is a block diagram centered on the CPU 1 showing the overall configuration of the device used when implementing the method of the present invention. be.
第13図、第14図において、操作パネル101に配設
されたスタート/ストップスイッチを操作して装置を駆
動し、同パネル101のキーボー ド部(図示せず)に
設けられたデータ入カキ−を操作して初期データをCP
U100に入力すると、このCPU100からパルスモ
ータ等からなる機構部102に制御信号が送出されると
ともに、光学系検出部12がCI)(Jlooの指令に
より作動する。これにより、泳動di上に泳動された各
検体a8〜。In FIGS. 13 and 14, the start/stop switch provided on the operation panel 101 is operated to drive the device, and the data input key provided on the keyboard section (not shown) of the same panel 101 is operated. CP the initial data by operating
When input to U100, a control signal is sent from the CPU 100 to the mechanism section 102 consisting of a pulse motor, etc., and the optical system detection section 12 is activated by the command from CI) (Jloo). Each specimen a8 ~.
an毎の分画成分の濃度測定が行われる。このとき、光
学系検出部12で受光検出された検出信号が増幅器10
3により増幅された後、A/D変換器104で数1直信
号に変換されてCP U 100に取込まれる。それと
同時に、CPU100から関数発生器105に指令信号
が送出され、ここでこの変換された数値信号に対して各
種演′1!処理がなされた陵、その結果がCP U 1
00を通してプリンター106からプリントアウトされ
る。かつ、これと同時に、分画濃度図が作成されるので
ある。そして、上記i1 I!測定過程でいずれかの検
体に分画異常が生じた場合には、L述の如く、その位置
1分画数、あるいは検体散号などがCP U 100に
記憶されるので1ちる。その後、すべての検体a1〜a
nについて#度測定が完了すると、CPU100の指令
に基づいて上述の手順にしたがって分画異常が生じた検
体の再測定が自動的に行われるのである。そし17−
て、異常検体のナベてについて再測定が行われ、これら
について測定データが得られると全動作が完了し、装置
が停市する。Concentration measurements of fractionated components for each an are performed. At this time, the detection signal received and detected by the optical system detection section 12 is transmitted to the amplifier 10.
After being amplified by 3, the A/D converter 104 converts the signal into a mathematical signal, which is then taken into the CPU 100. At the same time, a command signal is sent from the CPU 100 to the function generator 105, which performs various operations on the converted numerical signal. Processed data, the result is CPU 1
00 and is printed out from the printer 106. At the same time, a fractional concentration map is created. And the above i1 I! If a fractionation abnormality occurs in any of the samples during the measurement process, the number of fractions at that position or the sample distribution number is stored in the CPU 100, so it is counted as 1. After that, all samples a1 to a
When # degree measurement is completed for n, the re-measurement of the sample in which the fractionation abnormality has occurred is automatically performed according to the above-mentioned procedure based on a command from the CPU 100. 17- Then, the pan of the abnormal sample is re-measured, and once measurement data is obtained for these, all operations are completed and the apparatus is stopped.
そして本例でなよ、上記各種操作に伴うメツセージある
いはその操作手順などが1表示n107のディスプレイ
Fに表示されると同時に、プリンタ108からプリント
アウトされ、誤操作によるエラーの検出あるいはそのデ
バッグ的な処理が行えるようになっており、操作の確実
性が保持できるのである。、尚、この場合、分画感度の
レベルの切替え調整等が、CP U 100の指令に基
づいて自動的に行われることけ上述の説明の通りでちる
。In this example, messages accompanying the various operations mentioned above or their operating procedures are displayed on the display F of the single display n107, and at the same time are printed out from the printer 108 to detect errors caused by erroneous operations or perform debugging thereof. This allows for reliable operation. In this case, the switching and adjustment of the fractional sensitivity level, etc., are automatically performed based on the commands of the CPU 100, as described above.
以F説明した通り、この発明に係る#妾測定方法にあっ
ては、上記検体試料の濃度測定にあたり、検体のいずれ
かに分画異常が生じた際、異常検体の分画数に対応して
分画感度のレベルが上下に所定幅で自ψわ的に切替え調
整され、かつこの分画感度のレベルを上下に調整しつつ
各異常検体毎の再測定が順次自動的に行えるため、これ
ら異常検体の再測定が従来の手動操作によるものに比べ
て極18−
めて迅速、確実かつ極めて容易に行える効果がある。し
たがって本発明方法によれば、この再測定の作業効率が
従来に比べて大幅に向上する効果を有する。As explained hereafter, in the #concubine measurement method according to the present invention, when an abnormality in fractionation occurs in any of the specimens when measuring the concentration of the specimen, fractionation is performed in accordance with the number of fractions of the abnormal specimen. The image sensitivity level is automatically switched up and down within a predetermined range, and each abnormal sample can be remeasured automatically in sequence while adjusting the fractional sensitivity level up and down. This method has the advantage that re-measuring can be performed much more quickly, reliably, and much more easily than conventional manual operations. Therefore, the method of the present invention has the effect of significantly improving the work efficiency of this remeasurement compared to the conventional method.
しかも、この発明にあっては、各異常検体毎に正硯の5
分画に分離された状態で確実に再測定を行うことができ
るため、常時すべての検体について正確な測定データを
得ることができ、判定の信頼性が向上する効果もある。Moreover, in this invention, 5 of the correct inkstones are used for each abnormal specimen.
Since re-measurement can be reliably performed in a state separated into fractions, accurate measurement data can be obtained for all specimens at all times, which also has the effect of improving the reliability of determination.
又、この発明にあっては、上記再測定操作が全て自動的
に行えるため、濃度計における測定操作の完全自動化と
図ることができ、大幅な省力化が可能となるため、多数
検体の迅速処理が要望される臨床検査の分野に寄与する
効果は大きい。In addition, in this invention, all of the re-measurement operations described above can be performed automatically, making it possible to completely automate the measurement operations in the densitometer, which allows for significant labor savings, and allows rapid processing of multiple samples. The effect of contributing to the field of clinical testing, which is in demand, is significant.
第1図は多数検体の泳動パターンの一例を示す図、第2
図〜第8図は本発明における濃度測定方法を説明する図
であって、第2図は分画濃度図、第3図は試料間隔が相
違する場合の泳動パターン及び試料間隔の検出動作を説
明する図、第4図〜第6図は第3図に示す場合の電圧レ
ベル図、第7図(a+ 、 (b)け本発明方法で用い
られるスリットの説明図であって、(a)は切換え前、
(b)は切換え後を示す。第8図は本発明方法が適用さ
れる濃度計の要部説明図、第9図〜第12図(a) 、
(b)は本発明方法における異常検体の再測定順序を
説明する図、第13図は本発明方法を実施する場合の基
本的処理フロー図、第14図は本濃度計の全体構成を示
すCPU(i7中心としたブロック図である。
1・・・・・・・・泳動膜(支持体)
11・・・・・・・試料搬送台
12・・・・・ 光学系検出部
a1〜an・・・・・検体
a2 +aB +a7・・・ 異常検体第1図
−〉×
竺2図
第3図
第5図
億〕(b)
第8図
/12
一シ
ーズ。
〜ズ。
第11図
(0)
第12図
(0)
(b)Figure 1 shows an example of the electrophoresis pattern for multiple samples;
Figures 8 to 8 are diagrams explaining the concentration measurement method according to the present invention, in which Figure 2 is a fractional concentration diagram, and Figure 3 is an explanation of electrophoresis patterns and sample interval detection operations when sample intervals are different. FIGS. 4 to 6 are voltage level diagrams for the case shown in FIG. 3, and FIG. Before switching,
(b) shows the state after switching. Fig. 8 is an explanatory diagram of the main parts of a densitometer to which the method of the present invention is applied, Figs. 9 to 12 (a),
(b) is a diagram explaining the order of re-measurement of abnormal samples in the method of the present invention, Figure 13 is a basic processing flow diagram when implementing the method of the present invention, and Figure 14 is a CPU showing the overall configuration of the present densitometer. (This is a block diagram centered on i7. 1... Electrophoretic membrane (support) 11... Sample transport stage 12... Optical system detection sections a1 to an. ...Sample a2 +aB +a7... Abnormal specimen Fig. 1 -> Figure 12 (0) (b)
Claims (3)
間隔をあけて配置し、かつ検体ごとの複数の成分を縦方
向の直線玉に泳動させた試料を光学系検出部に対し上記
縦軸及びこれに直交する横軸方向に移動させ、若しくは
上唱己尤学系検出部を試料に対し縦・横軸方向に移動さ
せることにより泳動された試料の分画濃度を測定する濃
度計において、下記(a)乃至<b)に記載の方法によ
り、異常検体の成分濃度を自動的に再測定することを特
徴とする濃度計における濃度測定方法。 (a)予め選択設定した分画感度によりJ:記支持体ト
の全ての検体につき農度測定を行い、分画異常の生じた
異常検体の位置とその検体番号とを検出・記憶させた後
、試料搬送台又は光学系検出部を測定開始位置に移動復
帰させる。 (b)次いで、上記記憶直に基づいて試料搬送台又は光
学系検出部を上記異常検体の位置に移動制御すると同時
に、当該異常検体の分画異常に対応してJ:紀分画感度
を上下に所定幅で自動的に切替え調整した後、この異常
検体について全成分の濃度を測定する。(1) A plurality of specimens are arranged at regular intervals in the horizontal direction on the same flat support, and multiple components of each specimen are migrated onto a vertical straight ball. The fractional concentration of the electrophoresed sample is measured by moving the vertical axis and the horizontal axis orthogonal to the vertical axis, or by moving the autopsy detection unit in the vertical and horizontal directions with respect to the sample. 1. A method for measuring concentration in a densitometer, comprising automatically re-measuring the component concentration of an abnormal specimen using the method described in (a) to <b) below. (a) After measuring the agricultural yield of all the samples on support J with the fractionation sensitivity selected and set in advance, and detecting and memorizing the position of the abnormal sample where the fractionation abnormality occurred and its sample number. , move the sample carrier or optical system detection unit back to the measurement start position. (b) Then, based on the above-mentioned memory, the sample transport table or the optical system detection section is controlled to move to the position of the above-mentioned abnormal specimen, and at the same time, the J: period fractionation sensitivity is increased or decreased in response to the abnormality in the fractionation of the abnormal specimen. After automatically switching and adjusting with a predetermined width, the concentration of all components of this abnormal sample is measured.
送台又は光学系検出部を上記異常検体の測定開始位置に
直接に移動制御することを特徴とする特許請求の範囲第
1項記載の濃度計における濃度測定方法。(2) The method according to claim 1, characterized in that, after the concentration measurements of all the samples are completed, the sample transport table or the optical system detection unit is controlled to move directly to the measurement start position of the abnormal sample. Concentration measurement method using a densitometer.
て上下に多段に切替え調整可能に構成されていることを
特徴とする特許請求の範囲第1項に記載の濃度計におけ
る濃度測定方法。(3) The concentration in the densitometer according to claim 1, characterized in that the fractionation sensitivity is configured to be switchable and adjustable in multiple stages up and down in response to the fractionation of the abnormal specimen. Measuring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP310182A JPS58120153A (en) | 1982-01-12 | 1982-01-12 | Measuring method for density in densitometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP310182A JPS58120153A (en) | 1982-01-12 | 1982-01-12 | Measuring method for density in densitometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58120153A true JPS58120153A (en) | 1983-07-16 |
Family
ID=11547950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP310182A Pending JPS58120153A (en) | 1982-01-12 | 1982-01-12 | Measuring method for density in densitometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58120153A (en) |
-
1982
- 1982-01-12 JP JP310182A patent/JPS58120153A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01237453A (en) | Sample analysis method and automatic analyzer using the same | |
JPH0134337B2 (en) | ||
US4295949A (en) | Method for determining boundary points in electrophoresis | |
JPS58120153A (en) | Measuring method for density in densitometer | |
US4236828A (en) | Method for calibrating densitometer of cataphoretic apparatus and calibration film for use in such calibrating method | |
JPH0690208B2 (en) | Automatic analyzer | |
JPH0231819B2 (en) | ||
US4420383A (en) | Fractionating method in electrophoreses | |
JPS6217182B2 (en) | ||
KR20000077202A (en) | Semiconductor device inspection apparatus and semiconductor device inspection method | |
JPH06258269A (en) | Dissolved gas concentration measuring method and dissolved gas concentration measuring device | |
JPH0815265A (en) | Automatic chemical analysis apparatus | |
JPH0547782B2 (en) | ||
JPH0434699B2 (en) | ||
JPS6236531B2 (en) | ||
JPH04329358A (en) | Automatic starter for automatic analyzer | |
JPH0121910B2 (en) | ||
JPH05256819A (en) | Method for processing fractioning for electrophoresis | |
JPS5860250A (en) | Concentration measurement in electrophoresis device | |
JPS6145184B2 (en) | ||
JP2770456B2 (en) | Automatic calibration method for sensitivity of measuring equipment | |
JPS60619B2 (en) | densitometer | |
JPS5917772B2 (en) | densitometer | |
JPS5840698B2 (en) | Ion concentration analysis method | |
JPS6229954Y2 (en) |