JPS58146462A - Cyclone separator - Google Patents
Cyclone separatorInfo
- Publication number
- JPS58146462A JPS58146462A JP3033482A JP3033482A JPS58146462A JP S58146462 A JPS58146462 A JP S58146462A JP 3033482 A JP3033482 A JP 3033482A JP 3033482 A JP3033482 A JP 3033482A JP S58146462 A JPS58146462 A JP S58146462A
- Authority
- JP
- Japan
- Prior art keywords
- cyclone body
- particles
- wall surface
- gas
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cyclones (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は1例えば内燃機関あるいはその他のガス燃焼
設備から排出される微粒ダストを含む排気ガスの浄化用
に適用されるサイクロン分離器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cyclone separator applied, for example, to the purification of exhaust gas containing particulate dust discharged from internal combustion engines or other gas combustion equipment.
微粒子のダストを含むガスからダストを取除いてガスの
浄化を行う手段として、構造が簡単で安価なサイクロン
分離器が周知である。A cyclone separator, which has a simple structure and is inexpensive, is well known as a means for purifying gas by removing dust from a gas containing fine particles.
この種のサイクロン分離器の従来における一般構造を第
1図について説明する。図において、サイクロン分離器
は入口管1と出口管2を備え交円筒部3、および円筒部
3に連なる円錐部4から成るサイクロン本体と、および
サイクロン本体に結合した円筒形状のダスト捕集部5と
より構成される。入口管】全通して矢印6のようにダス
トを含む処理ガスを導入すると1円筒部3内にII−線
方向に流入する気流は円筒部3および円錐部4の内壁に
沿って旋回しながら下降してゆく主気流61となり、そ
して円錐部4中では次第に回転半径を小さくして速度を
高め、その終端近くまで達すると主気流61の大半は反
転気流62となって出口管2へ向けて上昇してゆく。ま
た生気fi61の一部は円錐部4のスロートを通過して
更に下降を続けてダスト捕集部5に流入し、室内旋回気
fi63となりてダスト捕集部5の中を旋回した後に、
反転し、室内の中心部付近から流出気流64となって出
口管2へ向けて上昇する。一方、処理ガスに含まれてい
るダスト粒子は主気流61の旋回流によって遠心力を与
えられ、これKよる遠心加速度が働く。その大きさは重
力の場の重力加速lI!に比べて一般的に300〜20
00倍にもなる。したがってダスト粒子はこの遠心力加
速度の作用によってサイクロン本体の内壁面に沿って旋
回気流とともに下降移動し、これに重力速速度も加わっ
て円錐部4の終端よりスロートを通過してダスト捕集部
5へ入)こんで沈積する。The conventional general structure of this type of cyclone separator will be explained with reference to FIG. In the figure, the cyclone separator includes a cyclone body including an inlet pipe 1 and an outlet pipe 2, an intersecting cylindrical part 3, and a conical part 4 connected to the cylindrical part 3, and a cylindrical dust collecting part 5 connected to the cyclone body. It consists of When a processing gas containing dust is introduced through the entire inlet pipe as shown by the arrow 6, the airflow flowing into the cylindrical part 3 in the direction II-line descends while swirling along the inner walls of the cylindrical part 3 and the conical part 4. Then, in the conical part 4, the radius of rotation is gradually reduced to increase the speed, and when it reaches near the end, most of the main airflow 61 becomes a reversed airflow 62 and rises toward the outlet pipe 2. I will do it. In addition, a part of the live air fi61 passes through the throat of the conical part 4, continues to descend, and flows into the dust collecting part 5, becomes indoor swirling air fi63, and after swirling inside the dust collecting part 5,
The air is reversed and becomes an outflow airflow 64 from near the center of the room and rises toward the outlet pipe 2. On the other hand, the dust particles contained in the processing gas are given centrifugal force by the swirling flow of the main airflow 61, and centrifugal acceleration due to this K acts. Its size is the gravitational acceleration lI of the gravitational field! Generally 300-20 compared to
00 times more. Therefore, the dust particles move downward along the inner wall surface of the cyclone body along with the swirling airflow due to the action of this centrifugal acceleration, and the gravitational velocity is also added to this, passing through the throat from the end of the conical part 4 and collecting dust in the dust collecting part 5. (enter) and deposit.
ところで、この種の従来におけるすイクロン分離器の分
離限界粒子径は数μmまでとされ1ミクロン以下のサブ
ミクロン粒子の捕集効率は極めて低かった。しかも頭記
のように高温排気を処理する場合には更に効率が低下す
る傾向にある。これはダストの粒子径が小径なほど遠心
力による沈降速度が小であることから、気流からの分離
効果が十分に得られないこと、および粒子の粘性係数が
温度によって変化して沈降速度が変わるためである。こ
のために従来から各種の工夫がなされており1例えばサ
イクロン分離器に電気業じん装置を組合わせることにょ
シ、サブミクロンの微粒ダストに電荷を与えて帯電させ
、クーロン力を利用して電極上に集めることにより微粒
子同志を凝集粗大化させ九後にサイクロンで捕集する方
法が知られている。しかしながら電気業じん装置は高価
であるし保守が厄介なことから、サイクロン本来の特長
が十分生かせない。このために電気業じん装置を組合わ
せることなく、簡易な手段でサブミクロン粒子が効率よ
く捕集できるサイクロン分離器の出現が望まれている。By the way, the separation limit particle diameter of this type of conventional Suicron separator is up to several micrometers, and the collection efficiency of submicron particles of 1 micron or less is extremely low. Moreover, when high-temperature exhaust gas is treated as mentioned above, the efficiency tends to further decrease. This is because the smaller the particle size of the dust, the lower the sedimentation speed due to centrifugal force, so the separation effect from the airflow is not sufficient, and the viscosity coefficient of the particles changes depending on the temperature, which changes the sedimentation speed. It's for a reason. To this end, various efforts have been made in the past.1 For example, by combining an electrical industrial device with a cyclone separator, submicron fine dust is charged and charged, and Coulomb force is used to transfer it onto an electrode. A method is known in which fine particles are aggregated into coarse particles by gathering them together, and then collected using a cyclone. However, electric industrial dust equipment is expensive and difficult to maintain, so the original features of cyclones cannot be fully utilized. For this reason, there is a desire for a cyclone separator that can efficiently collect submicron particles by a simple means without the need for electrical dust equipment.
かかる点、何らかの手段により、サイクロン本体に送り
込まれ九ダストの微粒子をサイクロン内での遠心分離動
作の過程で、微粒子同志の凝集を促進させて粗大化でき
れば、微粒ダストの捕集効率の向上が可能であるが、第
1図に示したサイクロン分離器は、遠心力作用だけで微
粒子の凝集粗大化を行わせることは困難である。この点
につぃて発明者の考−したととろによれば、その原因の
一つく境界層が大きく影響を及ぼしていることが判つ“
た。すなわち、サイクロン内の気流分布、峙に気流の旋
回速度分布は第2図のごとく、サイクロン本体を構成す
る円筒部39円錐114の内壁面の表面近くでは、境界
層の生成により気流速度は零Kまで急激に減少している
。この境界層の厚さは条件によって異なるが、ミクロ的
にはサブミクロンの微粒径に較べて大である。一方、被
処理ガスに含まれているダストは、旋回気流による遠心
力作用を受けて円筒部31円錐部4の内壁面近く沿って
移動することになるがこの場合の遠心力作用は弱く、か
つ前記のように壁面に讐する部分には境界層があるので
、ダスト粒子は殆どが内壁面まで到達できずに大半はこ
の境界層の外側を依然として分散した11の状態で旋回
気゛流とともに移動するととになる。このためにダスト
粒子の凝集が十分道まず、結果としてサブミクロンの微
粒子は十分に分離捕集されないので、その捕集効は低い
、この観点からダスト粒子を何らかの補助手段で境界層
内を内壁面まで移行させて壁面上に沈着させることがで
きれば、内壁面上で微粒子同志の凝集が促進され粗大化
する。そしてダストの凝集粗大化が進んで大径粒子に成
長すれば、旋回気流管受けて内壁面から飛散し、再び旋
回気流の領域内を旋回しつつ、今度は大きな遠心力加速
度が作用して効率よく分離捕集することができる。In this regard, if by some means the fine dust particles sent into the cyclone body can be made coarser by promoting agglomeration of the fine particles during the centrifugal separation process within the cyclone, it is possible to improve the collection efficiency of fine dust particles. However, in the cyclone separator shown in FIG. 1, it is difficult to coagulate and coarsen fine particles only by centrifugal force. According to the inventor's thoughts on this point, it was found that the boundary layer, which is one of the causes, has a large influence.
Ta. In other words, the airflow distribution within the cyclone and the swirling speed distribution of the airflow are as shown in Fig. 2. Near the surface of the inner wall surface of the cylindrical portion 39 and the cone 114 constituting the cyclone body, the airflow speed is zero K due to the formation of a boundary layer. is rapidly decreasing. Although the thickness of this boundary layer varies depending on the conditions, it is microscopically larger than the submicron particle size. On the other hand, the dust contained in the gas to be treated moves along the inner wall surface of the cylindrical part 31 and the conical part 4 under the effect of centrifugal force caused by the swirling airflow, but the centrifugal force effect in this case is weak and As mentioned above, since there is a boundary layer in the area opposite to the wall surface, most of the dust particles cannot reach the inner wall surface, and most of the dust particles move outside this boundary layer in a dispersed state along with the swirling air current. Then it becomes. For this reason, the dust particles do not aggregate sufficiently, and as a result, the submicron particles are not separated and collected sufficiently, so the collection effect is low. If the microparticles can be transferred to the inner wall surface and deposited on the wall surface, the aggregation of the microparticles will be promoted on the inner wall surface and the particles will become coarse. When the dust agglomerates and coarsens and grows into large-diameter particles, it is received by the swirling airflow tube and scattered from the inner wall surface, swirling again within the region of the swirling airflow, and this time a large centrifugal force acceleration acts on it, making it more efficient. Can be separated and collected well.
この発明は上記の点にかんがみなされたものであり、そ
の目的は熱泳動の原理を巧みに応用して境界層内を内壁
面へ向けて微粒子を移動させることにより、内壁面上で
微粒ダストの凝集粗大化を図り、これによってサブミク
ロンの微粒ダストの捕集効率を改善できるようにした特
に高温排気ガス浄化用として好適なサイクロン分離器を
提供することにある。This invention was made in consideration of the above points, and its purpose is to move fine particles within the boundary layer toward the inner wall surface by skillfully applying the principle of thermophoresis, thereby reducing the amount of fine dust particles on the inner wall surface. It is an object of the present invention to provide a cyclone separator which is particularly suitable for purifying high-temperature exhaust gas and is capable of improving the collection efficiency of submicron fine dust by coarsening the agglomeration.
かかる目的はこの発明によシ、被処理ガスとサイクロン
本体を構成する外筒壁面との間で、被処理ガス温度に対
して前記壁面が冷温面となるように1両者間に温度差を
与えたことKよシ達成される。According to the present invention, a temperature difference is created between the gas to be treated and the wall surface of the outer cylinder constituting the cyclone body so that the wall surface becomes a cold surface with respect to the temperature of the gas to be treated. This will be accomplished.
以下この発明を図示実施例(基づき詳述する。The present invention will be described in detail below based on illustrated embodiments.
第3図KJPいて、サイクロン本体は第1図と同様であ
夛、入口管1は1例えば内燃機関7の排気管に@絖され
ている。そしてこの発明により、サイクロン本体を構成
する円筒部3および円錐部40周壁外周にFi、その内
壁面の冷却手段としてクォータジャケット8が配備され
ており、その冷却水の入口バイブ81および出口バイブ
82を通じて外部から冷却水83が供給されるように構
成されている。なお内壁面の冷却手段は図示のウォータ
ジャケラ)K限られるものではなく、その他の各種冷却
手段を用いることもできる・
次に上記の構成による作用効果を述べる。図示のように
ウォータジャケラ)8に水管供給してサイクロン本体の
内壁面を冷却しながら、入口管1を通じてサイクロン本
体へ内燃機関から吐出された高温の排気を導入すると、
高温ガス気流がサイクロン本体の中を旋回流す退場で内
壁面の表面近くの境界層KFi気体を高温部、内壁面を
冷却面として両者間に温度勾配が生じる。このように気
体中忙温度勾配があると、それに比例し次速度で気体中
の微粒子は熱的な力を受けて冷却面の方へ向けて移動す
る。この現象は熱泳動として、よく知られている。この
様子を模型的に表わしたのが第4図である。図において
、TtFi気体温度、T倉は冷却面としてのサイクロン
本体の壁面温度(T1)T!】、δは境界層厚さ、Dは
気flItK含まれているダストの微粒子、Vは粒子の
移動速勲D′は壁面上で凝集粗大化された大径粒子を示
している。そして粒子径0.1μmの微粒子を対象に、
温度勾配250℃/mを与えた場合と、通常のサイクロ
ン運転状態による気流旋回速度の遠心力作用とでの境界
層内での微粒子移動速度を数値として比較すると、サイ
クロン動作の遠心力だけの場合が0.6■78であるの
く対し、熱泳動では23■/3の移動速度が得られる。In FIG. 3 KJP, the cyclone body is the same as that in FIG. 1, and the inlet pipe 1 is installed, for example, in the exhaust pipe of an internal combustion engine 7. According to the present invention, Fi is provided on the outer periphery of the circumferential wall of the cylindrical portion 3 and the conical portion 40 constituting the cyclone body, and a quarter jacket 8 is provided as a cooling means for the inner wall surface, and the cooling water is provided through the inlet vibe 81 and the outlet vibe 82. It is configured such that cooling water 83 is supplied from the outside. Note that the means for cooling the inner wall surface is not limited to the illustrated water jacket, and various other cooling means may also be used.Next, the effects of the above structure will be described. As shown in the figure, the high temperature exhaust gas discharged from the internal combustion engine is introduced into the cyclone body through the inlet pipe 1 while cooling the inner wall surface of the cyclone body by supplying a water pipe to the water jacket 8.
When the high-temperature gas airflow swirls inside the cyclone body and leaves the cyclone body, a temperature gradient is created between the boundary layer KFi gas near the surface of the inner wall surface as a high-temperature part and the inner wall surface as a cooling surface. When there is such a temperature gradient in the gas, the particles in the gas receive thermal force and move toward the cooling surface at a rate proportional to the temperature gradient. This phenomenon is well known as thermophoresis. FIG. 4 shows a model of this situation. In the figure, TtFi is the gas temperature, and T is the wall temperature (T1) of the cyclone body as a cooling surface.T! ], δ is the thickness of the boundary layer, D is the fine particles of dust contained in air, V is the speed of movement of the particles, and D' is the large-diameter particles aggregated and coarsened on the wall surface. Then, targeting fine particles with a particle diameter of 0.1 μm,
Comparing numerically the particle movement speed within the boundary layer when a temperature gradient of 250°C/m is applied and when the centrifugal force of the airflow swirling speed is applied under normal cyclone operation conditions, it is found that when only the centrifugal force of the cyclone operation is applied is 0.6 78, whereas thermophoresis provides a migration speed of 23 78.
この結果、実際のサイクロン運転の際に、遠心力作用で
境界層の外側へ到達したダスト粒子群は、これに前記し
た熱泳動作用が加わって更に内壁面の方へ移動し、容易
に内壁面の上に沈着する。しかもこの動作は継続して行
われるので微粒子同志の凝集が進み、やがて粗大化し念
大径の粒子1)lが内壁面上に生成されるようになる。As a result, during actual cyclone operation, the dust particles that have reached the outside of the boundary layer due to centrifugal force move further toward the inner wall surface due to the addition of the above-mentioned thermophoretic action, and easily move toward the inner wall surface. deposits on top of. In addition, since this operation is continued, the agglomeration of fine particles progresses, and eventually coarse particles 1) with a large diameter are formed on the inner wall surface.
そしてダスト粒子の凝集粗大化が十分に進むと、大径粒
子1)Iは旋回気流の影響を受けるようKな夛、壁面か
ら飛散してその後は遠心力作用によシサイクロン本俸の
中を沈降し、ダスト捕集部5へ捕集される。しかもダス
トは十分大径粒子Keっているので、高いダスト捕集効
率が得られる。When the agglomeration and coarsening of the dust particles progresses sufficiently, the large-diameter particles 1) are scattered from the wall surface under the influence of the swirling air current, and then settle in the main cyclone due to the action of centrifugal force. The dust is collected by the dust collecting section 5. Moreover, since the dust particles have sufficiently large diameters, high dust collection efficiency can be obtained.
なお内燃機関からの排気温度は200〜400℃もあシ
、シ友がってサイクロン本体をウォータジャケットで水
冷却するだけで、境界層に大きな温よ。The temperature of the exhaust gas from the internal combustion engine is 200 to 400 degrees Celsius, so simply cooling the cyclone body with water using a water jacket will generate a large temperature in the boundary layer.
勾配を形成することができる。またその他の燃輯設備か
ら発生する高温排気も同様にして処理できる。A gradient can be formed. Furthermore, high-temperature exhaust gas generated from other combustion equipment can be treated in the same manner.
以上述べ友ようにこの発明によれば、簡鳥な冷却手段を
用いることによってサイクロン本体の内壁を冷却面とし
て境界層に大きな温度勾配を与えるようにしたtのであ
り、この温度勾配の場で作用する熱泳動で微細・な−ダ
スト粒子を内壁面へ誘導沈着させて粒子の凝集粗大化を
促進し、ダスト捕集効率の向上を図ることができる。As mentioned above, according to the present invention, by using a simple cooling means, a large temperature gradient is given to the boundary layer by using the inner wall of the cyclone body as a cooling surface, and the effect is exerted in the field of this temperature gradient. By thermophoresis, fine dust particles are guided and deposited on the inner wall surface, promoting coagulation and coarsening of the particles, and improving dust collection efficiency.
第1図は一般的なサイク筒ン分離器の構成概要図、第2
図はサイクロン内部の気流旋回速度分布図、第3図はこ
の発明の一実施例の構成断面図。
第4図は第3図における熱泳動動作の説明図。
l・・・入口管、2・・・出口管、3・・・円筒部、4
・・・円錐部、5・・・ダスト捕集部% 8・・・冷却
手段としてのウォータージャケット。Figure 1 is a schematic diagram of the configuration of a general cyclone separator, Figure 2
The figure is an airflow swirling speed distribution diagram inside the cyclone, and FIG. 3 is a cross-sectional view of the configuration of an embodiment of the present invention. FIG. 4 is an explanatory diagram of the thermophoresis operation in FIG. 3. l...Inlet pipe, 2...Outlet pipe, 3...Cylindrical part, 4
...Conical part, 5...Dust collecting part% 8...Water jacket as a cooling means.
Claims (1)
の被処理ガスに対しサイクロン本体を構成する外筒内壁
面を冷却面として被処理ガスと外筒内壁面との間に温度
差を与えて運転を行うようにしたことを特徴とするサイ
クロン分離器。 2、特許請求の範囲第1項に記載のサイクロン分離器に
おいて、サイクロン本体を構成する円筒部および円錐部
がその周壁を冷却する冷却手段を備えていることを特徴
とするサイクロン分離器。 3)4I許請求の範囲第2項に記載のサイクロン分離器
において、冷却手段が円筒部および円錐部の外周に配備
され友ウォータジャケットであることを特徴とするサイ
クロン分離器。[Scope of Claims] l) The inner wall surface of the outer cylinder constituting the cyclone body is used as a cooling surface between the gas to be processed and the inner wall surface of the outer cylinder for the high-temperature processing gas containing dust swirling inside the cyclone main body. A cyclone separator characterized in that it operates by applying a temperature difference to the cyclone separator. 2. The cyclone separator according to claim 1, wherein the cylindrical portion and the conical portion constituting the cyclone body are provided with cooling means for cooling the peripheral wall thereof. 3) The cyclone separator according to claim 2, wherein the cooling means is a water jacket provided on the outer periphery of the cylindrical portion and the conical portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3033482A JPS58146462A (en) | 1982-02-26 | 1982-02-26 | Cyclone separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3033482A JPS58146462A (en) | 1982-02-26 | 1982-02-26 | Cyclone separator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58146462A true JPS58146462A (en) | 1983-09-01 |
Family
ID=12300913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3033482A Pending JPS58146462A (en) | 1982-02-26 | 1982-02-26 | Cyclone separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58146462A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164354U (en) * | 1984-09-28 | 1986-05-01 | ||
EP1800755A1 (en) * | 2005-12-20 | 2007-06-27 | Manabu Fukuma | Cyclone separator with an inlet container and separating method using this separator2 |
JP2012000671A (en) * | 2011-06-06 | 2012-01-05 | Toshiba Corp | Casting apparatus |
-
1982
- 1982-02-26 JP JP3033482A patent/JPS58146462A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164354U (en) * | 1984-09-28 | 1986-05-01 | ||
EP1800755A1 (en) * | 2005-12-20 | 2007-06-27 | Manabu Fukuma | Cyclone separator with an inlet container and separating method using this separator2 |
JP2012000671A (en) * | 2011-06-06 | 2012-01-05 | Toshiba Corp | Casting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4010011A (en) | Electro-inertial air cleaner | |
US4352681A (en) | Electrostatically augmented cyclone apparatus | |
US6596046B2 (en) | Cyclone separator having a variable longitudinal profile | |
US3064411A (en) | Separator | |
US2806551A (en) | Centrifugal dust collector with laminar gas flow | |
KR20130087566A (en) | Exhaust gas treatment equipment for diesel engine | |
EP1272278B1 (en) | Recirculation cyclones for dedusting and dry gas cleaning | |
CN106362880B (en) | Bipolar charge-cyclone separator and technique for flue gas dedusting | |
US6017381A (en) | Field effect auxiliary gas cyclone (FEAGC) and method of using | |
CN111558256A (en) | Ultrafine Particle Separation System under a Coupling Mechanism | |
JPS58146462A (en) | Cyclone separator | |
JP2000254551A (en) | Multiple centrifuge for airborne dust control. | |
CN212119297U (en) | Multi-particle size distribution cyclone separator for particle material reverse cyclone flow control | |
GB2084904A (en) | Electrostatically augmented cyclone separation process and apparatus | |
CN104963746A (en) | Haze particle collection processing device | |
JPS62129165A (en) | Cyclone separator with powder collector | |
US2751043A (en) | Separation of suspended solids from fluids | |
CN104128058A (en) | Vertical electrical dust collector integrating gravity and cyclone dust removal | |
CN106269315A (en) | Inlet particle sequence type cyclone | |
JPH09155239A (en) | Coneless cyclone made as low as possible in height | |
JP2014526379A (en) | Separator for granular material | |
GB539188A (en) | Improvements in or relating to filters for filtering air or gases | |
JPS58146460A (en) | Cyclone separator | |
GB2055310A (en) | Apparatus for separating particles from a gas stream | |
JPS59130559A (en) | Cyclone dust collector |