JPS58146460A - Cyclone separator - Google Patents
Cyclone separatorInfo
- Publication number
- JPS58146460A JPS58146460A JP3033282A JP3033282A JPS58146460A JP S58146460 A JPS58146460 A JP S58146460A JP 3033282 A JP3033282 A JP 3033282A JP 3033282 A JP3033282 A JP 3033282A JP S58146460 A JPS58146460 A JP S58146460A
- Authority
- JP
- Japan
- Prior art keywords
- dust
- cyclone separator
- cylindrical
- airflow
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cyclones (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、例えば自動車等の内燃機関の排気浄化用と
して、排気黒煙に含まれているカーボンを主成分とした
ナプ建クロンの微粒ダストを排気流から分am集するの
に好適なサイクロン分離器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is intended for use in purifying the exhaust gas of internal combustion engines such as automobiles, for example, by separating and collecting fine dust of napkin carbon, which is mainly composed of carbon contained in exhaust black smoke, from the exhaust stream. This invention relates to a cyclone separator suitable for
気体中の微粒子を気体から分離する固気分離器として、
対象とする微粒子の直径が数μ菖程度以上の場合には、
構造が簡単で安価なサイクロン分離器が多用されている
。As a solid-gas separator that separates fine particles in gas from gas,
If the target particle has a diameter of several micrometers or more,
Cyclone separators are often used because they have a simple structure and are inexpensive.
この種のサイクロン分離器の従来における一般構造を第
1図を用いて説明する。図において、サイクロン分離器
は入口管lと出口管4を備えた円筒部2・円錐部3から
なるサイクロン本体によびダスト捕集部5より構成され
る。入口管lより矢印6方向にダストを含む空気が導入
された場合。The conventional general structure of this type of cyclone separator will be explained with reference to FIG. In the figure, the cyclone separator is composed of a cyclone body consisting of a cylindrical part 2 and a conical part 3, each having an inlet pipe 1 and an outlet pipe 4, and a dust collecting part 5. When air containing dust is introduced from the inlet pipe l in the direction of arrow 6.
まず気流の動きについて説明すると、入口管lから円筒
部2へ向けて接線方向に導入されたダストを含む空気流
は、円筒部2および円錐部3で旋回する主気流61にな
るが、そのほとんどは円錐部3の終端から反転気流62
になり、最終的には出口管4から流出気流7として排出
される0反転気流62にならなかった僅かの気流はダス
ト捕集部5に侵入し、気流63になってダスト捕集部を
旋回した後でサイクロン分離器の中心を通って出口管4
から排出される。次にダストの動きについて説明すると
、円筒@2および円錐@3で旋回している主気流61に
含まれるダストには、遠心力加速度2が働き、その大き
さは重力加速度gに比べて一般的に300〜2000倍
にもなる。したがってダストは、この遠心力加速度の作
用によって円筒部2および円錐部3の内壁面に沿って移
動し、重力加速度の作用も合わさってダスト捕集部5へ
落下して沈積する。First, to explain the movement of the airflow, the airflow containing dust introduced tangentially from the inlet pipe l toward the cylindrical part 2 becomes the main airflow 61 that swirls around the cylindrical part 2 and the conical part 3, but most of the airflow contains dust. is the reversed airflow 62 from the end of the conical part 3
The small amount of airflow that did not become the zero-reversed airflow 62 that is finally discharged from the outlet pipe 4 as the outflow airflow 7 enters the dust collection section 5, becomes an airflow 63, and swirls around the dust collection section. After that, the outlet pipe 4 passes through the center of the cyclone separator.
is discharged from. Next, to explain the movement of dust, centrifugal force acceleration 2 acts on the dust contained in the main airflow 61 rotating in the cylinder @2 and cone @3, and its magnitude is generally smaller than the gravitational acceleration g. 300 to 2000 times more. Therefore, the dust moves along the inner wall surfaces of the cylindrical portion 2 and the conical portion 3 due to the action of the centrifugal acceleration, and together with the action of the gravitational acceleration, the dust falls to the dust collection portion 5 and is deposited thereon.
ところで、この種の従来に2けるサイクロン分離器では
、その分離限界粒径は2〜3xmが限度とされ、それよ
り黴細なダスト、例えば頭記した内燃機関の排気に含ま
れているカーボンを主成分としたしhン以下の0.2μ
脇程度のサプンクロン微粒ダストに対しては十分な捕集
効率が得られず、このままでは実用に供し得なかった。By the way, in this type of conventional cyclone separator, the particle size limit is 2 to 3 x m, and it is difficult to separate finer dust such as carbon contained in the exhaust gas of the internal combustion engine mentioned above. The main component is 0.2μ or less.
Sufficient collection efficiency could not be obtained for fine Sapunkuron dust of armpit size, and it could not be put to practical use as it was.
すなわち、いわゆる遠心効果を利用してダストの分離を
行う接線蓋のサイクロンは、特に入口側領域に8いて旋
回流の周分速度が大である方が高い遠心効果が得られる
。しかしてダストの粒径がサブミクロンの微粒子の場合
、遠心力作用によってサイクロンの壁面近くに集中され
ても、旋回流の周分速度が大であると、ダスト同志の凝
集が十分に行われず、小径粒子のままサイクロンの壁面
に沿って沈降して行く。このために一旦は主気流61か
ら分離されたダストも円錐部3の終端で反転する反転気
流62に乗って出口管4へ向けて運ばれてしまか量が大
(、捕集部5内に捕集される割合が少なくなる。このた
めにサブミクロンの微粒子ダストでは十分な捕集効率が
得らない。That is, in a cyclone with a tangential lid that separates dust using a so-called centrifugal effect, a higher centrifugal effect can be obtained especially when the circumferential velocity of the swirling flow is high in the inlet side region. However, if the particle size of the dust is submicron, even if it is concentrated near the wall of the cyclone due to centrifugal force, if the circumferential velocity of the swirling flow is high, the dust particles will not coagulate sufficiently. The small-diameter particles settle along the cyclone wall. For this reason, the dust once separated from the main airflow 61 is also carried toward the outlet pipe 4 on the reversed airflow 62 that reverses at the end of the conical part 3, and a large amount of dust is transferred into the collection part 5. The proportion of collected particles decreases.For this reason, sufficient collection efficiency cannot be obtained with submicron fine particle dust.
このためにミクロン以下の微粒ダストの処理を行うため
に、従来ではサイクロン分離器の前段に電気業じん器等
を組み合わせて、微細粒径のダストを前段の電気業じん
工程で凝集粗大化し、その後にサイクロン分離器へ導入
して分離捕集させる等の試みがなされたが、この方式は
設備費も高価となり、構造が簡単で保守も容易なサイク
ロン分離器の特長を十分に生かすことができない難点が
ある。この点から例えば頭記した自動車に塔載する内燃
機関の排気浄化用として、ンクロン以下の微粒ダストを
効率よく捕集できるサイクロン分離器の開発が強く要望
されて(、する。For this purpose, in order to process fine dust particles of micron size or less, conventionally, an electric industrial dust machine or the like is combined in the front stage of a cyclone separator, and the fine particle size dust is agglomerated and coarsened in the electric industrial dust process in the previous stage, and then Attempts have been made to introduce the system into a cyclone separator for separation and collection, but this method requires high equipment costs and cannot take full advantage of the features of the cyclone separator, which is simple in structure and easy to maintain. There is. From this point of view, there is a strong demand for the development of a cyclone separator that can efficiently collect particulate dust smaller than 100 yen, for example, for purifying the exhaust gas of the internal combustion engine installed in the above-mentioned automobile.
この発明は上記の点にかんがみなされたものであり、そ
の目的はその巧みな構成によってサイクロン分離器の本
体内部でミクロン以下の微粒ダストを凝集促進して粗大
化させることにより、ダストの捕集効率を高めて分離限
界粒度範囲の拡大イヒを図ったサイクロン分離器を提供
することにある。This invention was developed in consideration of the above points, and its purpose is to improve the dust collection efficiency by promoting aggregation of sub-micron fine dust inside the main body of the cyclone separator and making it coarse. It is an object of the present invention to provide a cyclone separator in which the separation limit particle size range is expanded by increasing the particle size range.
かかる目的はこの発明により、円筒部および円筒部に連
なるスロート付円錐部を組み合わせて成りの円筒部には
ダストを含む気流が導入される入 。According to the present invention, an air flow containing dust is introduced into the cylindrical portion, which is formed by combining a cylindrical portion and a conical portion with a throat connected to the cylindrical portion.
口管と出口管を、最終段の外筒ブ四ツクの円錐部にはダ
スト捕集部をそれぞれ接続して構成したことにより達成
される。This is achieved by configuring the mouth pipe and the outlet pipe by connecting dust collecting parts to the conical parts of the final stage outer cylindrical block, respectively.
以下この発明を図示実施例に基づき詳述する。The present invention will be described in detail below based on illustrated embodiments.
1ず第2図により実施例の全体構成を説明する。First, the overall configuration of the embodiment will be explained with reference to FIG.
すなわちこの発明により、サイクロン分離器の本体は符
号1.1で示した外筒ブロックを相互直夕IJに結合し
た多段式(図示例は2段)として構成されている。各段
の外筒ブロック1.1はそれぞれ入口側から円筒部2・
20、円筒部に連なる円錐、部3・30の組み合わせ体
として構成されている。That is, according to the present invention, the main body of the cyclone separator is constructed as a multi-stage type (two stages in the illustrated example) in which outer cylinder blocks indicated by reference numeral 1.1 are connected directly to each other in IJ. The outer cylindrical block 1.1 of each stage is connected to the cylindrical portion 2.
20, a conical part connected to a cylindrical part, and configured as a combination of parts 3 and 30.
また円錐部3.30は径小部分のスロート31゜301
およびスロートに後に連なる逆円錐形状のデフユーザ3
2,302を備えて成る。そして前段ブロック■の円筒
部2には従来の構成と同様に入口管lと出口管4が接続
され、一方後段ブロック1のディフューザ302の後に
はダスト捕集部5が接続されている。Also, the conical part 3.30 is the throat of the small diameter part 31°301
and an inverted cone-shaped differential user 3 connected to the throat
It consists of 2,302 units. The inlet pipe 1 and the outlet pipe 4 are connected to the cylindrical part 2 of the front block (2) as in the conventional structure, while the dust collection part 5 is connected after the diffuser 302 of the rear block 1.
かかる構成で入口管lより之クロン以下の微粒ダストを
含む含塵気流6を導入すると、第3図(51)に2ける
矢印のようにサイクロン本体の内部を旋回しつつ下降す
る主気流61は、その一部が前段ブロックIを通過した
後に、更に後段ブロック■へ入り、やがて反転気流62
として出口管4へ向う。な2終段に至る途中段階でも主
気流61の一部は少しずつ反転気流となって出口管4へ
向う。With this configuration, when a dust-containing airflow 6 containing fine dust of less than a ton is introduced from the inlet pipe 1, the main airflow 61 that descends while swirling inside the cyclone body as shown by the arrow 2 in Fig. 3 (51) is as follows. , after a part of it passes through the front block I, it further enters the rear block ■, and eventually the reverse airflow 62
As a result, it heads to the exit pipe 4. Even on the way to the second final stage, a part of the main airflow 61 gradually turns into a reversed airflow and heads toward the outlet pipe 4.
この場合に特に円錐部3,30では通路断面が徐々に絞
られるので下降気流を反転させる作用が大会く働く。こ
の結果サイクロン本体内での下降気流流量は第3図ル)
のように前段ブロックI→後段ブレツクI→捕集部5へ
行くにしたがって減少する。In this case, especially in the conical portions 3 and 30, the cross section of the passage is gradually narrowed, so that the effect of reversing the downward airflow is strongly exerted. As a result, the flow rate of the descending air within the cyclone body is as shown in Figure 3).
It decreases as it goes from the front block I to the rear block I and then to the collection section 5, as shown in FIG.
また主気流61の流れ方を更に詳しく述べると、前段ブ
ロック■の円錐部3を比較高速で旋回しながら下降して
きた主気流61はス*−)31に遍する以前にその一部
が反転気流となり、残りがス) It −) 31を通
過してデフユーザ32の方へ進む。このデフニー・ザ3
2は断面が拡大しているので主気流の旋回風速は大巾に
低下する。続いて後段ブーツク■の円筒部20に入り、
ここでデフ:L−ザ32の通過段階で多少不安定となっ
た気流は再び整流旋回流に戻る。次に円錐部30・優ロ
ー”)301.デフユーザ302を旋回しながら流下す
る。In addition, to explain in more detail how the main airflow 61 flows, the main airflow 61 that has descended while turning at a relatively high speed around the conical part 3 of the front block The rest passes through 31 and proceeds to the differential user 32. This Defney the 3
Since the cross section of No. 2 is enlarged, the swirling speed of the main airflow is greatly reduced. Next, enter the cylindrical part 20 of the rear boot stock ■,
Here, the airflow that has become somewhat unstable during the stage of passing through the differential L-za 32 returns to a rectified swirling flow. Next, the conical portion 30 (lower) 301 flows down while turning around the differential user 302.
なお後段ブロック■でも前記の前段プ四ツクIと同様な
経過をたどる。It should be noted that the latter block (2) follows the same process as the preceding block (I).
上記のような主気流61の流れにより、導入気流6に含
まれているダストは、・iず前段ブ胃ツク■の円筒部2
1円錐部3を通る過程で大きな遍心効果を受け、外周側
に集中するようになるがこの段階ではダストは十分に凝
集粗大化されてない。Due to the flow of the main airflow 61 as described above, the dust contained in the introduced airflow 6 is
1 In the process of passing through the conical part 3, the dust is subjected to a large eccentric effect and becomes concentrated on the outer circumferential side, but at this stage, the dust is not sufficiently aggregated and coarsened.
しかして第1図の従来構成では1円錐部3終端から主気
流61の殆どが半転してしまうのに対し。However, in the conventional configuration shown in FIG. 1, most of the main airflow 61 is halved from the end of the conical portion 3.
実施例のものではデフユーザ32を経由して、後この主
気流に伴ってデフユーザ32を経て後段ブロック■の円
筒部20へ入る。しかもデフユーザを経て円筒部20に
入った気流は先述のように風速が大巾に低下しているの
で、この部分でダスト同志の凝集作用、が加速的に促進
さ・れることになる。In the embodiment, the air passes through the differential user 32 and then enters the cylindrical portion 20 of the rear block (2) through the differential user 32 along with this main airflow. Furthermore, since the airflow that has entered the cylindrical portion 20 via the differential user has a significantly reduced wind speed as described above, the aggregation of dust particles is accelerated in this portion.
この結果ダストは粗大化した大径粒子となり1次の円錐
部30.スロート301.デフユーザ302を経由して
効率よく捕集され、ダスト捕集s5の内部に沈積する。As a result, the dust becomes coarse, large-diameter particles and forms a primary conical portion 30. Throat 301. It is efficiently collected via the differential user 302 and deposited inside the dust collector s5.
なお生気に61の方は後段ブロックIの円錐部30にお
けるスロート301の手前で殆どが反転し、出口管4へ
向けて流出する。Note that most of the fresh air 61 is reversed before the throat 301 in the conical portion 30 of the rear block I, and flows out toward the outlet pipe 4.
諮4図は上記構成のサイクロン分離器を用いて行ったテ
スト結果に基づくサイクロン本体の胴内各部に2ける採
集ダストの粒径分布図である。この図から明らかなよう
に入口管lに近い醐定点人から抽出したダストは粒子径
の微小なダストが殆どの割合を占めている。これに対し
、第2段プロ径大のものに集中して怠り、これによって
サイクロン本体内部でダストの凝集粗大化が嵐好に行わ
れているとか実証された。また被処理ダストを0.2p
程度として行ったテスト結果によれば、捕集効率が81
図の従来機と較べて約30チアツブすることが確められ
た。なお図示例は2段式のものを示したが、外筒ブロッ
クを3段以上直列に結合して構成してもよい。またサイ
クロン本体は軸を喬直にしたたて姿勢で運転しても、あ
るいは横に寝かした横置姿勢でも、その捕集効率には殆
ど変化が生じない。Figure 4 is a particle size distribution diagram of the dust collected in each part of the cyclone main body based on test results conducted using the cyclone separator having the above configuration. As is clear from this figure, most of the dust extracted from the person at the fixed point near the inlet pipe 1 is dust with a very small particle size. On the other hand, it has been demonstrated that the large-diameter second-stage pro was neglected, which caused the dust to coagulate and coarsen inside the cyclone body. Also, the amount of dust to be treated is 0.2p.
According to the test results conducted as a grade, the collection efficiency was 81
It was confirmed that the new model is approximately 30 times cheaper than the conventional model shown in the figure. Although the illustrated example shows a two-stage type, three or more stages of outer cylinder blocks may be connected in series. In addition, the collection efficiency of the cyclone body hardly changes even if it is operated in an upright position with the axis straight, or in a horizontal position with the cyclone body lying on its side.
以上の説明から明らかなように、この発明の構成によれ
ば、導入気流に含まれている微粒ダストは1段目の外筒
ブ藁ツク内で大きな遠心力作用を受け、主気流から分離
して外筒の壁面の方へ集まり、続く後段の外筒ブロック
内にて低速旋回気流のもとで加速的に凝集粗大化される
。したがってサブミクロン以下の微粒ダストも効率よく
ダスト集積室へ分離捕集することができて、それだけ従
来のものと較べて分離限界粒度範囲の拡大化が図れる。As is clear from the above description, according to the configuration of the present invention, the fine dust contained in the introduced airflow is subjected to a large centrifugal force within the first stage outer cylindrical bag, and is separated from the main airflow. The particles gather toward the wall surface of the outer cylinder, and are rapidly aggregated and coarsened in the subsequent outer cylinder block under low-speed swirling airflow. Therefore, even fine dust of submicron size or smaller can be efficiently separated and collected in the dust collection chamber, and the separation limit particle size range can be expanded to that extent compared to the conventional method.
したがって内燃機関の排気浄化用などとして、特にミク
ロン以下の微粒ダストを処理するものとして優れた性能
を発揮できるサイクロン分離器を提供することができる
。Therefore, it is possible to provide a cyclone separator that exhibits excellent performance for purifying the exhaust gas of internal combustion engines, particularly for treating fine dust of less than a micron size.
第1図は従来のサイクロン分離器の構成概要図。
第2図はこの発明の実施例の構成図、第3図(a)。
(b)はそれぞれ第2図におけるサイクロン本体内部の
気流の流れ状態図ぶよび下降気流の流量分布図。
第4図はテスト結果によるサイクロン本体内部における
ダストの粒径分布図である。
l・・・入口管、 2.20・・・円筒部、 3.
30・・・円錐部。
4・・・出口管、5・・・ゲスト捕集部、 31・3
01・・・スロート、32,302・・・デフユーザ、
I、I・・・外筒プ四ツク。FIG. 1 is a schematic diagram of the configuration of a conventional cyclone separator. FIG. 2 is a configuration diagram of an embodiment of the present invention, and FIG. 3(a). (b) is a flow state diagram of the airflow inside the cyclone main body and a flow rate distribution diagram of the descending airflow in FIG. 2, respectively. FIG. 4 is a diagram showing the particle size distribution of dust inside the cyclone body based on the test results. l...Inlet pipe, 2.20...Cylindrical part, 3.
30... Conical part. 4... Outlet pipe, 5... Guest collection section, 31.3
01...throat, 32,302...def user,
I, I... Outer cylinder pusher.
Claims (1)
組み合わせて成る外筒ブロックを単位段として、複数−
の外筒ブロックを直列に結合し、かつ第1段の外筒ブー
ツクの円筒部に入口管と出口管を、最終段の外筒プ諺ツ
クの円錐部にはダスト捕集部をそれぞれ接続して構成し
たことを特徴とするサイクロン分離器。 2、特許請求の範囲第1項に記載のサイクロン分離器に
8いて、円錐部が該a雌部のス臣−トに連なる逆円錐形
状のデフユーザを備えていることを特徴とするサイクロ
ン分離器。[Claims] l) A plurality of outer cylindrical blocks formed by combining a cylindrical portion 2 and a circular female portion 7 with a throat connected to the cylindrical portion as a unit stage.
outer cylinder blocks are connected in series, and an inlet pipe and an outlet pipe are connected to the cylindrical part of the first stage outer cylinder boot stock, and a dust collection part is connected to the conical part of the final stage outer cylinder boot stock. A cyclone separator characterized by comprising: 2. A cyclone separator according to claim 1, characterized in that the cyclone separator is equipped with an inverted cone-shaped differential user whose conical portion is connected to the foot of the female portion a. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3033282A JPS58146460A (en) | 1982-02-26 | 1982-02-26 | Cyclone separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3033282A JPS58146460A (en) | 1982-02-26 | 1982-02-26 | Cyclone separator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58146460A true JPS58146460A (en) | 1983-09-01 |
Family
ID=12300852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3033282A Pending JPS58146460A (en) | 1982-02-26 | 1982-02-26 | Cyclone separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58146460A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4861529B1 (en) * | 2011-08-13 | 2012-01-25 | 芳夫 溝口 | Secondary vortex separator |
CN102698891A (en) * | 2012-05-31 | 2012-10-03 | 郭丰亮 | Growth type cyclone dust collector |
CN103586144A (en) * | 2013-11-07 | 2014-02-19 | 广西桂柳化工有限责任公司 | Electrolytic manganese dioxide cyclone separator |
CN115475578A (en) * | 2022-08-30 | 2022-12-16 | 上海交通大学 | Horizontal gas-solid thermochemical storage and heat reaction device with synergistic stirring function |
-
1982
- 1982-02-26 JP JP3033282A patent/JPS58146460A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4861529B1 (en) * | 2011-08-13 | 2012-01-25 | 芳夫 溝口 | Secondary vortex separator |
CN102698891A (en) * | 2012-05-31 | 2012-10-03 | 郭丰亮 | Growth type cyclone dust collector |
CN103586144A (en) * | 2013-11-07 | 2014-02-19 | 广西桂柳化工有限责任公司 | Electrolytic manganese dioxide cyclone separator |
CN115475578A (en) * | 2022-08-30 | 2022-12-16 | 上海交通大学 | Horizontal gas-solid thermochemical storage and heat reaction device with synergistic stirring function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6482246B1 (en) | Cyclonic separating apparatus with tangential offtake conduit | |
US6398973B1 (en) | Cyclone separator | |
US3953184A (en) | Cyclone-type dust separator | |
US6596046B2 (en) | Cyclone separator having a variable longitudinal profile | |
JPH0278412A (en) | Spiral tube type separator and separation of gas and particle thereby | |
JP2002503541A (en) | Purification device | |
US4747852A (en) | Method and apparatus for separating solid particles from flue gases in a circulating fluidized bed reactor | |
US20020178703A1 (en) | Recirculation cyclones for dedusting and dry gas cleaning | |
CN109701324A (en) | Axial-flow combined variable-diameter multi-tube cyclone dust removal device and method | |
US3564843A (en) | Particulate trap | |
US1760617A (en) | Apparatus for separating and collecting dust | |
JPS58146460A (en) | Cyclone separator | |
GB2136325A (en) | Improvements In or Relating To Cyclone Separators | |
US1955465A (en) | Apparatus for propelling gas carrying abrasive suspended material | |
CN212309892U (en) | Cyclone separator, separation device and production line | |
US3727377A (en) | Apparatus and method for cleaning gaseous fluids | |
JPH0317525B2 (en) | ||
CN112439261B (en) | Multiple cyclone type dust filtering device | |
CN87205753U (en) | Externally spiralling type cyclone collector | |
JPS58146458A (en) | Horizontal type multistage cyclone separator | |
CN220878092U (en) | Multistage aerosol separation device | |
JPS6327799Y2 (en) | ||
JPS59130558A (en) | Cyclone dust collector for purifying exhaust gas | |
CN106731431A (en) | Vortex tube bank dedusting demister | |
CN2210037Y (en) | Double air vortex type bug dust recovering apparatus |