JPH1184434A - Light control circuit and operation method - Google Patents
Light control circuit and operation methodInfo
- Publication number
- JPH1184434A JPH1184434A JP9236671A JP23667197A JPH1184434A JP H1184434 A JPH1184434 A JP H1184434A JP 9236671 A JP9236671 A JP 9236671A JP 23667197 A JP23667197 A JP 23667197A JP H1184434 A JPH1184434 A JP H1184434A
- Authority
- JP
- Japan
- Prior art keywords
- control circuit
- waveguide
- optical
- light control
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2808—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
- G02B6/2813—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/217—Multimode interference type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3132—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3132—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
- G02F1/3133—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3132—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
- G02F1/3134—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/20—LiNbO3, LiTaO3
Landscapes
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
(57)【要約】
【課題】 光導波路を伝わる光波を低損失かつ高効率で
分配比を調節する、あるいはスイッチングする光制御回
路およびその動作方法を提供することを課題とする。
【解決手段】 LN基板11に2本の入力導波路12,
2本の出力導波路13、並びにMMI光合分波導波路部
14が形成されてなる光制御回路において、前記MMI
光合分波導波路部14に複数の電極16,17が配置さ
れ、かつ前記電極16,17が前記多モード干渉導波路
内に励起されるモードフィールドの分布に合わせるよう
に設定されている。
(57) [Problem] To provide an optical control circuit for adjusting or switching a distribution ratio of a light wave transmitted through an optical waveguide with low loss and high efficiency, and an operation method thereof. SOLUTION: Two input waveguides 12 are provided on an LN substrate 11,
In an optical control circuit including two output waveguides 13 and an MMI optical multiplexing / demultiplexing waveguide section 14, the MMI
A plurality of electrodes 16 and 17 are arranged in the optical multiplexing / demultiplexing waveguide section 14, and the electrodes 16 and 17 are set so as to match the distribution of the mode field excited in the multimode interference waveguide.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光導波路を伝わる
光波を低損失かつ高効率で分配比を調節する、あるいは
スイッチングする光制御回路およびその動作方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control circuit for adjusting or switching a distribution ratio of a light wave transmitted through an optical waveguide with low loss and high efficiency, and a method of operating the same.
【0002】[0002]
【従来の技術】光ファイバあるいは半導体レーザダイオ
ード(LD)からの光波を一本あるいは複数の導波路や
光ファイバに光分配・合波あるいは光スイッチングする
ために、方向性結合器やX形合分波回路あるいは強結合
形方向性結合器等による光制御回路がこれまで多く使用
されている。方向性結合器を用いた場合の従来の光制御
回路の構成例(斜視図)を図18に示す。2. Description of the Related Art A directional coupler or an X-type coupler is used for distributing / combining or switching lightwaves from an optical fiber or a semiconductor laser diode (LD) to one or more waveguides or optical fibers. An optical control circuit using a wave circuit or a strongly coupled directional coupler has been widely used. FIG. 18 shows a configuration example (perspective view) of a conventional light control circuit using a directional coupler.
【0003】図18に示すように、従来技術において
は、基板01として強誘電体材料であるLiNbO
3 (以下「LN」と記す)を用いており、該LN基板0
1は光導波路のクラッド部を構成している。該LN基板
01には、チタン(Ti)あるいはプロトン等の不純物
拡散により形成した入力導波路及び出力導波路のコア部
02,03が形成されている。なお、図18中、符号0
4は方向性結合器を構成する導波路、05は電極06,
07による光伝搬損失を防ぐために形成したSiO2 等
より成るバッファ層、08は電極06,07に電圧Vを
印加するための外部電源を各々図示する。As shown in FIG. 18, in the prior art, as a substrate 01, a ferroelectric material LiNbO
3 (hereinafter referred to as “LN”), and the LN substrate 0
Reference numeral 1 denotes a cladding portion of the optical waveguide. On the LN substrate 01, core portions 02 and 03 of an input waveguide and an output waveguide formed by diffusion of impurities such as titanium (Ti) or protons are formed. Note that, in FIG.
4 is a waveguide constituting a directional coupler, 05 is an electrode 06,
Reference numeral 08 denotes a buffer layer made of SiO 2 or the like formed to prevent light propagation loss due to 07, and reference numeral 08 denotes an external power supply for applying a voltage V to the electrodes 06 and 07.
【0004】本構成の場合、方向性結合器の導波路長L
を完全結合長L0 に設定すると光スイッチになる。導波
路長Lを完全結合長の半分の長さ(L=L0 /2)にす
ると3dB光分配器になる。電圧Vの大きさによって、
出力光P1 ,P2 の分配比を制御できる。In the case of this configuration, the waveguide length L of the directional coupler
The becomes light switch is set to complete coupling length L 0. The waveguide length L when the complete coupling length half the length of (L = L 0/2) becomes 3dB optical splitter. Depending on the magnitude of the voltage V,
The distribution ratio of the output lights P 1 and P 2 can be controlled.
【0005】一方、導波路内の複数のモード間の干渉を
利用して光波の合分波機能を持たせた多モード干渉導波
路(以下ではMM1(:Multi-Mode Interferometer)と
記す)を用いた合分波回路は、前記の方向性結合器と比
較してデバイス構造に対する製作時の寸法バラツキ許容
偏差量が大きい等の特徴を有することから、最近多く使
用されるようになっているが、能動素子としての応用例
は、未だ提案されていないのが現状である。On the other hand, a multimode interference waveguide (hereinafter, referred to as MM1 (Multi-Mode Interferometer)) having a function of multiplexing / demultiplexing light waves utilizing interference between a plurality of modes in the waveguide is used. The multiplexing / demultiplexing circuit that has been used has recently been frequently used because it has a feature such as a large dimensional variation tolerance at the time of manufacturing the device structure as compared with the directional coupler. At present, an application example as an active element has not been proposed yet.
【0006】[0006]
【発明が解決しようとする課題】このような従来の方向
性結合器を用いた光制御回路は、デバイス製作時におけ
る導波路の寸法や屈折率の僅かな偏差によって、特性バ
ラツキが大きく生じ、特にクロストークの劣化が大きい
等の問題があり、実用化の大きな障害となっている。ま
た、MMI導波路を用いて、その実効的な幅あるいは実
効的な長さを変えて動作させる従来の光制御回路は、M
MI導波路の屈折率を大きく変化させる必要があり、駆
動電圧若しくは電流が著しく大きい等の効率が悪いとい
う問題がある。An optical control circuit using such a conventional directional coupler greatly varies in characteristics due to a slight deviation in the dimensions and refractive index of the waveguide at the time of device fabrication. There are problems such as large degradation of crosstalk, which is a major obstacle to practical use. In addition, a conventional light control circuit that operates using an MMI waveguide while changing its effective width or effective length is M M waveguide.
It is necessary to greatly change the refractive index of the MI waveguide, and there is a problem that the efficiency is poor such as the driving voltage or the current is extremely large.
【0007】本発明は、これらの問題を解決すると共
に、さらに低損失かつ高効率でスイッチングあるいは分
配比を制御する光制御回路および動作方法を提供するこ
とを課題とする。[0007] It is an object of the present invention to solve these problems and to provide an optical control circuit and an operation method for controlling switching or distribution ratio with low loss and high efficiency.
【0008】[0008]
【課題を解決するための手段】このような課題を解決す
る本発明による[請求項1]の光制御回路は、単数若し
くは複数の光入力部と光出力部とを有する多モード干渉
導波路からなる光制御回路において、単数若しくは複数
の電極を有し、そのうち少なくとも1つが前記多モード
干渉導波路上に配置され、かつ前記電極の1つ若しくは
複数が、前記多モード干渉導波路内に励起されるモード
フィールドの分布に合わせるように、その個数、形状、
配置が設定されていることを特徴とする。According to a first aspect of the present invention, there is provided an optical control circuit comprising: a multimode interference waveguide having a single or a plurality of optical input units and an optical output unit; A light control circuit comprising one or more electrodes, at least one of which is disposed on the multimode interference waveguide, and one or more of the electrodes are excited in the multimode interference waveguide. Number, shape,
The arrangement is set.
【0009】[請求項2]の光制御回路は、請求項1に
おいて、前記電極の1つ若しくは複数が、前記多モード
干渉導波路内に励起されるモードのうち、回路動作に利
用されるモードのモードフィールドの分布のピーク位置
を含むように、その個数、形状、配置が設定されている
ことを特徴とする。According to a second aspect of the present invention, in the light control circuit according to the first aspect, one or more of the electrodes is a mode used for circuit operation among modes excited in the multimode interference waveguide. The number, shape, and arrangement are set so as to include the peak position of the mode field distribution.
【0010】[請求項3]の光制御回路は、請求項1又
は2において、電極にバイアスを印可しない状態で、前
記光制御回路の光出力部からの各出射光が等分配される
ようにしたことを特徴とする。According to a third aspect of the present invention, in the light control circuit according to the first or second aspect, the light emitted from the light output section of the light control circuit is equally distributed in a state where no bias is applied to the electrode. It is characterized by having done.
【0011】[請求項4]の光制御回路は、請求項1又
は2において、電極にバイアスを印可しない状態で、前
記光制御回路の、1つ、若しくは一部の複数の光出力部
から出射光が出力されるようにしたことを特徴とする。According to a fourth aspect of the present invention, there is provided the light control circuit according to the first or second aspect, wherein one or a part of the plurality of light output portions of the light control circuit is provided without applying a bias to the electrode. It is characterized by emitting light.
【0012】[請求項5]の光制御回路は、請求項1乃
至4において、前記複数の電極が、進行波形電極を構成
していることを特徴とする。The light control circuit according to claim 5 is characterized in that, in claims 1 to 4, the plurality of electrodes constitute a traveling waveform electrode.
【0013】[請求項6]の光制御回路は、請求項1乃
至5において、前記多モード干渉導波路若しくは電極の
一方若しくは両方の平面形状を、テーパ状としたことを
特徴とする。The light control circuit of claim 6 is characterized in that in claim 1 to 5, one or both of the multimode interference waveguide and the electrode have a tapered planar shape.
【0014】[請求項7]の光制御回路は、請求項1乃
至6において、多モード干渉導波路が1×2、2×2、
若しくは1×3多モード干渉導波路であることを特徴と
する。According to a seventh aspect of the present invention, in the light control circuit according to the first to sixth aspects, the multimode interference waveguide is 1 × 2, 2 × 2,
Alternatively, it is a 1 × 3 multimode interference waveguide.
【0015】一方、[請求項8]の光制御回路の動作方
法は、請求項1乃至7の光制御回路の動作方法におい
て、前記電極の各々に印可される電圧の極性及び大きさ
を、前記多モード干渉導波路内に励起されるモードフィ
ールドの分布に合わせるように設定することを特徴とす
る。On the other hand, a method for operating the light control circuit according to claim 8 is the method for operating a light control circuit according to claims 1 to 7, wherein the polarity and magnitude of the voltage applied to each of the electrodes are set to the same value. It is characterized in that it is set to match the distribution of the mode field excited in the multi-mode interference waveguide.
【0016】[0016]
【実施例】以下、図面を参照して本発明の実施例と原理
・効果を詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention and the principles and effects will be described below in detail with reference to the drawings.
【0017】図1及び図2は、基板として強誘電体材料
であるLNを用いた場合、本発明による2×2光制御回
路の一実施例であり、図1は光制御回路の斜視図、図2
はその上面図を示す。図1及び図2に示すように、本実
施例の光制御回路は、LN基板11にチタン(Ti)あ
るいはプロトン等の不純物拡散により形成した2本の入
力導波路12,2本の出力導波路13、並びにMMI光
合分波導波路部14が形成されてなる光制御回路におい
て、前記MMI光合分波導波路部14に複数の電極1
6,17が配置され、かつ前記電極16,17が前記多
モード干渉導波路内に励起されるモードフィールドの分
布に合わせるように設定されている。前記LN基板11
は、−zカット板(:+z方向がLN結晶のc軸に相当
する))であり、光導波路のクラッド部を構成してい
る。また、前記LN基板11の表面には、バッファ層1
5が形成されている。なお、図中、符号16は制御電極
の中心導体,17は制御電極の接地導体、18は外部電
源、及びP1 ,P2 は出力光を各々図示する。前記制御
電極の中心導体16,接地導体17は図中では斜線部で
示している(以下、同様)。FIGS. 1 and 2 show an embodiment of a 2 × 2 light control circuit according to the present invention when LN which is a ferroelectric material is used as a substrate. FIG. 1 is a perspective view of the light control circuit. FIG.
Shows a top view thereof. As shown in FIGS. 1 and 2, the light control circuit according to the present embodiment includes two input waveguides 12 and two output waveguides formed on an LN substrate 11 by diffusing impurities such as titanium (Ti) or protons. 13 and an MMI optical multiplexing / demultiplexing waveguide section 14, the plurality of electrodes 1
6 and 17 are arranged, and the electrodes 16 and 17 are set so as to match the distribution of the mode field excited in the multimode interference waveguide. The LN substrate 11
Denotes a -z cut plate (: the + z direction corresponds to the c-axis of the LN crystal), which constitutes a clad portion of the optical waveguide. The buffer layer 1 is provided on the surface of the LN substrate 11.
5 are formed. In the figure, reference numeral 16 denotes a central conductor of the control electrode, 17 denotes a ground conductor of the control electrode, 18 denotes an external power supply, and P 1 and P 2 denote output light. The center conductor 16 and the ground conductor 17 of the control electrode are indicated by hatching in the figure (the same applies hereinafter).
【0018】前記入出力導波路12,13の構造は、基
本的には従来の光制御デバイスと同じ構成であり、例え
ば、入力あるいは出力導波路にモノリシック集積あるい
はハイブリッド集積によって接続される光機能処理デバ
イス部(例えばEO効果を利用した変調電極が配置され
た屈折率変調部、あるいは第2次高調波発生等の非線形
効果を利用した光波長制御部等)や、接続される光ファ
イバ等の導波光と同程度の大きさのスポットサイズを与
える構造としており、導波路12,13幅wi,wo 、
コア厚tg (不純物の拡散長)の寸法ならびにそれら不
純物の拡散濃度が設定される。ここで、入出力導波路1
2,13の間隔dは、接続される光機能処理部等の構造
を勘案して設定され、必要に応じて入出力部で異なった
大きさにしても良い。The structure of the input / output waveguides 12 and 13 is basically the same as that of a conventional light control device. For example, an optical function processing connected to an input or output waveguide by monolithic integration or hybrid integration. A device section (for example, a refractive index modulation section in which a modulation electrode using the EO effect is arranged, or an optical wavelength control section using a non-linear effect such as second harmonic generation, etc.), and an optical fiber to be connected. It has a structure that gives a spot size about the same size as the wave light, and the widths w i , w o ,
The dimensions of the core thickness t g (diffusion length of the impurities) and the diffusion concentrations of the impurities are set. Here, the input / output waveguide 1
The distance d between 2 and 13 is set in consideration of the structure of the connected optical function processing section and the like, and may be different in the input / output section as needed.
【0019】前記MMI光合分波導波路部14は、例え
ば文献[:P.A.Besse. M.Bachmann.H.Melchior, L.B.So
ldano, and M.K.Smit."Optical.bandwidth and fabrica
tion tolerances of multimode interference coupler
s." Journal of Lightwave Technology, vol.12, no.6.
pp.1004-1009. 1994.]に示されるような、従来の2×
2合分波回路のMMI導波路と同様に構成されている。The MMI optical multiplexing / demultiplexing waveguide section 14 is described, for example, in the literature [: PABesse. M. Bachmann. H. Melchior, LBSo
ldano, and MKSmit. "Optical.bandwidth and fabrica
tion tolerances of multimode interference coupler
s. "Journal of Lightwave Technology, vol.12, no.6.
pp. 1004-1009. 1994.].
It has the same configuration as the MMI waveguide of the two-multiplexing / demultiplexing circuit.
【0020】図3(a),(b),(c)は、本発明に
よる図1及び図2の実施例の原理を説明するための図で
ある。図3(a)はMMI導波路断面部の電圧印加前後
の屈折率分布、図3(b)は電圧が無印加(V=0)時
のMMI内に励振される基本(0次)モードと高次(:
この場合1次)モードの電界強度分布図、図3(c)は
図2のMMIの中央A−A′部の断面図である。LN結
晶はポッケルス効果によって、外部印加電圧の大きさに
応じて、その屈折率の大きさが変化する。−zカットL
N基板11を用いた図1の実施例において、図3(c)
のような電極配置にして電圧を印加すると、z方向に偏
波面をもつ光波に対しては、ポッケルス効果の異方性に
よって、LN基板面と垂直方向(z方向)の外部印加電
界の影響を大きく受けるので、特に電極部16,17の
直下部で屈折率の大きさが大きく変化する。FIGS. 3A, 3B and 3C are views for explaining the principle of the embodiment of FIGS. 1 and 2 according to the present invention. FIG. 3A shows a refractive index distribution of a cross section of the MMI waveguide before and after voltage application, and FIG. 3B shows a fundamental (0th-order) mode excited in the MMI when no voltage is applied (V = 0). Higher order (:
In this case, an electric field intensity distribution diagram of the (first-order) mode, and FIG. 3C is a cross-sectional view of the center AA ′ of the MMI in FIG. The magnitude of the refractive index of the LN crystal changes according to the magnitude of an externally applied voltage due to the Pockels effect. -Z cut L
In the embodiment of FIG. 1 using the N substrate 11, FIG.
When a voltage is applied in such an electrode arrangement as described above, the effect of an externally applied electric field in the direction perpendicular to the LN substrate surface (z direction) due to the anisotropy of the Pockels effect for light waves having a polarization plane in the z direction. Since the light is greatly received, the magnitude of the refractive index greatly changes particularly immediately below the electrode portions 16 and 17.
【0021】図3(a)は電圧Vの極性がマイナスの場
合の変化を示している。この時、中心電極16直下のM
MI中心部の屈折率変化に対して、図3(b)に示した
MMI導波路の各光波モードの電界強度分布から分かる
ように、基本モードは中心部の光電界強度が強いため
に、大きな影響を受け、その等価屈折率(伝搬定数)の
大きさは大きく変化する。一方、1次モードに対して
は、屈折率変化部でのモード光電界強度が相対的に弱く
なっているので、その影響は比較的小さく、等価屈折率
の変化量は小さい。FIG. 3A shows a change when the polarity of the voltage V is negative. At this time, M
As can be seen from the electric field intensity distribution of each light wave mode of the MMI waveguide shown in FIG. 3B with respect to the change in the refractive index at the center of the MI, the fundamental mode is large because the optical electric field intensity at the center is strong. Under the influence, the magnitude of the equivalent refractive index (propagation constant) greatly changes. On the other hand, since the mode optical electric field intensity in the refractive index changing portion is relatively weak in the first-order mode, the effect is relatively small, and the amount of change in the equivalent refractive index is small.
【0022】本発明では、MMI導波路に励振される光
波モードのうち、光合分波動作に利用する各モードの電
界強度分布に合わせるように、MMI領域上に電極を適
当に配置している。これによって、印加電圧によって生
ずる屈折率変化に対して、各モードへの影響の度合いに
差を持たせる事を利用して、光分配比調整あるいは光ス
イッチング動作を高効率に行っている。In the present invention, electrodes are appropriately arranged on the MMI region so as to match the electric field intensity distribution of each mode used for the optical multiplexing / demultiplexing operation among the lightwave modes excited in the MMI waveguide. Thus, the light distribution ratio adjustment or the optical switching operation is performed with high efficiency by making use of the difference in the degree of influence on each mode with respect to the change in the refractive index caused by the applied voltage.
【0023】図4(a),(b)及び図5(a),
(b)は、図1の実施例において、本発明の効果を説明
する図であり、波長1.53μm帯2×2MMI光合分
波回路について、固有モード展開法を用いた近似計算の
結果を示す。ここでは、通常の熱拡散法によりLN基板
にTiを拡散して形成した光導波路で構成した場合を解
析している。計算を簡単化するために、電圧無印加の
時、拡散導波路をコア層、クラッド部がそれぞれ一様な
大きさの屈折率を持つものとして、等価屈折率法による
スラブ導波路モデル解析を行っている。FIGS. 4A and 4B and FIGS.
FIG. 2B is a diagram for explaining the effect of the present invention in the embodiment of FIG. 1 and shows a result of an approximate calculation using an eigenmode expansion method for a 1.53 μm band 2 × 2 MMI optical multiplexing / demultiplexing circuit. . Here, the case where the optical waveguide is formed by diffusing Ti into an LN substrate by a normal thermal diffusion method is analyzed. In order to simplify the calculation, when no voltage is applied, the slab waveguide model analysis was performed by the equivalent refractive index method, assuming that the diffused waveguide had a uniform refractive index for the core layer and the cladding had a uniform size. ing.
【0024】入出力導波路幅はwi =wo =6μm、入
出力導波路間隔はd=20μm一定とした。また、電極
ギャップはG1 =G2 として、図3(a)に示すような
MMI内の屈折率分布を対称形状になるようにした。外
部印加電界によるLNの屈折率変化量Δnについては、
LN結晶のポッケルス効果と通常のバッファ層15の材
質、厚さを想定して、ここではz方向の偏波をもつ伝搬
光(波長1.53μm帯)に対して、Δn=1×10-5
/Vとして計算した。The width of the input and output waveguides was fixed at w i = w o = 6 μm, and the distance between the input and output waveguides was fixed at d = 20 μm. The electrode gap is set to G 1 = G 2 , and the refractive index distribution in the MMI as shown in FIG. Regarding the refractive index change Δn of LN due to an externally applied electric field,
Assuming the Pockels effect of the LN crystal and the material and thickness of the normal buffer layer 15, here, for propagating light having a polarization in the z-direction (wavelength 1.53 μm band), Δn = 1 × 10 −5.
/ V.
【0025】図4(a)では、図1において電圧V=0
の時のほぼ3dB(P1 =P2 〜P 0 /2)の光分配回
路になるように、MMI導波路幅wg =29μm、長さ
L=3.15mmに設定している。この様にすることよ
り消光比を大きくすることができる。この時、電極幅W
を変えた時の出力光P1 ,P2 の印加電圧依存性を示
す。この図から、Wを狭くする程高効率な光分配調整動
作が可能になり、またスイッチング動作させる時、高消
光比特性を得られる事が分かる。これは、MMI導波路
中央部の屈折率変化に対する、1次モード伝搬特性への
影響が相対的に小さくなっているための効果である。た
だし、Wが〜4μm以下になると、基本モードへの影響
も小さくなり、動作効率が悪くなることを確認してい
る。In FIG. 4A, the voltage V = 0 in FIG.
3 dB (P1= PTwo~ P 0/ 2) Light distribution times
The width of the MMI waveguide wg= 29 μm, length
L is set to 3.15 mm. Do this
The extinction ratio can be increased. At this time, the electrode width W
Output light P when changing1, PTwoShows the applied voltage dependence of
You. From this figure, it can be seen that as W becomes smaller, the light distribution adjustment operation becomes more efficient.
Operation becomes possible, and when switching operation is performed,
It can be seen that light ratio characteristics can be obtained. This is the MMI waveguide
For the change in the refractive index at the center,
This is because the influence is relatively small. Was
However, when W becomes less than 4 μm, the influence on the fundamental mode
Has also been reduced and operating efficiency has been reduced.
You.
【0026】図4(b)は、wg =29μm,W=8μ
m一定とした時、MMI導波路長Lを変えた時の動作特
性である。Lが3.15mmmより長くなる、あるいは
短くなると過剰損失が大きくなるが、各曲線の傾きはほ
ぼ同一であり、印加電圧の差が同一であれば、損失の変
化の割合、あるいはP1 とP2 の比はさほど変化しない
事が分かる。この事から、従来例の問題点であったデバ
イス製作時の僅かな構造、寸法等の偏差によって特性バ
ラツキが大きく生じていたのに対して、本発明ではこの
問題を緩和できる事が分かる。FIG. 4B shows that w g = 29 μm and W = 8 μm.
This is an operation characteristic when the MMI waveguide length L is changed when m is constant. When L is longer or shorter than 3.15 mm, the excess loss increases. However, the slopes of the curves are almost the same, and if the difference between the applied voltages is the same, the rate of loss change, or P 1 and P 1 It can be seen that the ratio of 2 does not change much. From this fact, it can be seen that, although a large variation in the characteristics is caused by a slight deviation in the structure, dimensions and the like at the time of device fabrication, which was a problem of the conventional example, this problem can be alleviated in the present invention.
【0027】図5(a)は、d=20μm、W=8μm
一定とし、MMI導波路幅wg 変えて導波路長Lを2×
2光分配動作が最適になるように設定した時の特性であ
る。wg を広く設定してLを長くする程、僅かな屈折率
変化で動作できるので、高効率動作が可能になる。従っ
て、wgを固定して、MMI導波路長L′を図4
(a),(b)及び図5(a)に示した実施例のLに対
して、L′=L+2nL(n=1,2,3,・・・)に
設定すれば、同様な特性を得られるので、L′を長くす
る程さらに高効率な動作が可能である。FIG. 5A shows that d = 20 μm and W = 8 μm.
The waveguide length L is set to 2 × by changing the MMI waveguide width w g to be constant.
This is the characteristic when the two-light distribution operation is set to be optimal. A longer L by setting wide w g, the ability to operate with little change in refractive index, it becomes possible to high efficiency operation. Therefore, wg is fixed, and the MMI waveguide length L 'is changed as shown in FIG.
If L ′ = L + 2nL (n = 1, 2, 3,...) Is set for L in the embodiment shown in FIGS. 5A and 5B and FIG. Therefore, more efficient operation is possible as L ′ is increased.
【0028】以上の図4(a),(b)及び図5(a)
では、電極16,17にバイアスを印加しない(V=
0)時に、出力導波路13からそれぞれほぼ等しい出力
光を得る(P1 〜P2 )ように、MMI導波路構造を設
定した場合を示した。4 (a), 4 (b) and 5 (a)
Then, no bias is applied to the electrodes 16 and 17 (V =
0) sometimes give approximately equal output light from each of the output waveguide 13 (P 1 ~P 2) as showed If you set the MMI waveguide structure.
【0029】図5(b)では、0バイアス(V=0)時
に出力光P1 がほぼ0になるようにMMI導波路構造を
設定した場合の動作特性を示す。この様にする事により
消光比を大きくすることができる。この場合も、電圧V
を適当に印加することにより、光分配・スイッチング動
作が可能な事が分かる。また、図5(b)の実施例のL
に対して、L′=nL(n=1,2,3,・・・)に設
定すれば、L′を長くする程、高効率な動作が可能であ
る。FIG. 5B shows the operating characteristics when the MMI waveguide structure is set so that the output light P 1 becomes almost 0 at zero bias (V = 0). By doing so, the extinction ratio can be increased. Also in this case, the voltage V
It can be understood that the light distribution / switching operation can be performed by appropriately applying. Further, L of the embodiment of FIG.
On the other hand, if L ′ = nL (n = 1, 2, 3,...), The longer the L ′, the more efficient the operation.
【0030】以上では入出力導波路幅はwi =wo =6
μm、入出力導波路間隔はd=20μm一定として、電
極ギャップをG1 =G2 とした場合を示したが、wi ,
wo,dあるいは導波路材料の屈折率nの大きさや導波
光のスポットサイズの大きさに合わせて、MMI導波路
・電極構造を適当に設定すれば、本発明の効果を同様に
得る事ができる。また、入出力導波路の寸法やMMI導
波路に接続する位置、あるいはMMI導波路構造を適当
に設定する事により、V=0の時のP1 ,P2の分配比
を任意の大きさに設定でき、この場合も本発明の効果を
得ることができる。In the above description, the input / output waveguide width is w i = w o = 6.
[mu] m, output waveguide spacing as d = 20 [mu] m constant, but the electrode gap shows a case in which the G 1 = G 2, w i ,
If the MMI waveguide / electrode structure is appropriately set in accordance with w o , d or the size of the refractive index n of the waveguide material or the size of the spot size of the guided light, the effect of the present invention can be similarly obtained. it can. Also, by appropriately setting the dimensions of the input / output waveguides, the positions connected to the MMI waveguides, or the MMI waveguide structure, the distribution ratio of P 1 and P 2 when V = 0 can be set to an arbitrary size. Can be set, and in this case also, the effects of the present invention can be obtained.
【0031】図6は、本発明による他の一実施例の上面
図であり、−zカットLN基板21を用いた2×2光分
波回路の構成を示している。入出力導波路22,23及
びMMI導波路24の構造や導波路間隔dは、図1の実
施例と同じである。この場合、電圧印加による屈折率変
化の効果を、基本モードに対しては小さくし、1次モー
ドに対しては大きくなるように、電極中心導体26を2
箇所配置している。従って、本実施例の中心導体ギャッ
プGを図1の実施例の電極幅Wとおおよそ同じ大きさに
すると、図1の実施例と同様の動作特性を得ることがで
きる。ただし、電圧の極性に対しては逆の動作特性にな
る。FIG. 6 is a top view of another embodiment of the present invention, showing the configuration of a 2 × 2 optical demultiplexing circuit using a −z cut LN substrate 21. The structures of the input / output waveguides 22 and 23 and the MMI waveguide 24 and the waveguide spacing d are the same as those in the embodiment of FIG. In this case, the electrode center conductor 26 is arranged so that the effect of the change in the refractive index due to the voltage application is small for the fundamental mode and large for the primary mode.
It is arranged in places. Therefore, when the center conductor gap G of this embodiment is set to be approximately the same size as the electrode width W of the embodiment of FIG. 1, the same operation characteristics as those of the embodiment of FIG. 1 can be obtained. However, the operation characteristics are opposite to the polarity of the voltage.
【0032】図7は、本発明による他の一実施例の上面
図であり、x若しくはyカットLN基板31を用いた2
×2光分波回路の構成を示している。入出力導波路3
2,33及びMMI導波路34の構造は、図1の実施例
と同じである。本実施例の場合、LN基板31面と平行
方向(z方向)の外部印加電界を利用するので、中心導
体36と接地導体37のMMI間隙部の屈折率が大きく
変化する。従って、本構成の電極配置(G〜W、W1 〜
G1 、W2 〜G2 )によって、図1の実施例の場合と同
様な動作特性を実現できる。FIG. 7 is a top view of another embodiment according to the present invention, in which an x- or y-cut LN substrate 31 is used.
The configuration of the × 2 optical demultiplexing circuit is shown. I / O waveguide 3
The structures of the 2, 33 and MMI waveguides 34 are the same as in the embodiment of FIG. In the case of the present embodiment, since an externally applied electric field in a direction parallel to the surface of the LN substrate 31 (z direction) is used, the refractive index of the MMI gap between the center conductor 36 and the ground conductor 37 greatly changes. Therefore, the electrode arrangement of this configuration (G to W, W 1 to
G 1 , W 2 to G 2 ) can realize the same operation characteristics as in the embodiment of FIG.
【0033】図7において、基板31として−zカット
LN基板を用い、同じ導波路・電極構成をとった場合
も、本発明の効果を得る事ができる。この場合、入出力
導波路幅wi =wo =6μm、入出力導波路間隔d=2
0μm、MMI導波路幅wg =29μm、電極ギャップ
G=10μm一定として、導波路長Lを変えた時の2×
2光分波特性を図8に示す。L=3.15mmの場合、
過剰損失が比較的小さくでき、印加電圧によって光分配
比をかえる事ができる。ただし、この場合、電圧印加に
よって、MMI導波路内の屈折率分布が非対称形になる
ために、図1の実施例(図4(b))と異なる動作特性
を示す。すなわち、本発明ではMMI導波路内のフィー
ルド形状に合せて、MMI導波路内の屈折率変化の特性
・大きさを外部電源で制御すれば、各モードの伝搬定数
とフィールド形状を同時に変えることができるので、光
分波器の分配比や出力特性をさらに最適に制御できるこ
とになる。In FIG. 7, the effect of the present invention can be obtained also when the same waveguide and electrode configuration is used by using a -z cut LN substrate as the substrate 31. In this case, the input / output waveguide width w i = w o = 6 μm and the input / output waveguide interval d = 2
2 μm when the waveguide length L was changed with the MMI waveguide width w g = 29 μm and the electrode gap G = 10 μm constant, 0 μm.
FIG. 8 shows the two light demultiplexing characteristics. When L = 3.15 mm,
The excess loss can be made relatively small, and the light distribution ratio can be changed by the applied voltage. However, in this case, since the refractive index distribution in the MMI waveguide becomes asymmetrical due to the application of the voltage, an operation characteristic different from that of the embodiment of FIG. 1 (FIG. 4B) is exhibited. That is, in the present invention, if the characteristics and magnitude of the refractive index change in the MMI waveguide are controlled by an external power supply in accordance with the field shape in the MMI waveguide, the propagation constant and the field shape of each mode can be changed simultaneously. Therefore, the distribution ratio and output characteristics of the optical demultiplexer can be more optimally controlled.
【0034】図9は、本発明による他の一実施例の上面
図であり、−zカットLN基板41を用いた1×2光分
波回路の構成を示している。入出力導波路42,43及
びMMI導波路44の構造は、図2の実施例と同じであ
る。前記1×2光分波MMI導波路44は、従来と同様
な構成にしても良い。この場合、MMI導波路44に励
振されるモードは、主に偶モード(0次,2次,4次,
・・・)になるので、これらのモードフィールド形状を
考慮して電極構造を設定すればよい。図9の実施例にお
いて、印加電圧V=0の時に出力光P1 ,P 2 が3dB
分波されるようにMMI導波路幅wg =40μm、導波
路長L=1.38mm、出力導波路幅d=20μmの構
造とした時、分波特性の印加電圧依存性を図10に示し
た。図10から電圧印加によって分配比を調整できるこ
とが分かる。FIG. 9 is a top view of another embodiment according to the present invention.
It is a figure and 1x2 light component using the -z cut LN board | substrate 41.
2 shows a configuration of a wave circuit. I / O waveguides 42, 43 and
The structure of the MMI waveguide 44 is the same as that of the embodiment of FIG.
You. The 1 × 2 optical demultiplexing MMI waveguide 44 is the same as the conventional one.
Configuration may be adopted. In this case, the MMI waveguide 44 is excited.
The modes to be shaken are mainly the even modes (0th order, 2nd order, 4th order,
…)
The electrode structure may be set in consideration of the above. In the embodiment of FIG.
And when the applied voltage V = 0, the output light P1, P TwoIs 3dB
MMI waveguide width w to be splitg= 40 μm, guided
A path length L = 1.38 mm and an output waveguide width d = 20 μm.
Fig. 10 shows the dependence of the demultiplexing characteristics on the applied voltage.
Was. FIG. 10 shows that the distribution ratio can be adjusted by applying a voltage.
I understand.
【0035】図11は、本発明による他の一実施例の上
面図であり、−zカットLN基板51を用いた1×2光
分波回路の構成を示している。入出力導波路52,53
及びMMI導波路54の構造は、図9の実施例と同じで
ある。この場合、電極56,57がMM1導波路の中央
部に配置される。電圧印加による屈折率変化に対して、
MMI内の基本モードより2次モードへの影響が相対的
に小さくなるように電極構成をとっている。図12は図
11の実施例の動作特性であり、適当な電圧印加によ
り、挿入損失を小さくできる。FIG. 11 is a top view of another embodiment according to the present invention, and shows the configuration of a 1 × 2 optical demultiplexing circuit using a −z cut LN substrate 51. Input / output waveguides 52, 53
The structure of the MMI waveguide 54 is the same as that of the embodiment of FIG. In this case, the electrodes 56 and 57 are arranged at the center of the MM1 waveguide. For the change in refractive index due to voltage application,
The electrode configuration is such that the influence on the secondary mode is relatively smaller than the fundamental mode in the MMI. FIG. 12 shows the operation characteristics of the embodiment of FIG. 11, and the insertion loss can be reduced by applying an appropriate voltage.
【0036】図13は、本発明による他の一実施例の上
面図であり、−zカットLN基板161を用いた1×3
光分波回路の構成を示している。入出力導波路62,6
3及びMMI導波路64の構造は、図9の実施例と同じ
である。この場合、2つの電極中心導体66−1,66
−2にそれぞれ別々の電源68が接続される。図13の
実施例において、電圧が無印加(V1 =V2 =0)の
時、出力P1 ,P2 ,P3 が等分配されるようにMMI
導波路64を構成した場合の動作特性例を図14
(a),(b)に示す。図14(a)は、2つの中心導
体66−1,66−2を等電圧(V2 =V1 )に、図1
4(b)はその極性を逆(V2 =−V1 )にした時の特
性である。すなわち、適当なバイアス設定により、1×
3光スイッチング動作が可能である。FIG. 13 is a top view of another embodiment of the present invention, showing a 1 × 3 using a −z cut LN substrate 161.
3 shows a configuration of an optical demultiplexing circuit. Input / output waveguides 62, 6
The structures of the MMI waveguide 3 and the MMI waveguide 64 are the same as those of the embodiment of FIG. In this case, the two electrode center conductors 66-1, 66
-2 are connected to different power supplies 68, respectively. In the embodiment of FIG. 13, when no voltage is applied (V 1 = V 2 = 0), the MMI is set so that the outputs P 1 , P 2 , and P 3 are equally distributed.
FIG. 14 shows an example of operation characteristics when the waveguide 64 is formed.
(A) and (b) show. FIG. 14A shows that two center conductors 66-1 and 66-2 are set to the same voltage (V 2 = V 1 ).
FIG. 4B shows the characteristics when the polarity is reversed (V 2 = −V 1 ). That is, 1 ×
Three optical switching operations are possible.
【0037】図15は、本発明による他の一実施例の上
面図であり、−zカットLN基板71を用いた1×2光
分波回路の構成を示している。この場合、1×2光分波
MMI導波路74の幅wg やコア厚tg はテーパ状に構
成されており、このテーパー状の導波路には、入出力導
波路72,73が形成されている。前記入力導波路72
側の構造は、基本的には従来のMMIと同じ構造をと
り、入力導波路に接続される例えば半導体光機能デバイ
スの導波光と同じ大きさのスポットサイズを与える導波
路幅wi ,wgi、コア厚tgiの寸法ならびにそれらの材
質が設定される。MMIの出力導波路73側では、出力
導波路に接続される例えば光ファイバのスポットサイズ
に合わせるように、出力導波路、MMI導波路幅wo ,
wgo、コア厚tgoが設定される。この場合、入力側と比
較して出力側導波光のスポットサイズを拡大している実
施例を示している。横方向のスポットサイズは、MMI
導波路幅wgを光軸方向でテーパ状に徐々に広くする事
によって拡大している。テーパー状にすることにより、
素子の小型化が図れると共に、スポットサイズの変換を
行うことが可能となる。FIG. 15 is a top view of another embodiment according to the present invention, and shows the configuration of a 1 × 2 optical demultiplexing circuit using a −z cut LN substrate 71. In this case, the width w g and the core thickness t g of the 1 × 2 optical demultiplexing MMI waveguide 74 are tapered, and input / output waveguides 72 and 73 are formed in this tapered waveguide. ing. The input waveguide 72
The side structure basically has the same structure as the conventional MMI, and has waveguide widths w i and w gi that provide the same spot size as the guided light of, for example, a semiconductor optical function device connected to the input waveguide. , The dimensions of the core thickness t gi and their materials are set. On the output waveguide 73 side of the MMI, the output waveguide, the MMI waveguide width w o , and the width of the MMI waveguide are adjusted to match the spot size of, for example, an optical fiber connected to the output waveguide.
w go and core thickness t go are set. In this case, an embodiment is shown in which the spot size of the output-side guided light is enlarged as compared with the input side. The horizontal spot size is MMI
The waveguide width wg is enlarged by gradually widening the waveguide width wg in a tapered shape in the optical axis direction. By making it tapered,
The size of the element can be reduced, and the spot size can be converted.
【0038】そのテーパ形状については、例えば放物線
状あるいは指数関数状等の曲線形状、直線形状、あるい
はそれらの組み合わせでもよい。縦(:深さ)方向のス
ポットサイズは、この場合コア厚tg をz軸方向で徐々
に薄くして縦方向の導波路閉じ込め効果を弱くする事に
よって拡大している。また、逆にコア厚を必要なスポッ
トサイズの大きさに合わせて、徐々に厚く構成してもよ
い。このようなMMI導波路内を伝搬する光波のフィー
ルド形状に合わせて電極76,77の形状をテーパ状に
構成することにより本発明の効果を得ることができる。
また、入出力導波路幅を同じ(wi =wo )にして、M
MI導波路・電極テーパ形状を適当に設定すれば1×2
光スイッチ動作も可能である。The taper shape may be, for example, a curve shape such as a parabolic shape or an exponential shape, a linear shape, or a combination thereof. In this case, the spot size in the vertical (: depth) direction is enlarged by gradually reducing the core thickness t g in the z-axis direction to weaken the vertical waveguide confinement effect. Conversely, the core thickness may be gradually increased in accordance with the required spot size. The effects of the present invention can be obtained by forming the electrodes 76 and 77 in a tapered shape in accordance with the field shape of the light wave propagating in the MMI waveguide.
In addition, the input and output waveguide width to the same (w i = w o), M
1 × 2 if the MI waveguide / electrode taper shape is set appropriately
Optical switch operation is also possible.
【0039】図16は、本発明による他の一実施例の上
面図であり、電極86,87の寸法、形状をマイクロ波
線路の一部として構成した進行波形コプレーナ電極(:
CPW)を用いた場合を示す。入出力導波路82,83
及びMMI導波路84の構造は、図1の実施例と同じで
ある。電極の光入射側から信号源89からのマイクロ波
信号を入力させ、電極の出力側に終端抵抗(R)90を
接続している。このような進行波形電極構成において、
マイクロ波と光波の伝搬速度を一致(:速度整合比)さ
せ、しかも電極の特性インピーダンスを信号線、終端抵
抗のイン−ダンスZi,R(通常Zi=R=50Ω)に
合わせるようにコプレーナ電極86,87構造を設定す
ることにより高速な光分配・スイッチ動作が可能にな
る。FIG. 16 is a top view of another embodiment of the present invention, in which a traveling waveform coplanar electrode (: :) in which the dimensions and shape of the electrodes 86 and 87 are formed as a part of a microwave line.
CPW) is shown. Input / output waveguides 82, 83
The structure of the MMI waveguide 84 is the same as that of the embodiment of FIG. A microwave signal from a signal source 89 is input from the light incident side of the electrode, and a terminating resistor (R) 90 is connected to the output side of the electrode. In such a traveling waveform electrode configuration,
The coplanar electrode 86 is set so that the propagation speeds of the microwave and the light wave are matched (the speed matching ratio), and the characteristic impedance of the electrode is adjusted to the impedance Zi, R (usually Zi = R = 50Ω) of the signal line and the terminating resistor. , 87, a high-speed light distribution / switch operation becomes possible.
【0040】図17は、本発明による他の一実施例の斜
視図であり、光制御回路を半導体材料で構成した場合の
一例を示す。111は導波路のクラッド部および接地電
極107の一部の機能をもつn形半導体、112は単層
あるいは例えば多層量子井戸層のような異なる材質から
なる多層の半導体コア層、113はクラッド部になるp
形半導体およびキャップ層である。このような構成にお
いて、ポッケルス効果、あるいはキャリア注入によるプ
ラズマ効果、量子閉じ込めシュタルク効果等の電気光学
効果を利用して中心導体106直下の半導体コア層11
2の屈折率を電源108からの信号に応じて変化させれ
ば本発明の効果を得ることが出来る。FIG. 17 is a perspective view of another embodiment of the present invention, showing an example in which the light control circuit is made of a semiconductor material. 111 is an n-type semiconductor having a part of the cladding portion of the waveguide and part of the ground electrode 107; 112 is a single-layer or a multi-layer semiconductor core layer made of a different material such as a multilayer quantum well layer; Becomes p
Semiconductor and a cap layer. In such a configuration, the semiconductor core layer 11 immediately below the central conductor 106 is formed by utilizing an electro-optic effect such as the Pockels effect, plasma effect due to carrier injection, and quantum confined Stark effect.
If the refractive index of No. 2 is changed according to the signal from the power supply 108, the effect of the present invention can be obtained.
【0041】以上では、2×2、1×2若しくは1×3
の光分波回路構成を示したが、これ以外に、例えば高消
光比特性を得るための光合波回路や、n×m光合分波回
路(n,m:任意の整数)、光波長フィルタ、光モード
フィルタ、あるいは異なる波長の光を合分波する光デバ
イス等、MMI導波路の特性を利用したあらゆる光デバ
イスに本発明を適用できる。In the above description, 2 × 2, 1 × 2 or 1 × 3
In addition to the above, for example, an optical multiplexing circuit for obtaining a high extinction ratio characteristic, an n × m optical multiplexing / demultiplexing circuit (n, m: any integer), an optical wavelength filter, The present invention can be applied to any optical device using the characteristics of the MMI waveguide, such as an optical mode filter or an optical device that multiplexes / demultiplexes light of different wavelengths.
【0042】以上では、基板にLiNbO3 を、コア層
にTi拡散導波路を用いた場合を主に示したが、これ以
外に導波路材料として、LiTaO3 やPLZT等の強
誘電体材料、あるいは半導体材料、ガラス、石英等の無
機材料、ポリイミド等の有機材料など電気光学効果を有
するあらゆる光導波路材料を用いたデバイスに対して本
発明を適用できる。In the above, the case where LiNbO 3 is used for the substrate and the Ti diffusion waveguide is used for the core layer has been mainly shown, but other ferroelectric materials such as LiTaO 3 and PLZT or the like may be used as the waveguide material. The present invention can be applied to devices using any optical waveguide material having an electro-optical effect such as a semiconductor material, an inorganic material such as glass and quartz, and an organic material such as polyimide.
【0043】以上では、MMI導波路内の主にコア層の
屈折率を外部電源で変化させる場合を示したが、例えば
MMI導波路のコア層近傍に配置された一部クラッド層
の屈折率を変化させて各モードの伝搬特性を制御しても
同様の効果を得ることができる。また、MMI導波路の
入出力部に入出力導波路を配置した場合を示したが、M
MI入出力部に他の光導波路デバイスがそれぞれの導波
路端面で直接光結合をとる、あるいはレンズを介して接
続される場合も、それら接続される導波光のスポットサ
イズに合わせるように、MMIの構造・材質・寸法を適
当に設定すれば本発明の効果を得ることができる。ま
た、他の光機能デバイスを本発明の光制御デバイス入出
力導波路部にモノリシックあるいはハイブリッド集積化
しても本発明の効果を得ることができるのは自明であ
る。Although the case where the refractive index of the core layer in the MMI waveguide is mainly changed by an external power supply has been described above, for example, the refractive index of a part of the cladding layer arranged near the core layer of the MMI waveguide is changed. The same effect can be obtained by controlling the propagation characteristics of each mode by changing the mode. Also, the case where the input / output waveguide is arranged in the input / output section of the MMI waveguide has been described.
Even when other optical waveguide devices are directly optically coupled to the MI input / output unit at the respective waveguide end faces or connected via lenses, the MMI of the MMI is adjusted to match the spot size of the connected guided light. The effects of the present invention can be obtained by appropriately setting the structure, material, and dimensions. It is obvious that the effects of the present invention can be obtained even if other optical function devices are monolithically or hybrid-integrated in the optical control device input / output waveguide section of the present invention.
【0044】[0044]
【発明の効果】以上説明したように、本発明による光制
御回路は、光合分波回路として、導波路内の複数のモー
ド間の干渉を利用して光波の合分波機能を持たせた多モ
ード干渉導波路を用い、その領域上の少なくとも一部に
制御用電極を励振モードフィールド形状に合わせるよう
に配置し、外部電源から制御用電極に電圧若しくは電流
を印加することによって光を合分波制御あるいはスイッ
チング動作しているので、デバイス製作時の材質・寸法
等の許容偏差量が緩和され、さらに低損失から高効率な
動作を可能にしている。As described above, the optical control circuit according to the present invention, as an optical multiplexing / demultiplexing circuit, has a function of multiplexing / demultiplexing light waves by utilizing interference between a plurality of modes in a waveguide. Using a mode interference waveguide, a control electrode is arranged in at least a part of the area so as to match the excitation mode field shape, and light is multiplexed / demultiplexed by applying a voltage or current from an external power supply to the control electrode. Since the control or switching operation is performed, the allowable deviation of the material, dimensions, and the like at the time of device fabrication is reduced, and furthermore, a highly efficient operation from low loss is enabled.
【図1】本発明による光制御回路の一実施例を示す斜視
図である。FIG. 1 is a perspective view showing one embodiment of a light control circuit according to the present invention.
【図2】本発明による光制御回路の一実施例を示す上面
図である。FIG. 2 is a top view showing one embodiment of the light control circuit according to the present invention.
【図3】(a),(b),(c)は本発明の原理を説明
するための図である。FIGS. 3A, 3B and 3C are diagrams for explaining the principle of the present invention.
【図4】(a),(b)は本発明の効果を説明するため
の図である。FIGS. 4A and 4B are diagrams for explaining the effect of the present invention.
【図5】(a),(b)は本発明の効果を説明するため
の図である。FIGS. 5A and 5B are diagrams for explaining the effect of the present invention.
【図6】本発明の他の実施例を示す上面図である。FIG. 6 is a top view showing another embodiment of the present invention.
【図7】本発明の他の実施例を示す上面図である。FIG. 7 is a top view showing another embodiment of the present invention.
【図8】本発明の効果を説明するための図である。FIG. 8 is a diagram for explaining the effect of the present invention.
【図9】本発明の他の実施例を示す上面図である。FIG. 9 is a top view showing another embodiment of the present invention.
【図10】本発明の効果を説明するための図である。FIG. 10 is a diagram for explaining an effect of the present invention.
【図11】本発明の他の実施例を示す上面図である。FIG. 11 is a top view showing another embodiment of the present invention.
【図12】本発明の効果を説明するための図である。FIG. 12 is a diagram for explaining an effect of the present invention.
【図13】本発明の他の実施例を示す上面図である。FIG. 13 is a top view showing another embodiment of the present invention.
【図14】本発明の効果を説明するための図である。FIG. 14 is a diagram for explaining an effect of the present invention.
【図15】本発明の他の実施例を示す上面図である。FIG. 15 is a top view showing another embodiment of the present invention.
【図16】本発明の他の実施例を示す上面図である。FIG. 16 is a top view showing another embodiment of the present invention.
【図17】本発明の一実施例を示す斜視図である。FIG. 17 is a perspective view showing one embodiment of the present invention.
【図18】従来の光制御回路の斜視図である。FIG. 18 is a perspective view of a conventional light control circuit.
11,21,41,51,61,71,81 基板 12,22,42,52,62,72,82 入力導波
路 13,23,43,53,63,73,83 出力導波
路 14,24,44,54,64,74,83 MMI導
波路 15,25,45,55,65,75,85 バッファ
層 16,26,46,56,66,76 電極中心導体 17,27,47,57,67,77 電極接地導体 18,28,48,58,68,78,88 外部電源 86,87 コプレーナ電極 90 終端抵抗 106 中心導体 107 接地電極 108 電源 111 n形半導体 112 半導体コア層 113 p形半導体およびキャップ層11, 21, 41, 51, 61, 71, 81 substrates 12, 22, 42, 52, 62, 72, 82 input waveguides 13, 23, 43, 53, 63, 73, 83 output waveguides 14, 24, 44, 54, 64, 74, 83 MMI waveguide 15, 25, 45, 55, 65, 75, 85 Buffer layer 16, 26, 46, 56, 66, 76 Electrode center conductor 17, 27, 47, 57, 67 , 77 Electrode ground conductor 18, 28, 48, 58, 68, 78, 88 External power supply 86, 87 Coplanar electrode 90 Termination resistor 106 Center conductor 107 Ground electrode 108 Power supply 111 N-type semiconductor 112 Semiconductor core layer 113 P-type semiconductor and cap layer
Claims (8)
とを有する多モード干渉導波路からなる光制御回路にお
いて、 単数若しくは複数の電極を有し、そのうち少なくとも1
つが前記多モード干渉導波路上に配置され、かつ前記電
極の1つ若しくは複数が、前記多モード干渉導波路内に
励起されるモードフィールドの分布に合わせるように、
その個数、形状、配置が設定されていることを特徴とす
る光制御回路。1. An optical control circuit comprising a multi-mode interference waveguide having one or more optical input units and one or more optical output units, comprising: one or more electrodes;
One is arranged on the multimode interference waveguide, and one or more of the electrodes is adapted to the distribution of the mode field excited in the multimode interference waveguide,
A light control circuit, wherein the number, shape and arrangement are set.
路内に励起されるモードのうち、回路動作に利用される
モードのモードフィールドの分布のピーク位置を含むよ
うに、その個数、形状、配置が設定されていることを特
徴とする光制御回路。2. The method according to claim 1, wherein one or more of the electrodes determine a peak position of a mode field distribution of a mode used for circuit operation among modes excited in the multi-mode interference waveguide. A light control circuit characterized in that the number, shape, and arrangement are set so as to include the light control circuit.
光出力部からの各出射光が等分配されるようにしたこと
を特徴とする光制御回路。3. The light control circuit according to claim 1, wherein each output light from the light output section of the light control circuit is equally distributed in a state where no bias is applied to the electrode. .
の、1つ、若しくは一部の複数の光出力部から出射光が
出力されるようにしたことを特徴とする光制御回路。4. The light control circuit according to claim 1, wherein one or a plurality of light output units of the light control circuit output the light without applying a bias to the electrode. A light control circuit characterized by the above.
特徴とする光制御回路。5. The light control circuit according to claim 1, wherein the plurality of electrodes constitute a traveling waveform electrode.
方の平面形状を、テーパ状としたことを特徴とする光制
御回路。6. The light control circuit according to claim 1, wherein a plane shape of one or both of the multimode interference waveguide and the electrode is tapered.
多モード干渉導波路であることを特徴とする光制御回
路。7. The multimode interference waveguide according to claim 1, wherein the multimode interference waveguide is 1 × 2, 2 × 2, or 1 × 3.
An optical control circuit, which is a multimode interference waveguide.
において、 前記電極の各々に印可される電圧の極性及び大きさを、
前記多モード干渉導波路内に励起されるモードフィール
ドの分布に合わせるように設定することを特徴とする光
制御回路の動作方法。8. The operation method of the light control circuit according to claim 1, wherein a polarity and a magnitude of a voltage applied to each of the electrodes are:
An operation method of the light control circuit, wherein the operation is set so as to match a distribution of a mode field excited in the multimode interference waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9236671A JPH1184434A (en) | 1997-09-02 | 1997-09-02 | Light control circuit and operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9236671A JPH1184434A (en) | 1997-09-02 | 1997-09-02 | Light control circuit and operation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1184434A true JPH1184434A (en) | 1999-03-26 |
Family
ID=17004067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9236671A Withdrawn JPH1184434A (en) | 1997-09-02 | 1997-09-02 | Light control circuit and operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1184434A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1048971A1 (en) * | 1999-04-30 | 2000-11-02 | JDS Uniphase Inc. | MMI Thermo-optic coupler |
EP1308772A3 (en) * | 2001-11-06 | 2003-11-26 | Nanyang Technological University | A multimode interference (MMI) device |
KR100424606B1 (en) * | 2001-09-10 | 2004-03-27 | 이두환 | Adaptive optical attenuator using multi-mode interference |
WO2004104662A1 (en) * | 2003-05-23 | 2004-12-02 | Matsushita Electric Industrial Co., Ltd. | Optical device, optical device manufacturing method, and optical integrated device |
WO2007007438A1 (en) * | 2005-07-08 | 2007-01-18 | Keio University | Multimode interference waveguide type optical switch |
KR100721800B1 (en) | 2005-08-08 | 2007-05-28 | 주식회사 리트로닉스 | Variable Optical Splitter Using Multimode Interference |
JP2008107518A (en) * | 2006-10-25 | 2008-05-08 | Fuji Xerox Co Ltd | Optical add-drop multiplexer and optical communication system |
JP2008139671A (en) * | 2006-12-04 | 2008-06-19 | Fuji Xerox Co Ltd | Optical modulator |
US7403678B2 (en) | 2006-05-12 | 2008-07-22 | Fuji Xerox Co., Ltd. | Optical switching element |
WO2012099275A1 (en) * | 2011-01-21 | 2012-07-26 | 日本電気株式会社 | Optical coupler and method of branch control |
JP2023047337A (en) * | 2021-09-24 | 2023-04-05 | アップル インコーポレイテッド | Interferometric devices for wavelength locking |
-
1997
- 1997-09-02 JP JP9236671A patent/JPH1184434A/en not_active Withdrawn
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353694B1 (en) | 1999-04-30 | 2002-03-05 | Jds Uniphase Inc. | MMI thermo-optic coupler |
EP1048971A1 (en) * | 1999-04-30 | 2000-11-02 | JDS Uniphase Inc. | MMI Thermo-optic coupler |
KR100424606B1 (en) * | 2001-09-10 | 2004-03-27 | 이두환 | Adaptive optical attenuator using multi-mode interference |
EP1308772A3 (en) * | 2001-11-06 | 2003-11-26 | Nanyang Technological University | A multimode interference (MMI) device |
WO2004104662A1 (en) * | 2003-05-23 | 2004-12-02 | Matsushita Electric Industrial Co., Ltd. | Optical device, optical device manufacturing method, and optical integrated device |
US7266277B2 (en) | 2003-05-23 | 2007-09-04 | Matsushita Electric Industrial Co., Ltd. | Optical device, optical device manufacturing method, and optical integrated device |
KR101228225B1 (en) * | 2003-05-23 | 2013-01-31 | 파나소닉 주식회사 | Optical device, optical device manufacturing method, and optical integrated device |
US7860358B2 (en) | 2005-07-08 | 2010-12-28 | Keio University | Multimode interference waveguide type optical switch |
WO2007007438A1 (en) * | 2005-07-08 | 2007-01-18 | Keio University | Multimode interference waveguide type optical switch |
KR100721800B1 (en) | 2005-08-08 | 2007-05-28 | 주식회사 리트로닉스 | Variable Optical Splitter Using Multimode Interference |
US7403678B2 (en) | 2006-05-12 | 2008-07-22 | Fuji Xerox Co., Ltd. | Optical switching element |
JP2008107518A (en) * | 2006-10-25 | 2008-05-08 | Fuji Xerox Co Ltd | Optical add-drop multiplexer and optical communication system |
JP2008139671A (en) * | 2006-12-04 | 2008-06-19 | Fuji Xerox Co Ltd | Optical modulator |
WO2012099275A1 (en) * | 2011-01-21 | 2012-07-26 | 日本電気株式会社 | Optical coupler and method of branch control |
JP2023047337A (en) * | 2021-09-24 | 2023-04-05 | アップル インコーポレイテッド | Interferometric devices for wavelength locking |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2856880B2 (en) | Polarization-independent optical switch / modulator and method of manufacturing the same | |
JP5467414B2 (en) | Optical functional waveguide | |
JPH1184434A (en) | Light control circuit and operation method | |
US4184738A (en) | Light coupling and modulating means | |
JPH0424610A (en) | Optical modulator | |
JPH07318986A (en) | Waveguide type optical switch | |
EP1507166A1 (en) | Integrated optical amplification and switching module based on semiconductors | |
US20020159706A1 (en) | Optical device | |
JP2000028979A (en) | Polarization independent light control element | |
JPH07325276A (en) | Polarization-independent optical control element | |
JPH0996731A (en) | Waveguide type optical device | |
JP2946630B2 (en) | Light modulator | |
EP1217425A1 (en) | Optical intensity modulation device and method | |
JPH0593891A (en) | Waveguide type optical modulator and its driving method | |
JP3139009B2 (en) | Light switch | |
JP2580088Y2 (en) | Directional coupler type light control device | |
JP3164124B2 (en) | Light switch | |
JPH04350826A (en) | Waveguide type optical device | |
JPH0553157A (en) | Optical control device | |
JP2635986B2 (en) | Optical waveguide switch | |
JPH05224245A (en) | Hybrid optical circuit and matrix optical switch | |
JP2998373B2 (en) | Light control circuit | |
JP2606552B2 (en) | Light control device | |
Brik et al. | Study and Performance Optimization of an Integrated Mach-Zehnder Modulator for Optical Telecommunications | |
JP2616144B2 (en) | Light control device and light control circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20041102 |