[go: up one dir, main page]

JP2606552B2 - Light control device - Google Patents

Light control device

Info

Publication number
JP2606552B2
JP2606552B2 JP5136358A JP13635893A JP2606552B2 JP 2606552 B2 JP2606552 B2 JP 2606552B2 JP 5136358 A JP5136358 A JP 5136358A JP 13635893 A JP13635893 A JP 13635893A JP 2606552 B2 JP2606552 B2 JP 2606552B2
Authority
JP
Japan
Prior art keywords
optical waveguide
electric field
electrode
control electrode
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5136358A
Other languages
Japanese (ja)
Other versions
JPH06347737A (en
Inventor
豊 賣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5136358A priority Critical patent/JP2606552B2/en
Publication of JPH06347737A publication Critical patent/JPH06347737A/en
Application granted granted Critical
Publication of JP2606552B2 publication Critical patent/JP2606552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光波の変調、光路切り
換えなどを行う光制御デバイスに関し、特に基板中に設
けた光導波路を用いて制御を行う導波型の光制御デバイ
スに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light control device for modulating a light wave, switching an optical path, and the like, and more particularly, to a light control device of a waveguide type for controlling using an optical waveguide provided in a substrate.

【0002】[0002]

【従来の技術】光通信システムの実用化が進むにつれ、
さらに大容量や多機能を持つ高度のシステムが求められ
ており、より高度の光信号の発生や光伝送路の切り替
え、交換などの新たな機能の付加が必要とされている。
現在の実用システムでは、光信号は直接半導体レーザや
発光ダイオードの注入電流を変調することによって得ら
れているが、直接変調では緩和振動などの効果のため1
0GHz前後以上の高速変調が難しいこと、波長変動が
発生するためコヒーレント光伝送方式には適用が難しい
などの欠点がある。これを解決する手段としては、外部
変調器を使用する方法があり、特に基板中に形成した光
導波路により構成した導波型の光変調器は、小型、高効
率、高速という特徴がある。一方、光伝送路の切り替え
やネットワークの交換機能を得る手段としては、光スイ
ッチが使用される。現在実用されている光スイッチは、
プリズム、ミラー、ファイバなどを機械的に移動させる
ものであり、低速であること、信頼性が不十分であるこ
と、単体での寸法が大きくマトリクス化に不適であるこ
と等の欠点がある。
2. Description of the Related Art As optical communication systems have been put into practical use,
Further, advanced systems having a large capacity and multiple functions are required, and new functions such as generation of higher-level optical signals, switching of optical transmission lines, and exchange are required.
In the current practical system, an optical signal is obtained by directly modulating the injection current of a semiconductor laser or a light emitting diode.
There are drawbacks in that high-speed modulation of about 0 GHz or more is difficult, and it is difficult to apply to a coherent optical transmission system because of wavelength fluctuation. As a means for solving this problem, there is a method using an external modulator. In particular, a waveguide type optical modulator constituted by an optical waveguide formed in a substrate has features of small size, high efficiency, and high speed. On the other hand, an optical switch is used as a means for obtaining an optical transmission line switching or network switching function. Optical switches currently in practical use are:
It is a mechanism for mechanically moving a prism, a mirror, a fiber, and the like, and has disadvantages such as low speed, insufficient reliability, and a large size alone, which is unsuitable for matrix formation.

【0003】これを解決する手段として開発が進められ
ているものは、やはり光導波路を用いた導波型の光スイ
ッチであり、高速、多素子の集積化が可能、高信頼等の
特徴がある。特にニオブ酸リチウム(LiNbO3 )結
晶等の強誘電体材料を用いたものは、光吸収が小さく低
損失であること、大きな電気光学効果を有しているため
高効率である等の特徴があり、従来からも方向性結合器
型光変調器・スイッチ、全反射型光スイッチ、マッハツ
ェンダ型光変調器等の種々の方式の光制御素子が報告さ
れている。
What is being developed as a means for solving this problem is a waveguide type optical switch using an optical waveguide, which has features such as high speed, integration of many elements, and high reliability. . In particular, those using a ferroelectric material such as lithium niobate (LiNbO 3 ) have characteristics such as low light absorption, low loss, and high efficiency due to a large electro-optic effect. Conventionally, various types of light control elements such as a directional coupler type optical modulator / switch, a total reflection type optical switch, and a Mach-Zehnder type optical modulator have been reported.

【0004】図5(a),(b)に、従来の光制御デバ
イスの一例としてマッハツェンダ型光変調器の平面図及
び断面図を示す。図5(b)は、図5(a)の破線b−
b′部分の断面図を示している。図5(a)において、
Z軸に垂直に切り出したニオブ酸リチウム結晶基板1の
上にチタン(Ti)を拡散して屈折率を基板よりも大き
くして形成した帯状の光導波路21,22,23及び2
4が形成されている。光導波路21は基板の中央付近で
光導波路22及び23に分岐した後、再び合流して光導
波路24となりマッハツェンダ型干渉系を構成してい
る。マッハツェンダの2本の枝の光導波路22,23上
には電極による光吸収を防ぐためのバッファ層62を介
して制御電極61が形成されている。
FIGS. 5A and 5B are a plan view and a sectional view of a Mach-Zehnder type optical modulator as an example of a conventional light control device. FIG. 5B is a dashed line b− in FIG.
FIG. 4 shows a cross-sectional view of a portion b ′. In FIG. 5A,
Strip-shaped optical waveguides 21, 22, 23, and 2 formed by diffusing titanium (Ti) on the lithium niobate crystal substrate 1 cut out perpendicular to the Z axis to have a larger refractive index than the substrate.
4 are formed. The optical waveguide 21 branches off into optical waveguides 22 and 23 near the center of the substrate and then joins again to form an optical waveguide 24, which constitutes a Mach-Zehnder interference system. A control electrode 61 is formed on the Mach-Zehnder two branch optical waveguides 22 and 23 via a buffer layer 62 for preventing light absorption by the electrodes.

【0005】光導波路21に入射した入射光5は2本の
光導波路22,23に分けられ、それぞれの枝を伝搬し
た後に光導波路24に合流し出射光6となる。通常、2
本の枝の光導波路22,23は同じ光路長で、制御電極
61は2本の枝で同じ大きさで反対方向の電界7が掛か
るように設置されている。制御電極61に電圧を印加し
た場合、電気光学効果により制御電極6下の光導波路2
2,23の屈折率が変化し、光導波路22,23を伝搬
する光が反対方向に位相変調を受け、合流後の光導波路
24の導波モードのパワーが変化する。
[0005] The incident light 5 incident on the optical waveguide 21 is divided into two optical waveguides 22 and 23, and after propagating through the respective branches, merges into the optical waveguide 24 to become the output light 6. Usually 2
The optical waveguides 22 and 23 of the two branches have the same optical path length, and the control electrode 61 is arranged so that the two branches have the same size and the electric field 7 in the opposite direction is applied. When a voltage is applied to the control electrode 61, the optical waveguide 2 below the control electrode 6 is formed by the electro-optic effect.
The refractive indexes of the optical waveguides 2 and 23 change, the light propagating through the optical waveguides 22 and 23 undergoes phase modulation in opposite directions, and the power of the waveguide mode of the optical waveguide 24 after the merge changes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図5に
示すような従来の光制御デバイスでは、DC電圧印加に
より結晶中の電荷が結晶や膜の界面に局部的に蓄積され
て光波に作用する電界強度が変化する現象即ちDCドリ
フトが生じやすく、デバイスの安定性に問題があった。
However, in the conventional light control device as shown in FIG. 5, the electric charge in the crystal is locally accumulated at the interface between the crystal and the film by the application of the DC voltage, and the electric field acting on the light wave is generated. A phenomenon in which the intensity changes, that is, a DC drift easily occurs, and there is a problem in device stability.

【0007】本発明の目的は、上述の従来の光制御デバ
イスの問題点を除き、特性が長期に渡って安定な光制御
デバイスを提供することにある。
An object of the present invention is to provide a light control device whose characteristics are stable for a long period of time, excluding the above-mentioned problems of the conventional light control device.

【0008】[0008]

【課題を解決するための手段】本発明は、電気光学効果
を有する誘電体結晶基板上に形成された光導波路と、そ
の近傍に設置された制御電極とからなるマッハツェンダ
干渉型光制御デバイスにおいて、光制御用の電界の印加
手段として、同一のマッハツェンダ干渉器内に、光導波
路に基板の厚さ方向の電界を印加する第1の制御電極
と、光導波路に基板の厚さ方向及び光の伝搬方向と垂直
な方向の電界を印加する第2の制御電極とを備え、 Γd13dd/gd=αΓt22tt/gt (ただし、αは縦電界と横電界のDCドリフト量の大き
さの比、Γは電界補正係数、r 13 ,r 22 は電気光学係
数、Vは印加電圧、Lは電極長、gは電極間隔、サフィ
ックスのd,tはそれぞれ縦方向の電界を印加する電極
及び横方向の電界を印加する電極を表す)の関係を満た
すようにそれぞれの電極の印加電圧、電極長、電極間隔
を設定する ことを特徴とする。
According to the present invention, there is provided a Mach-Zehnder interference-type light control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optic effect and a control electrode provided in the vicinity thereof. As a means for applying an electric field for light control, a first control electrode for applying an electric field in the thickness direction of the substrate to the optical waveguide in the same Mach-Zehnder interferometer, and propagation of light in the thickness direction of the substrate and light to the optical waveguide. and a second control electrode for applying a direction perpendicular to the direction of the electric field, Γ d r 13 V d L d / g d = αΓ t r 22 V t L t / g t ( although, alpha is a vertical electric field Large DC drift of lateral electric field
比 is the electric field correction coefficient, and r 13 and r 22 are the electro-optic
Number, V is applied voltage, L is electrode length, g is electrode spacing,
Where d and t are electrodes for applying a vertical electric field.
And an electrode to which a horizontal electric field is applied)
Voltage, electrode length, electrode spacing
Is set .

【0009】また本発明は、電気光学効果を有する誘電
体結晶基板上に形成された光導波路と、その近傍に設置
された制御電極とからなる方向性結合器型光制御デバイ
スにおいて、光制御用の電界の印加手段として、同一の
方向性結合器内に、光導波路に基板の厚さ方向の電界を
印加する第1の制御電極と、光導波路に基板の厚さ方向
及び光の伝搬方向と垂直な方向の電界を印加する第2の
制御電極とを備え、 Γd13dd/gd=αΓt22tt/gt (ただし、αは縦電界と横電界のDCドリフト量の大き
さの比、Γは電界補正係数、r 13 ,r 22 は電気光学係
数、Vは印加電圧、Lは電極長、gは電極間隔、サフィ
ックスのd,tはそれぞれ縦方向の電界を印加する電極
及び横方向の電界を印加する電極を表す)の関係を満た
すようにそれぞれの電極の印加電圧、電極長、電極間隔
を設定する ことを特徴とする。
Further, the present invention provides a directional coupler type optical control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optical effect and a control electrode provided in the vicinity of the optical waveguide. A first control electrode for applying an electric field in the thickness direction of the substrate to the optical waveguide, and a thickness direction of the substrate and a propagation direction of light to the optical waveguide in the same directional coupler. and a second control electrode for applying a vertical direction of the electric field, Γ d r 13 V d L d / g d = αΓ t r 22 V t L t / g t ( although, alpha vertical field and horizontal field Of DC drift of
比 is the electric field correction coefficient, and r 13 and r 22 are the electro-optic
Number, V is applied voltage, L is electrode length, g is electrode spacing,
Where d and t are electrodes for applying a vertical electric field.
And an electrode to which a horizontal electric field is applied)
Voltage, electrode length, electrode spacing
Is set .

【0010】[0010]

【作用】本発明の光制御デバイスは、光制御用の電界の
印加手段として、光導波路に基板の厚さ方向(以後、こ
の方向を縦方向と呼ぶ)の電界を印加する制御電極と、
光導波路に基板の厚さ方向及び光の伝搬方向と垂直な方
向(以後、この方向を横方向と呼ぶ)の電界を印加する
制御電極の両方を具備する。発明者らの実験によると、
縦方向の電界を印加した場合、DCドリフトは印加した
電界を弱める方向におこり(以後、このようなDCドリ
フトを正のDCドリフトと呼ぶ)、逆に横方向の電界を
印加した場合、DCドリフトは印加した電界を強める方
向におこる(以後、このようなDCドリフトを負のDC
ドリフトと呼ぶ)。従って、縦方向の電界と横方向の電
界を組み合わせることにより、正のDCドリフトと負の
DCドリフトを相殺することができ、DCドリフトを減
少させることができる。
The light control device of the present invention includes a control electrode for applying an electric field in a thickness direction of a substrate (hereinafter, this direction is referred to as a vertical direction) to an optical waveguide as an electric field application means for light control;
The optical waveguide includes both a control electrode for applying an electric field in a direction perpendicular to a thickness direction of the substrate and a direction of light propagation (hereinafter, this direction is referred to as a lateral direction). According to our experiments,
When a vertical electric field is applied, the DC drift occurs in a direction that weakens the applied electric field (hereinafter, such a DC drift is referred to as a positive DC drift). Conversely, when a horizontal electric field is applied, the DC drift occurs. Occurs in a direction to increase the applied electric field (hereinafter, such a DC drift is caused by a negative DC
Drift). Therefore, by combining the vertical electric field and the horizontal electric field, the positive DC drift and the negative DC drift can be offset, and the DC drift can be reduced.

【0011】以上のことより、本発明の光制御デバイス
は、従来に比べて安定な光制御デバイスが得られる。
As described above, the light control device of the present invention can provide a light control device that is more stable than the conventional one.

【0012】[0012]

【実施例】図1(a),(b),(c)は、本発明によ
る光制御デバイスの一実施例であるマッハツェンダ型光
変調器の平面図及び断面図である。図1(a)の破線b
−b′部分の断面図を(b)に示す。図1(a)の破線
c−c′部分の断面図を(c)に示す。
1 (a), 1 (b) and 1 (c) are a plan view and a sectional view of a Mach-Zehnder type optical modulator which is an embodiment of an optical control device according to the present invention. The broken line b in FIG.
A sectional view of the -b 'portion is shown in FIG. FIG. 1C is a cross-sectional view taken along a broken line cc ′ in FIG.

【0013】Z板ニオブ酸リチウム結晶基板1の上に、
チタンを900〜1100℃程度で数時間熱拡散して形
成された3〜10μm程度の光導波路21,22,23
及び24が形成されている。光導波路21は2つに分岐
して光導波路22及び23となった後、合流して光導波
路24となり、マッハツェンダ干渉系を構成している。
光導波路22及び23上には制御電極25及び26が形
成されている。制御電極25,26は、それぞれ同じ大
きさで反対方向の電界が導波路22,23に印加される
ように構成されている。制御電極25は光導波路22,
23に重なるように設置され、光導波路22,23には
縦方向の電界7が印加される。一方、制御電極26は光
導波路22,23を挟むように設置され、光導波路2
2,23には横方向の電界8が印加される。作用の項で
も述べたように、縦方向の電界に対しては正のDCドリ
フトが発生し、横方向の電界に対しては負のDCドリフ
トが発生する。しかもこの両方のDCドリフトの時定数
は、ほぼ等しい。従って、制御電極25,26によるT
Eモード即ち横方向の偏光の屈折率変化量Δnd 及びΔ
t はそれぞれ、 Δnd =[1−D(t)]Γd 13o 3 d d /(2gd ) (1) Δnt =[1+αD(t)]Γt 22o 3 t t /(2gt ) (2) と表すことができる。ただし、D(t)は縦方向の電界
によるDCドリフト量、αは縦電界と横電界のDCドリ
フト量の大きさの比、Γは電界補正係数、r13,r22
電気光学係数、no は常光の屈折率、Vは印加電圧、L
は電極長、gは電極間隔、サフィックスのd,tはそれ
ぞれ縦方向の電界を印加する電極25及び横方向の電界
を印加する電極26を表す。従って、図1(a)に示す
ように縦方向の電界の電極25と横方向の電界の電極2
6を縦続接続した場合、マッハツェンダ各枝の位相変化
量は各制御電極での位相変化量の和に等しいから、 Γd 13d d /gd =αΓt 22t t /gt (3) の関係を満足するようにそれぞれの電極の印加電圧、電
極長、電極間隔等を調整することにより、各枝でのDC
ドリフトによる位相変化を零にすることができる。マッ
ハツェンダの出力光強度は2つの枝の位相差によって決
まるので、各枝での位相変化量のDCドリフトを零にす
ることができれば、マッハツェンダ型光変調器の出力光
強度のDCドリフトも零にすることができ、安定な光変
調器を得ることができる。
On a Z-plate lithium niobate crystal substrate 1,
Optical waveguides 21, 22, 23 of about 3 to 10 μm formed by thermally diffusing titanium at about 900 to 1100 ° C. for several hours.
And 24 are formed. The optical waveguide 21 branches into two optical waveguides 22 and 23, and then merges to form an optical waveguide 24, thereby forming a Mach-Zehnder interference system.
Control electrodes 25 and 26 are formed on the optical waveguides 22 and 23. The control electrodes 25 and 26 are configured such that electric fields of the same magnitude and opposite directions are applied to the waveguides 22 and 23, respectively. The control electrode 25 is the optical waveguide 22,
23, and a vertical electric field 7 is applied to the optical waveguides 22 and 23. On the other hand, the control electrode 26 is provided so as to sandwich the optical waveguides 22 and 23,
A lateral electric field 8 is applied to 2 and 23. As described in the operation section, a positive DC drift is generated for a vertical electric field, and a negative DC drift is generated for a horizontal electric field. In addition, the time constants of the two DC drifts are substantially equal. Therefore, T due to the control electrodes 25 and 26
Refractive index variation of the E-mode or transverse direction of polarization [Delta] n d and Δ
n t respectively, Δn d = [1-D (t)] Γ d r 13 n o 3 V d L d / (2g d) (1) Δn t = [1 + αD (t)] Γ t r 22 n o 3 V t L t / (2g t ) (2) Here, D (t) is the DC drift amount due to the vertical electric field, α is the ratio of the magnitude of the DC drift amount between the vertical electric field and the horizontal electric field, Γ is the electric field correction coefficient, r 13 and r 22 are the electro-optic coefficients, n o is the refractive index of ordinary light, V is the applied voltage, L
Represents an electrode length, g represents an electrode interval, and suffixes d and t respectively represent an electrode 25 for applying a vertical electric field and an electrode 26 for applying a horizontal electric field. Therefore, as shown in FIG. 1A, the vertical electric field electrode 25 and the horizontal electric field electrode 2
If the 6 cascaded, since the phase variation of the Mach-Zehnder each branch is equal to the sum of the amount of phase change at each control electrode, Γ d r 13 V d L d / g d = αΓ t r 22 V t L t / By adjusting the applied voltage, electrode length, electrode spacing, etc. of each electrode so as to satisfy the relationship of g t (3), the DC at each branch is adjusted.
Phase change due to drift can be reduced to zero. Since the output light intensity of the Mach-Zehnder is determined by the phase difference between the two branches, if the DC drift of the amount of phase change in each branch can be made zero, the DC drift of the output light intensity of the Mach-Zehnder optical modulator is also made zero And a stable optical modulator can be obtained.

【0014】図2(a),(b)は、本発明の別の実施
例によるマッハツェンダ型光変調器の平面図及び断面図
である。
FIGS. 2A and 2B are a plan view and a sectional view of a Mach-Zehnder type optical modulator according to another embodiment of the present invention.

【0015】図2(a)の破線b−b′部分の断面図を
(b)に示す。図1の例と同様にZ板ニオブ酸リチウム
結晶基板1の上に、光導波路21,22,23及び24
が形成され、マッハツェンダ干渉系を構成している。光
導波路22及び23上には制御電極31が形成されてい
る。制御電極31は、光導波路22に重なり、且つ光導
波路23を挟むように設置される。制御電極31によ
り、光電極22には縦方向の電界7が印加され、光導波
路23には横方向の電界8が印加される。マッハツェン
ダの2つの枝の光導波路22及び23には、それぞれの
位相変化が反対方向になるように電界が印加される。マ
ッハツェンダの出力光強度は2つの枝の位相差によって
決まるので、制御電極31が式(3)の関係を満足する
ように電極の印加電圧、電極長、電極間隔等を調整する
ことにより、2つの枝でのそれぞれの位相変化量のDC
ドリフトは合流の際に相殺され、DCドリフトによる出
力光強度の変化を零にすることができ、安定な光強度変
調器が得られる。
FIG. 2B is a sectional view taken along the broken line bb 'of FIG. 2A. Optical waveguides 21, 22, 23 and 24 are placed on Z-plate lithium niobate crystal substrate 1 in the same manner as in the example of FIG.
Are formed to constitute a Mach-Zehnder interference system. A control electrode 31 is formed on the optical waveguides 22 and 23. The control electrode 31 is placed so as to overlap the optical waveguide 22 and sandwich the optical waveguide 23. The control electrode 31 applies a vertical electric field 7 to the photoelectrode 22 and a horizontal electric field 8 to the optical waveguide 23. An electric field is applied to the optical waveguides 22 and 23 of the two branches of the Mach-Zehnder so that their phase changes are in opposite directions. Since the output light intensity of the Mach-Zehnder is determined by the phase difference between the two branches, by adjusting the applied voltage of the electrodes, the electrode length, the electrode interval, and the like so that the control electrode 31 satisfies the relationship of Expression (3), DC of each phase change in branch
The drift is canceled at the time of merging, and the change in output light intensity due to the DC drift can be made zero, so that a stable light intensity modulator can be obtained.

【0016】図3(a),(b),(c)は、本発明の
実施例による方向性結合器型光スイッチの平面図及び断
面図である。
FIGS. 3A, 3B and 3C are a plan view and a sectional view of a directional coupler type optical switch according to an embodiment of the present invention.

【0017】図3(a)の破線b−b′部分の断面図を
(b)、破線c−c′部分の断面図を(c)に示す。Z
板ニオブ酸リチウム結晶基板1の上に、チタンを900
〜1100℃程度で数時間熱拡散して形成された3〜1
0μm程度の光導波路41及び42が形成されており、
基板の中央部で両光導波路は互いに数μmまで近接して
方向性結合器を構成している。その上に制御電極43及
び44が設置されている。制御電極43は光導波路4
1,42に重なるように設置され、光導波路41,42
には縦方向の電界7が印加される。一方、制御電極44
は光導波路41,42を挟むように設置され、光導波路
41,42には横方向の電界8が印加される。上記のよ
うな構成とすることにより、図1のマッハツェンダ型変
調器の場合と同じ原理で、方向性結合器型光スイッチの
DCドリフトを小さくすることができる。
FIG. 3A is a sectional view taken along a broken line bb 'of FIG. 3A, and FIG. 3C is a sectional view taken along a broken line cc' of FIG. Z
On a lithium niobate crystal substrate 1, 900 titanium was added.
3-1 formed by thermal diffusion at about 1100 ° C for several hours
Optical waveguides 41 and 42 of about 0 μm are formed,
At the center of the substrate, the two optical waveguides are close to each other up to several μm to form a directional coupler. Control electrodes 43 and 44 are provided thereon. The control electrode 43 is an optical waveguide 4
The optical waveguides 41 and 42 are installed so as to overlap with the optical waveguides 41 and 42.
Is applied with a vertical electric field 7. On the other hand, the control electrode 44
Are disposed so as to sandwich the optical waveguides 41 and 42, and a lateral electric field 8 is applied to the optical waveguides 41 and 42. With the above configuration, the DC drift of the directional coupler type optical switch can be reduced on the same principle as that of the Mach-Zehnder type modulator of FIG.

【0018】図4(a),(b)は、本発明の別の実施
例による方向性結合器型光スイッチの平面図及び断面図
である。
FIGS. 4A and 4B are a plan view and a sectional view of a directional coupler type optical switch according to another embodiment of the present invention.

【0019】図1(a)の破線b−b′部分の断面図を
(b)に示す。図3の場合と同様に、Z板ニオブ酸リチ
ウム結晶基板1の上に光導波路41及び42が形成され
ており、基板の中央部で両光導波路は互いに数μmまで
近接して方向性結合器を構成している。その上に制御電
極51が設置されている。制御電極51は、光導波路4
1に重なるように、且つ光導波路22を挟むように設置
される。制御電極51により、光導波路41には縦方向
の電界7が印加され、光導波路42には横方向の電界8
が印加される。上記のような構成にすることにより、図
2のマッハツェンダ型変調器の場合と同じ原理で、方向
性結合器型光スイッチのDCドリフトを小さくすること
ができる。
FIG. 1B is a sectional view taken along a broken line bb 'of FIG. 1A. As in the case of FIG. 3, optical waveguides 41 and 42 are formed on a Z-plate lithium niobate crystal substrate 1, and both optical waveguides are close to each other up to several μm at the center of the substrate, and are directional couplers. Is composed. A control electrode 51 is provided thereon. The control electrode 51 is connected to the optical waveguide 4
1 and so as to sandwich the optical waveguide 22. A vertical electric field 7 is applied to the optical waveguide 41 by the control electrode 51, and a horizontal electric field 8 is applied to the optical waveguide 42.
Is applied. With the above configuration, the DC drift of the directional coupler type optical switch can be reduced on the same principle as that of the Mach-Zehnder type modulator of FIG.

【0020】[0020]

【発明の効果】以上述べたように、本発明の光制御デバ
イスでは、DCドリフトを小さくすることができるの
で、従来の光制御デバイスに比べ、特性の安定した光制
御デバイスが得られる。
As described above, in the light control device of the present invention, since the DC drift can be reduced, a light control device having more stable characteristics than the conventional light control device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 1 is a plan view and a sectional view showing an example of a light control device according to the present invention.

【図2】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 2 is a plan view and a cross-sectional view illustrating an example of a light control device according to the present invention.

【図3】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 3 is a plan view and a cross-sectional view illustrating an example of a light control device according to the present invention.

【図4】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 4 is a plan view and a cross-sectional view illustrating an example of a light control device according to the present invention.

【図5】従来例による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 5 is a plan view and a cross-sectional view showing an example of a conventional light control device.

【符号の説明】[Explanation of symbols]

1 ニオブ酸リチウム結晶基板 21,22,23,24,41,42 光導波路 25,26,31,43,44,51,61 制御電極 5 入射光 6 出射光 7 縦方向電界 8 横方向電界 62 バッファ層 DESCRIPTION OF SYMBOLS 1 Lithium niobate crystal substrate 21, 22, 23, 24, 41, 42 Optical waveguide 25, 26, 31, 43, 44, 51, 61 Control electrode 5 Incident light 6 Outgoing light 7 Vertical electric field 8 Horizontal electric field 62 Buffer layer

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気光学効果を有する誘電体結晶基板上
に形成された光導波路と、その近傍に設置された制御電
極とからなるマッハツェンダ干渉型光制御デバイスにお
いて、光制御用の電界の印加手段として、同一のマッハ
ツェンダ干渉器内に、光導波路に基板の厚さ方向の電界
を印加する第1の制御電極と、光導波路に基板の厚さ方
向及び光の伝搬方向と垂直な方向の電界を印加する第2
の制御電極とを備え、 Γd13dd/gd=αΓt22tt/gt (ただし、αは縦電界と横電界のDCドリフト量の大き
さの比、Γは電界補正係数、r 13 ,r 22 は電気光学係
数、Vは印加電圧、Lは電極長、gは電極間隔、サフィ
ックスのd,tはそれぞれ縦方向の電界を印加する電極
及び横方向の電界を印加する電極を表す) の関係を満たすようにそれぞれの電極の印加電圧、電極
長、電極間隔を設定する ことを特徴とする光制御デバイ
ス。
1. A Mach-Zehnder interference type optical control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optical effect and a control electrode provided in the vicinity thereof, means for applying an electric field for light control In the same Mach-Zehnder interferometer, a first control electrode for applying an electric field in the thickness direction of the substrate to the optical waveguide, and an electric field in the direction perpendicular to the thickness direction of the substrate and the light propagation direction are applied to the optical waveguide. Second to apply
And a control electrode, Γ d r 13 V d L d / g d = αΓ t r 22 V t L t / g t ( although, alpha is the DC drift amount of the vertical electric field and a lateral field size
比 is the electric field correction coefficient, and r 13 and r 22 are the electro-optic
Number, V is applied voltage, L is electrode length, g is electrode spacing,
Where d and t are electrodes for applying a vertical electric field.
And lateral direction of the applied voltage of each of the electrodes so as to satisfy the relation of representing the electrodes for applying an electric field), the electrode
A light control device characterized by setting a length and an electrode interval .
【請求項2】 前記光導波路は第1の分岐光導波路およ
び第2の分岐光導波路を有するマッハツェンダ干渉系を
構成し、前記第1の制御電極は第1の分岐光導波路の一
部及び第2の分岐光導波路の一部に重なるように設置さ
れ、前記第2の制御電極は第1の分岐光導波路の一部及
び第2の分岐光導波路の一部を挟むように設置されてい
ることを特徴とする請求項1記載の光制御デバイス。
2. The optical waveguide according to claim 1, wherein said optical waveguide is a first branch optical waveguide.
And a Mach-Zehnder interferometer having a second branch optical waveguide
Wherein the first control electrode is a part of a first branch optical waveguide.
And a part of the second branch optical waveguide.
And the second control electrode is provided on a part of the first branch optical waveguide.
And a part of the second branch optical waveguide.
The light control device according to claim 1, wherein:
【請求項3】 前記光導波路は、第1の分岐光導波路お
よび第2の分岐光導波路を有するマッハツェンダ干渉系
を構成し、前記第1の制御電極は、第1の分岐光導波路
に重なるように設置され、前記第2の制御電極は、第2
の分岐光導波路を挟むように設置されている、ことを特
徴とする請求項1記載の光制御デバイス。
3. The optical waveguide comprises a Mach-Zehnder interference system having a first branch optical waveguide and a second branch optical waveguide, and the first control electrode overlaps the first branch optical waveguide. Installed, wherein the second control electrode is a second control electrode.
The light control device according to claim 1, wherein the light control device is provided so as to sandwich the branch optical waveguide.
【請求項4】 電気光学効果を有する誘電体結晶基板上
に形成された光導波路と、その近傍に設置された制御電
極とからなる方向性結合器型光制御デバイスにおいて、
光制御用の電界の印加手段として、同一の方向性結合器
内に、光導波路に基板の厚さ方向の電界を印加する第1
の制御電極と、光導波路に基板の厚さ方向及び光の伝搬
方向と垂直な方向の電界を印加する第2の制御電極とを
備え、 Γd13dd/gd=αΓt22tt/gt (ただし、αは縦電界と横電界のDCドリフト量の大き
さの比、Γは電界補正係数、r 13 ,r 22 は電気光学係
数、Vは印加電圧、Lは電極長、gは電極間隔、サフィ
ックスのd,tはそれぞれ縦方向の電界を印加する電極
及び横方向の電界を印加する電極を表す) の関係を満たすようにそれぞれの電極の印加電圧、電極
長、電極間隔を設定する ことを特徴とする光制御デバイ
ス。
4. A directional coupler type optical control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optic effect and a control electrode provided in the vicinity thereof.
As a means for applying an electric field for light control, a first method for applying an electric field in the thickness direction of the substrate to the optical waveguide in the same directional coupler.
And a second control electrode for applying an electric field to the optical waveguide in a direction perpendicular to the thickness direction of the substrate and the light propagation direction.
Includes, Γ d r 13 V d L d / g d = αΓ t r 22 V t L t / g t ( although, alpha is the DC drift amount of the vertical electric field and a lateral field size
比 is the electric field correction coefficient, and r 13 and r 22 are the electro-optic
Number, V is applied voltage, L is electrode length, g is electrode spacing,
Where d and t are electrodes for applying a vertical electric field.
And lateral direction of the applied voltage of each of the electrodes so as to satisfy the relation of representing the electrodes for applying an electric field), the electrode
A light control device characterized by setting a length and an electrode interval .
【請求項5】 前記光導波路は近接する第1の光導波路
および第2の光導波路を有する方向性結合器を構成し、
前記第1の制御電極は第1の光導波路の一部及び第2の
光導波路の一部に重なるように設置され、前記第2の制
御電極は第1の光導波路の一部及び第2の光導波路の一
部を挟むように設置されていることを特徴とする請求項
4記載の光制御デバイス。
5. The optical waveguide according to claim 1, wherein said optical waveguide is an adjacent first optical waveguide.
And a directional coupler having a second optical waveguide,
The first control electrode includes a portion of a first optical waveguide and a second control electrode.
The second waveguide is installed so as to overlap a part of the optical waveguide.
The control electrode is a part of the first optical waveguide and a part of the second optical waveguide.
Claims characterized by being installed so as to sandwich the part
5. The light control device according to 4.
【請求項6】 前記光導波路は、近接する第1の光導波
路および第2の光導波路を有する方向性結合器を構成
し、前記第1の制御電極は、第1の分岐光導波路に重な
るように設置され、前記第2の制御電極は、第2の分岐
光導波路を挟むように設置されている、ことを特徴とす
る請求項4記載の光制御デバイス。
6. The optical waveguide forms a directional coupler having a first optical waveguide and a second optical waveguide that are close to each other, and the first control electrode overlaps a first branch optical waveguide. 5. The light control device according to claim 4, wherein the second control electrode is disposed so as to sandwich a second branch optical waveguide. 6.
JP5136358A 1993-06-08 1993-06-08 Light control device Expired - Fee Related JP2606552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136358A JP2606552B2 (en) 1993-06-08 1993-06-08 Light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136358A JP2606552B2 (en) 1993-06-08 1993-06-08 Light control device

Publications (2)

Publication Number Publication Date
JPH06347737A JPH06347737A (en) 1994-12-22
JP2606552B2 true JP2606552B2 (en) 1997-05-07

Family

ID=15173317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136358A Expired - Fee Related JP2606552B2 (en) 1993-06-08 1993-06-08 Light control device

Country Status (1)

Country Link
JP (1) JP2606552B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214627A (en) * 1985-07-12 1987-01-23 Oki Electric Ind Co Ltd Waveguide type optical switch
JPS644719A (en) * 1987-06-29 1989-01-09 Japan Broadcasting Corp Optical modulator

Also Published As

Publication number Publication date
JPH06347737A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
JPH07318986A (en) Waveguide type optical switch
JP2932742B2 (en) Waveguide type optical device
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPH04172316A (en) Wave guide type light control device
JP2606552B2 (en) Light control device
JPH09211403A (en) Light control element
JPH0721597B2 (en) Optical switch
JP2912039B2 (en) Light control device
JP2998373B2 (en) Light control circuit
JP2993192B2 (en) Light control circuit
JP3164124B2 (en) Light switch
JP3139009B2 (en) Light switch
JPH0566428A (en) Optical control device
JP2635986B2 (en) Optical waveguide switch
JP2900569B2 (en) Optical waveguide device
JPH06347839A (en) Optical control device
JP2720654B2 (en) Light control device
JP2903700B2 (en) Waveguide type optical device
JP2982448B2 (en) Light control circuit
JP3106710B2 (en) Light control device
JP2836174B2 (en) Light control device
JPH06281897A (en) Light intensity modulator
JPH0550436U (en) Directional coupler type optical control device
JPH0351826A (en) Optical control device
JPH06347838A (en) Optical control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961217

LAPS Cancellation because of no payment of annual fees