[go: up one dir, main page]

JPH11248651A - Microarea x-ray diffractometer - Google Patents

Microarea x-ray diffractometer

Info

Publication number
JPH11248651A
JPH11248651A JP10069319A JP6931998A JPH11248651A JP H11248651 A JPH11248651 A JP H11248651A JP 10069319 A JP10069319 A JP 10069319A JP 6931998 A JP6931998 A JP 6931998A JP H11248651 A JPH11248651 A JP H11248651A
Authority
JP
Japan
Prior art keywords
sample
ray
adjustment
axis
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10069319A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takada
一広 高田
Takashi Noma
敬 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10069319A priority Critical patent/JPH11248651A/en
Publication of JPH11248651A publication Critical patent/JPH11248651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To make automatically adjustable the position of a microarea in a short time. SOLUTION: In this X-ray diffractometer, an adjustment sample is mounted on a sample stage 1 and a video camera 6 is inserted right under or near the adjustment sample to operate an x-axis and a y-axis with an exterior driving motor so as to set a pattern into the view of the video camera 6 for focusing the sample on its surface with z-axis driving motor. When the adjustment sample has been fixed, the search of a steady point is started, thereby to start the rotation of the sample stage 1 around a ϕ-axis, take an output signal from the video camera for every preset time, recognize a position on the sample corresponding to the position by using an image prior to one frame and find the steady point as the center of rotation in the view of the video camera 6 with computation. Such operation is continued until the steady point is fixed in a range of position error εof the steady point preset by a measuring person, this coordinate position is stored when the steady point is fixed, and the operation for finding the value of the steady point is ended. The sample is changed into a fluorescent plate to position adjust an X-ray source 3 and X-ray is generated from the X-ray source 3 to be radiated to the fluorescent plate for jigging a collimator 4 corresponding to the position of the steady point found by an X-ray emission area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線を利用して試
料の構造解析を行う微小領域X線回折装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro area X-ray diffractometer for analyzing the structure of a sample using X-rays.

【0002】[0002]

【従来の技術】従来から、試料の結晶構造等を解析する
ための一般的な手段としてX線回折装置が広く用いられ
ており、例えば直径10μm〜1mmの試料の微小領域
のX線回折を測定したり、微量試料に対してX線回折測
定が行われている。このような微小領域X線回折装置に
おいては、測定領域に対応する径のコリメータ等を使用
することによって、X線を微小部分に制限して照射し、
試料を揺動させながら回折したX線を検出器で検出する
のが一般的である。
2. Description of the Related Art Conventionally, an X-ray diffractometer has been widely used as a general means for analyzing the crystal structure and the like of a sample. For example, X-ray diffraction of a small region of a sample having a diameter of 10 μm to 1 mm is measured. And X-ray diffraction measurement is performed on a small amount of sample. In such a minute area X-ray diffractometer, by using a collimator or the like having a diameter corresponding to the measurement area, the X-ray is limited to a minute part and irradiated.
In general, X-rays diffracted while the sample is rocked are detected by a detector.

【0003】この微小領域X線回折装置では、所望の領
域に正確にX線を照射する際に、試料の揺動に伴ってX
線の照射点が移動しないようにするために、測定を行う
前に次のような厳密な調整が行われている。即ち、試料
に入射するX線の光軸に対して直交するω軸と、ω軸に
直交しかつ試料面に直交するφ軸と、ω軸及びφ軸の両
方に直交するχ軸との3つの軸を試料の揺動軸として設
定し、顕微鏡で試料表面を観察しながら、これらの3つ
のω軸、φ軸を揺動させて、測定すべき試料の微小部分
が顕微鏡視野の中でほぼ移動しなくなるまで、試料の位
置を空間的に移動させて調整を行う。このような作業を
行うことによって、ω軸、φ軸、χ軸の交点に試料の測
定微小部分が位置するようにしている。
In this micro area X-ray diffractometer, when a desired area is accurately irradiated with X-rays, the X-ray diffraction is accompanied by the swing of the sample.
In order to prevent the irradiation point of the line from moving, the following strict adjustment is performed before the measurement is performed. That is, an ω axis orthogonal to the optical axis of the X-ray incident on the sample, a φ axis orthogonal to the ω axis and orthogonal to the sample surface, and a χ axis orthogonal to both the ω axis and the φ axis. One of the three axes is set as the swing axis of the sample, and while observing the sample surface with a microscope, these three ω axes and φ axes are swung so that a minute portion of the sample to be measured is almost in the microscope field of view. Until it stops moving, the position of the sample is moved spatially for adjustment. By performing such an operation, the measurement minute portion of the sample is positioned at the intersection of the ω axis, φ axis, and χ axis.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、ω軸、φ軸、χ軸の交点に測定微小部
分を配置する作業を顕微鏡観察を行いながら手作業で微
調整しているために、精度良く調整を行うことは困難で
あり、かつ相当な時間を要している。また、試料交換時
や長期間未使用後に測定を行う際には、円形状の調整用
試料を使用して、これを回転することにより円がぶれな
くなる位置を探索し、その位置の中心をφ軸の回転中心
として試料を揺動するようにしているが、この方式では
調整に時間が掛かり正確に位置設定することが難しいと
いう問題点がある。
However, in the above-described conventional example, the work of arranging the minute measurement part at the intersection of the ω axis, φ axis, and χ axis is finely adjusted manually while observing with a microscope. In addition, it is difficult to perform the adjustment with high accuracy, and it takes a considerable time. In addition, when performing measurement after exchanging the sample or after a long period of non-use, a circular adjustment sample is used, and by rotating the sample, a position where the circle is not blurred is searched for, and the center of the position is defined as φ. Although the sample is swung as the rotation center of the shaft, this method has a problem that it takes time for adjustment and it is difficult to set the position accurately.

【0005】本発明の目的は、上述の問題点を解消し、
短時間で微小領域の位置調整を自動的に行うことができ
る微小領域X線回折装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a micro area X-ray diffraction apparatus that can automatically adjust the position of a micro area in a short time.

【0006】[0006]

【課題を解決するための手段】上述目的を達成するため
の本発明に係る微小領域X線回折装置は、試料にX線を
照射した際に生ずる回折X線の回折角と強度を測定して
前記試料の情報を得る微小領域X線回折装置において、
X線を発生する手段と、前記試料面上のX線照射領域を
微小領域に限定する手段と、前記X線照射領域で回折し
たX線を検出して該X線の回折角と強度を測定する手段
と、前記X線照射領域を観察するための光学的観察手段
と、前記試料を構成する結晶の方位を空間的に平均化し
てデータの質を向上する三軸試料揺動機構と、該三軸試
料揺動機構の3つの揺動軸が1点で交差し、これらの3
つの揺動軸の交点を前記X線照射領域と一致させるため
に前記光学的観察手段により得られる調整用試料の画像
を利用する調整機構とを有し、揺動動作中に前記光学的
観察手段により前記調整用試料の面内の2つ以上の点の
位置を常時認識可能とすることを特徴とする。
A small-area X-ray diffractometer according to the present invention for achieving the above object measures the diffraction angle and intensity of diffracted X-rays generated when a sample is irradiated with X-rays. In a micro area X-ray diffraction apparatus for obtaining information on the sample,
Means for generating X-rays, means for limiting the X-ray irradiation area on the sample surface to a minute area, and detection of X-rays diffracted in the X-ray irradiation area to measure the diffraction angle and intensity of the X-rays Means for observing the X-ray irradiation region, an optical observation means for observing the X-ray irradiation region, a three-axis sample rocking mechanism for spatially averaging the orientations of crystals constituting the sample to improve data quality, and The three swing axes of the three-axis sample swing mechanism intersect at one point, and these three axes
An adjustment mechanism that uses an image of the adjustment sample obtained by the optical observation means so that the intersection of the two oscillation axes coincides with the X-ray irradiation area, and the optical observation means Thus, the positions of two or more points in the plane of the adjustment sample can always be recognized.

【0007】[0007]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は微小領域X線回折装置の構成図
を示し、この微小領域X線回折装置は試料Sが微小であ
る場合又は試料Sの微小領域を測定する場合に用いら
れ、試料S内の微小領域のX線回折測定を行う。試料S
は平面内で平行移動が可能な試料ステージ1に支持さ
れ、試料ステージ1には、xy平面内で平行移動するた
めの図示しないステージ駆動用のx軸駆動モータとy軸
駆動モータとが具備され、更に試料Sの表面の焦点合わ
せを行うためのz軸駆動モータが具備されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 shows a configuration diagram of a micro area X-ray diffractometer. This micro area X-ray diffractometer is used when the sample S is minute or when measuring a minute area of the sample S. X-ray diffraction measurement is performed. Sample S
Is supported by a sample stage 1 that can be translated in a plane, and the sample stage 1 is provided with an x-axis drive motor and a y-axis drive motor for driving a stage (not shown) for parallel translation in an xy plane. And a z-axis drive motor for focusing the surface of the sample S.

【0008】試料ステージ1はω、φ、χ軸の各軸線が
何れも試料S内の微小領域を通り、これら3つの軸が直
交した状態で各軸線回りに回転可能な大型ホルダ2によ
って保持されている。また、試料Sに向ってX線を発生
するX線発生源3が配置されており、X線の取出口には
微小断面の平行X線ビームを形成するためのコリメータ
4が設置されている。このコリメータ4には、図示しな
いx軸駆動モータとy軸駆動モータが連結され、これに
よってX線ビームを試料Sの微小領域に照射するように
なっている。
The sample stage 1 is held by a large holder 2 rotatable around each of the ω, φ, and χ axes, each of which passes through a minute area in the sample S, and these three axes are orthogonal to each other. ing. Further, an X-ray source 3 for generating X-rays toward the sample S is provided, and a collimator 4 for forming a parallel X-ray beam having a minute cross section is provided at an X-ray outlet. An x-axis drive motor and a y-axis drive motor (not shown) are connected to the collimator 4 so as to irradiate an X-ray beam to a small area of the sample S.

【0009】試料Sの下方位置にはX線検出器としてP
SPC(位置敏感型比例計数管:Position Sensitive P
roportional Counter)5が配置され、このPSPC5に
より回折角度2θ方向の各位置におけるX線強度を検出
するようになっている。また、試料SとPSPC5との
間には、試料表面観察手段としてビデオカメラ6が配置
されており、このビデオカメラ6は図示しない駆動装置
によって駆動され、試料Sの直下付近に挿入することが
可能となっている。また、ビデオカメラ6は所望の測定
位置を決定すると同時に視野内の不動点を求めるために
使用され、実際の測定時には図中の位置から除去される
ようになっている。そして、ビデオカメラ6の出力信号
は外部に設けたコンピュータに接続されている。
At the position below the sample S, an X-ray detector P
SPC (Position Sensitive P: Position Sensitive P
and a X-ray intensity at each position in the diffraction angle 2θ direction is detected by the PSPC 5. In addition, a video camera 6 is disposed between the sample S and the PSPC 5 as a sample surface observation means. The video camera 6 is driven by a driving device (not shown) and can be inserted immediately below the sample S. It has become. The video camera 6 is used to determine a desired measurement position and to determine a fixed point in the visual field, and is removed from the position in the figure at the time of actual measurement. The output signal of the video camera 6 is connected to a computer provided outside.

【0010】図2は測定のフローチャート図を示し、実
際の測定においては、試料ステージ1をφ軸の回りに回
転させながらその視野内の不動点を求める処理が必要と
なる。先ず、ステップ(1) で調整用試料を試料ステージ
1に取り付ける。調整用試料には、揺動動作中に2点以
上の位置が常時認識可能な図形をパターンとして平滑な
金属材料上に描いたものを用いる。調整用試料は次の処
理においてビデオカメラ6の画像出力に対して演算を行
うので単純な形状が良く、加えてビデオカメラ6の画像
出力を数値化するために、光の反射率の差が大きく画像
の輪郭を抽出し易いものが良い。
FIG. 2 shows a flowchart of the measurement. In the actual measurement, it is necessary to rotate the sample stage 1 around the φ axis and to obtain a fixed point in the visual field. First, the adjustment sample is attached to the sample stage 1 in step (1). As the adjustment sample, a sample in which two or more positions can always be recognized during the swinging operation is drawn as a pattern on a smooth metal material. The adjustment sample performs a calculation on the image output of the video camera 6 in the next process, and thus has a simple shape. In addition, in order to digitize the image output of the video camera 6, the difference in light reflectance is large. It is preferable that the outline of the image be easily extracted.

【0011】続いて、ビデオカメラ6を調整用試料の直
下付近に挿入し、ビデオカメラ6の視野内にパターンが
くるように、x軸とy軸を外部駆動モータにより操作す
る。更に、試料表面の焦点合わせをz軸駆動モータを用
いて行う。調整用試料の固定が終了すると、ステップ
(2) において不動点探索を開始する。測定者の操作によ
って動作開始信号が発生すると、ステップ(3) で初期状
態の調整用試料の形状がビデオカメラ6からの出力信号
として外部のコンピュータの記憶領域に転送され、画像
の輪郭が抽出されてこの画像情報がデジタル化され、試
料ステージ1のφ軸回りの回転が開始される。
Subsequently, the video camera 6 is inserted immediately below the sample for adjustment, and the x-axis and the y-axis are operated by the external drive motor so that the pattern comes within the field of view of the video camera 6. Further, focusing of the sample surface is performed using a z-axis drive motor. When the adjustment sample is fixed, step
In (2), a fixed point search is started. When the operation start signal is generated by the measurer's operation, in step (3), the shape of the initial adjustment sample is transferred as an output signal from the video camera 6 to a storage area of an external computer, and the outline of the image is extracted. The image information of the lever is digitized, and rotation of the sample stage 1 around the φ axis is started.

【0012】その後に、ステップ(4) で任意の時間毎に
ビデオカメラ6からの出力信号を取り込み、ステップ
(5) で1フレーム前の画像を用いて、この位置に対応す
る試料上の位置を認識し、ステップ(6) でビデオカメラ
6の視野内の回転中心である不動点を演算により求め
る。ステップ(7) で、x軸、y軸方向に±どの程度の領
域で求まるか、測定者が予め設定した不動点の位置誤差
εの範囲内で、不動点が定まるまでこの操作を行う。な
お、不動点求値法のアルゴリズムは不動点が求まるもの
であればどのような方法を用いてもよい。
Thereafter, in step (4), an output signal from the video camera 6 is fetched at an arbitrary time interval, and
In (5), the position on the sample corresponding to this position is recognized using the image one frame before, and in step (6), the fixed point which is the rotation center in the visual field of the video camera 6 is obtained by calculation. In step (7), this operation is performed until the fixed point is determined within the range of the fixed position error ε of the fixed point set by the measurer in the range of ± in the x-axis and y-axis directions. The algorithm of the fixed point calculation method may be any method as long as a fixed point can be obtained.

【0013】図3〜図6は不動点求値方法の説明図を示
し、先ずφ軸の回転を行う前に、図3に示すように調整
用試料の中に描かれている図形上の任意のn点P1〜Pn、
図3では円周上の4点P1〜P4を記憶する。角速度α rad
/秒でφ軸を回転し、図4に示すように調整試料の点P1
〜Pnがτ秒後に点Q1〜Qnに移動したとすると、この時点
でビデオカメラ6の画像を用いて点Q1〜Qnを記憶する。
次に、仮の原点OからPj、Qj(j=1、2、・・・n)
の座標を求め、図5に示すように線分PjQjの値を演算す
る。図6に示すように線分PjQjの中点Rjを求め、中点Rj
を通り線分PjQjの垂直2等分線を計算する。
FIG. 3 to FIG. 6 are explanatory diagrams of the fixed point calculating method. First, before rotating the φ-axis, an arbitrary point on the figure drawn in the adjustment sample as shown in FIG. N points P1 to Pn,
In FIG. 3, four points P1 to P4 on the circumference are stored. Angular velocity α rad
Rotation of the φ axis at a rate of P1 per second as shown in FIG.
Assuming that .about.Pn has moved to the points Q1 to Qn after .tau. Seconds, the points Q1 to Qn are stored using the image of the video camera 6 at this point.
Next, Pj, Qj (j = 1, 2,... N) from the temporary origin O
Are calculated, and the value of the line segment PjQj is calculated as shown in FIG. As shown in FIG. 6, the midpoint Rj of the line segment PjQj is obtained.
To calculate the perpendicular bisector of the line segment PjQj.

【0014】複数の中点Rjの垂直2等分線からその交点
S1j を求め、この値を1回目の不動点候補座標S1j とす
る。引き続き上述の手順で複数の不動点候補座標を演算
し、k回目に求めた不動点候補座標Skj と、k+1回目
に求めた不動点候補座標Sk+1j の位置誤差を、式|Skj
|−|Sk+1j |≦εにより、測定者が予め設定した値ε
以下となるまで繰り返し行う。
From the perpendicular bisector of a plurality of midpoints Rj, the intersection
S1j is obtained, and this value is set as the first fixed point candidate coordinates S1j. Subsequently, a plurality of fixed point candidate coordinates are calculated in the above-described procedure, and the position error between the k-th fixed point candidate coordinate Skj and the (k + 1) th fixed point candidate coordinate Sk + 1j is calculated by the equation | Skj.
| − | Sk + 1j | ≦ ε, the value ε preset by the measurer
Repeat until the following.

【0015】この不動点が求まると、ステップ(8) でこ
の座標位置を記憶して、不動点求値の操作を終了し、ス
テップ(9) で試料を蛍光板に変換してX線発生源3の位
置調整を行い、X線発生源3からX線を発生して蛍光板
に照射する。X線の発光領域が求めた不動点の位置に一
致するようにコリメータ4を微動させる。この操作はX
線を実際に発生して行うが、防X線カバーで被覆された
状態で外部からビデオカメラ6の出力画像を見ながら操
作するので、被爆の可能性はない。
When the fixed point is determined, the coordinate position is stored in step (8), and the operation for determining the fixed point is completed. In step (9), the sample is converted into a fluorescent plate and the X-ray source 3 is converted. Is adjusted to generate X-rays from the X-ray source 3 and irradiate the fluorescent screen. The collimator 4 is slightly moved so that the X-ray emission area matches the position of the determined fixed point. This operation is X
Although a line is actually generated, the operation is performed while viewing the output image of the video camera 6 from the outside in a state of being covered with the X-ray protection cover, so there is no possibility of being exposed.

【0016】その後は、通常の測定方法と同様にして、
回折角が既知の標準試料である単結晶シリコンの粉末を
試料ステージ1上に設置して、各軸を揺動させながら回
折パターンを測定し、PSPC5のデータムを行う。な
お、調整用試料、蛍光板、標準試料は1つの試料台に設
置されており、これらを自動的に交換して全操作を行う
ことができるが、部分的に手動にすることも可能であ
る。
After that, in the same manner as in a normal measuring method,
A single crystal silicon powder, which is a standard sample having a known diffraction angle, is placed on the sample stage 1, and the diffraction pattern is measured while oscillating each axis, and datum of the PSPC 5 is performed. Note that the adjustment sample, the fluorescent plate, and the standard sample are installed on one sample stage, and all operations can be performed by automatically exchanging them, but it is also possible to partially operate them manually.

【0017】図7は測定試料Sの側面図を示し、石英基
板11上の微小領域に直径が約120μm、膜厚が約1
0nmの酸化パラジウム薄膜12を形成し、測定試料S
とする。試料S内の酸化パラジウム薄膜12の微小領域
のX線回折測定を行うために、図8に示すような金(A
u)13の上に直径50μmの円14が刻まれ、かつそ
の円周上に識別用の点P1〜P8がある調整用試料S’を用
いる。
FIG. 7 shows a side view of the measurement sample S. A minute area on the quartz substrate 11 has a diameter of about 120 μm and a thickness of about 1 μm.
A 0 nm palladium oxide thin film 12 is formed, and a measurement sample S
And In order to perform X-ray diffraction measurement of a minute area of the palladium oxide thin film 12 in the sample S, gold (A) as shown in FIG.
u) An adjustment sample S ′ in which a circle 14 having a diameter of 50 μm is engraved on 13 and points P1 to P8 for identification on the circumference thereof is used.

【0018】調整用試料S’を試料ステージ1に固定し
ビデオカメラ6を直下に配置する。ビデオカメラ6の出
力信号を図示しないCRTを用いて観察しながら、試料
ステージ1に接続した焦点調整を行うための駆動装置を
用いて焦点合わせを行う。この時点での画像を予め外部
コンピュータの記憶領域に転送しておき、円周上の8点
P1〜P8を演算点として使用して不動点を算出する。
The adjustment sample S 'is fixed to the sample stage 1, and the video camera 6 is disposed immediately below. While observing the output signal of the video camera 6 using a CRT (not shown), focusing is performed using a driving device connected to the sample stage 1 for performing focus adjustment. The image at this point has been transferred to the storage area of the external computer in advance, and 8 points on the circumference
A fixed point is calculated using P1 to P8 as calculation points.

【0019】続いて、試料ステージ1をφ軸回りに角速
度π/6 rad/秒で揺動し、予め記憶しておいた円14
上の点P1〜P8と、2秒後の点Q1〜Q8とを用いて1回目の
不動点探索を行う。次に、2秒後の点と4秒後の点を用
いて2回目の不動点探索を行い、最終的には2秒毎に計
5回の探索を行って、不動点は位置誤差±5μm以下で
求めることができる。
Subsequently, the sample stage 1 is swung around the φ axis at an angular velocity of π / 6 rad / sec, and a circle 14 stored in advance is used.
A first fixed point search is performed using the upper points P1 to P8 and the points Q1 to Q8 two seconds later. Next, a second fixed point search is performed using the point after 2 seconds and the point after 4 seconds, and finally a total of 5 searches are performed every 2 seconds, and the fixed point has a position error of ± 5 μm. It can be obtained as follows.

【0020】X線発生源3として銅を対陰極とする回転
対陰極X線管を使用し、回転対陰極X線管を管電圧40
kV、管電流300mAで駆動する。X線焦点はポイン
トフォーカスにより実行焦点の幅を1mm、長さを1m
mとし、コリメータ4は直径50μmのものを使用す
る。
As the X-ray source 3, a rotating cathode X-ray tube using copper as a cathode is used.
It is driven at kV and a tube current of 300 mA. The X-ray focus is a point focus, the effective focus width is 1 mm and the length is 1 m
m, and the collimator 4 having a diameter of 50 μm is used.

【0021】次に、試料ステージ1上に蛍光板を設置
し、ビデオカメラ6の出力信号を外部のCRTで観察し
ながら、上述の条件で発生させたX線を蛍光板に照射す
る。この状態で、X線照射による発光領域を先の工程で
求めた不動点の位置に直ちに移動し、次に試料ステージ
1上にシリコン粉末試料を設置してPSPC5のデータ
ムを実行する。
Next, a fluorescent plate is set on the sample stage 1, and the fluorescent plate is irradiated with X-rays generated under the above-mentioned conditions while observing the output signal of the video camera 6 on an external CRT. In this state, the light emitting region by the X-ray irradiation is immediately moved to the position of the fixed point determined in the previous step, and then the silicon powder sample is set on the sample stage 1 and the datum of the PSPC 5 is executed.

【0022】上述の全ての調整が終了した後に、試料S
を試料ステージ1上に設置し、X線発生源3から発生し
たX線をコリメータ4を通過して試料S内の微小領域の
酸化パラジウム薄膜12に照射する。測定はω軸を45
°〜60°まで回転し、φ軸を反時計回りに一定速度で
回転し、χ軸を±5°の範囲で揺動することにより、回
折X線の強度をPSPC5で検出する。1時間の測定で
回折角2θが20°〜80°の範囲のX線回折パターン
を記録し、酸化パラジウム薄膜12の回折ピークを観測
することができる。
After all the above adjustments are completed, the sample S
Is placed on the sample stage 1, and the X-rays generated from the X-ray source 3 pass through the collimator 4 and irradiate the palladium oxide thin film 12 in a small area in the sample S. The measurement was performed on the ω axis at 45.
The intensity of the diffracted X-rays is detected by the PSPC 5 by rotating from φ to 60 °, rotating the φ axis counterclockwise at a constant speed, and swinging the χ axis in a range of ± 5 °. An X-ray diffraction pattern having a diffraction angle 2θ in the range of 20 ° to 80 ° can be recorded in one hour measurement, and the diffraction peak of the palladium oxide thin film 12 can be observed.

【0023】図9は他の調整用試料S’の平面図を示
す。測定試料には第1の実施例と同様のものを使用し、
調整用試料S’として金13の上に半径が異なる2つの
円15a、15bが約50μm離れて刻まれているもの
を使用する。
FIG. 9 shows a plan view of another adjustment sample S '. The same measurement sample as in the first embodiment was used,
As the adjustment sample S ′, a sample in which two circles 15 a and 15 b having different radii are engraved on the gold 13 at a distance of about 50 μm is used.

【0024】この調整用試料S’を試料ステージ1に固
定し、ビデオカメラ6を直下に配置し、ビデオカメラ6
の出力信号をCRTを用いて観察しながら、試料ステー
ジ1に接続した焦点調整を行うための駆動装置を用いて
焦点合わせを行う。この時点で、予め画像を外部コンピ
ュータの記憶領域に転送し、不動点を求めるために、第
1、第2の円15a、15bの中心P1、P2及び中心P1、
P2を結ぶ線と第1の円15aとの交点P3の計3点を演算
点とする。
The adjustment sample S ′ is fixed to the sample stage 1, and the video camera 6 is disposed immediately below.
While observing the output signal of the sample stage using a CRT, focusing is performed using a drive device for performing focus adjustment connected to the sample stage 1. At this time, the center P1, P2 and the center P1, P1, P2 of the first and second circles 15a, 15b are transferred in advance to the storage area of the external computer to obtain a fixed point.
A total of three intersection points P3 between the line connecting P2 and the first circle 15a are set as calculation points.

【0025】続いて、試料ステージ1をφ軸回りに角速
度π/6 rad/秒で揺動し、予め記憶した演算点P1〜P3
点と、2秒後の点Q1〜Q3を用いて1回目の不動点探索を
行う。次に、2秒後の点と4秒後の点を用いて2回目の
不動点探索を行い、最終的には2秒毎に計5回の探索を
行って、不動点を位置誤差±5μm以下で求めることが
できる。なお、回折パターンの測定は第1の実施例と同
様に行う。
Subsequently, the sample stage 1 is swung around the φ axis at an angular velocity of π / 6 rad / sec, and the calculation points P1 to P3 stored in advance are set.
A first fixed point search is performed using the point and the points Q1 to Q3 two seconds later. Next, a second fixed point search is performed using the point after 2 seconds and the point after 4 seconds, and finally a total of 5 searches are performed every 2 seconds to determine the fixed point with a position error of ± 5 μm. It can be obtained as follows. The measurement of the diffraction pattern is performed in the same manner as in the first embodiment.

【0026】図10は更に他の調整用試料S’の平面図
を示す。測定試料には第1の実施例と同様のものを使用
し、調整用試料S’としては、金10の上に1辺が50
μmの正三角形の頂点を中心とした異なる半径の3つの
円16a〜16cが刻まれているものを用いる。調整用
試料S’を試料ステージ1に固定して、ビデオカメラ6
を直下に配置する。
FIG. 10 shows a plan view of still another adjustment sample S '. The same measurement sample as that of the first embodiment was used. As the adjustment sample S ′, one side of 50
One in which three circles 16a to 16c having different radii centered on the vertexes of a regular triangle of μm are engraved is used. The adjustment sample S ′ is fixed to the sample stage 1 and the video camera 6
Is placed directly below.

【0027】ビデオカメラ6の出力信号をCRTを用い
て観察しながら、試料ステージ1に接続された焦点調整
を行うための駆動装置を用いて焦点合わせを行う。この
時点での画像を、予め外部コンピュータの記憶領域に転
送しておき、不動点を求めるために各円16a〜16c
の中心の3点P1〜P3を演算点とする。
While observing the output signal of the video camera 6 using a CRT, focusing is performed using a drive device for performing focus adjustment connected to the sample stage 1. The image at this point is previously transferred to the storage area of the external computer, and each circle 16a to 16c
Are the calculation points.

【0028】続いて、試料ステージ1をφ軸回りに角速
度がπ/6 rad/秒で揺動を行い、予め記憶させておい
た点P1〜P3と2秒後の点G1〜G3を用いて1回目の不動点
探索が行い、次に2秒後の点と4秒後の点を用いて2回
目の不動点探索を行う。最終的に2秒毎に計3回の探索
を行い、不動点を位置誤差±5μm以下で求めることが
できる。なお、回折パターンの測定は第1の実施例と同
様に行う。
Subsequently, the sample stage 1 is swung around the φ axis at an angular velocity of π / 6 rad / sec, and the points P1 to P3 stored in advance and the points G1 to G3 two seconds later are used. A first fixed point search is performed, and then a second fixed point search is performed using the point after 2 seconds and the point after 4 seconds. Finally, a total of three searches are performed every two seconds, and the fixed point can be obtained with a position error of ± 5 μm or less. The measurement of the diffraction pattern is performed in the same manner as in the first embodiment.

【0029】図11は更に他の調整試料S’の平面図を
示す。測定試料は第1の実施例と同様のものを使用し、
調整用試料S’としては金10の上に1辺が50μmの
正方形の頂点を中心とした異なる半径の4つの円17a
〜17dが刻まれているものを用いる。この調整用試料
を試料ステージ1に固定してビデオカメラ6を直下に配
置する。
FIG. 11 shows a plan view of still another adjustment sample S '. The same measurement sample as in the first embodiment is used,
As the adjustment sample S ′, four circles 17a having different radii centered on the vertices of a square having a side of 50 μm on the gold 10
1717d is used. The adjustment sample is fixed to the sample stage 1, and the video camera 6 is disposed immediately below.

【0030】ビデオカメラ6の出力信号をCRTにより
観察しながら、試料ステージ1に接続された焦点調整を
行うための駆動装置を用いて焦点合わせを行う。この時
点での画像を予め外部コンピュータの記憶領域に転送し
ておき、不動点を求めるために各円17a〜17dの中
心の4点P1〜P4を演算とする。
While observing the output signal of the video camera 6 on a CRT, focusing is performed using a driving device connected to the sample stage 1 for performing focus adjustment. The image at this time is previously transferred to the storage area of the external computer, and the four points P1 to P4 at the center of each of the circles 17a to 17d are calculated in order to obtain fixed points.

【0031】続いて、試料ステージ1をφ軸回りに角速
度がπ/6 rad/秒で揺動を行った。予め記憶させてお
いた点P1〜P4と、2秒後の点G1〜G4を用いて1回目の不
動点探索を行い、次に2秒後の点と4秒後の点を用いて
2回目の不動点探索を行う。最終的に2秒毎に計3回の
探索を行って、不動点を位置誤差±5μm以下で求める
ことができる。なお、回折パターンの測定は第1の実施
例と同様に行う。
Subsequently, the sample stage 1 was swung around the φ axis at an angular velocity of π / 6 rad / sec. The first fixed point search is performed using the points P1 to P4 stored in advance and the points G1 to G4 two seconds later, and then the second fixed point search is performed using the points two seconds and four seconds later. Is performed. Finally, a total of three searches are performed every two seconds, and the fixed point can be obtained with a position error of ± 5 μm or less. The measurement of the diffraction pattern is performed in the same manner as in the first embodiment.

【0032】[0032]

【発明の効果】以上説明したように本発明に係る微小領
域X線回折装置は、微小領域のX線回折測定を開始する
前に、3軸試料揺動機構を用いて必要とする微小領域の
位置合わせ調整を全て自動化して行うことにより、短時
間に調整作業を終了して正確かつ効率の良いX線回折測
定を行うことができる。
As described above, the micro area X-ray diffraction apparatus according to the present invention uses the three-axis sample rocking mechanism to reduce the required micro area before starting the X-ray diffraction measurement of the micro area. By performing all the alignment adjustments automatically, the adjustment work can be completed in a short time and accurate and efficient X-ray diffraction measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微小領域X線回折装置の構成図である。FIG. 1 is a configuration diagram of a micro area X-ray diffraction apparatus.

【図2】測定のフローチャート図である。FIG. 2 is a flowchart of a measurement.

【図3】不動点求値方法の説明図である。FIG. 3 is an explanatory diagram of a fixed point calculation method.

【図4】不動点求値方法の説明図である。FIG. 4 is an explanatory diagram of a fixed point calculation method.

【図5】不動点求値方法の説明図である。FIG. 5 is an explanatory diagram of a fixed point calculation method.

【図6】不動点求値方法の説明図である。FIG. 6 is an explanatory diagram of a fixed point calculation method.

【図7】測定試料の側面図である。FIG. 7 is a side view of a measurement sample.

【図8】調整用試料の平面図である。FIG. 8 is a plan view of an adjustment sample.

【図9】他の調整用試料の平面図である。FIG. 9 is a plan view of another adjustment sample.

【図10】更に他の調整用試料の平面図である。FIG. 10 is a plan view of still another adjustment sample.

【図11】更に他の調整用試料の平面図である。FIG. 11 is a plan view of still another adjustment sample.

【符号の説明】[Explanation of symbols]

1 試料ステージ 2 大型ホルダ 3 X線発生源 4 コリメータ 5 PSPC 6 ビデオカメラ 11 石英基板 12 酸化パラジウム薄膜 13 金 S 測定試料 S’ 調整用試料 Reference Signs List 1 sample stage 2 large holder 3 X-ray source 4 collimator 5 PSPC 6 video camera 11 quartz substrate 12 palladium oxide thin film 13 gold S measurement sample S 'adjustment sample

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料にX線を照射した際に生ずる回折X
線の回折角と強度を測定して前記試料の情報を得る微小
領域X線回折装置において、X線を発生する手段と、前
記試料面上のX線照射領域を微小領域に限定する手段
と、前記X線照射領域で回折したX線を検出して該X線
の回折角と強度を測定する手段と、前記X線照射領域を
観察するための光学的観察手段と、前記試料を構成する
結晶の方位を空間的に平均化してデータの質を向上する
三軸試料揺動機構と、該三軸試料揺動機構の3つの揺動
軸が1点で交差し、これらの3つの揺動軸の交点を前記
X線照射領域と一致させるために前記光学的観察手段に
より得られる調整用試料の画像を利用する調整機構とを
有し、揺動動作中に前記光学的観察手段により前記調整
用試料の面内の2つ以上の点の位置を常時認識可能とす
ることを特徴とする微小領域X線回折装置。
1. Diffraction X generated when a sample is irradiated with X-rays
In a micro area X-ray diffraction apparatus that obtains information on the sample by measuring the diffraction angle and intensity of a line, a means for generating X-rays, a means for limiting an X-ray irradiation area on the sample surface to the micro area, Means for detecting X-rays diffracted in the X-ray irradiation area and measuring the diffraction angle and intensity of the X-rays, optical observation means for observing the X-ray irradiation area, and a crystal constituting the sample Sample oscillating mechanism for spatially averaging the orientations of the three axes to improve data quality, and three oscillating axes of the three-axis sample oscillating mechanism intersect at one point, and these three oscillating axes And an adjustment mechanism that uses an image of the adjustment sample obtained by the optical observation means in order to make the intersection of the X-ray irradiation area coincide with the X-ray irradiation area. The position of two or more points in the plane of the sample can always be recognized. Small area X-ray diffractometer.
【請求項2】 前記調整用試料は光の反射率が異なる領
域を有し、前記2つ以上の点の位置関係が常時認識可能
な多角形から成る請求項1に記載の微小領域X線回折装
置。
2. The small area X-ray diffraction according to claim 1, wherein the adjustment sample has a region having different light reflectivity, and is a polygon in which a positional relationship between the two or more points can be always recognized. apparatus.
【請求項3】 前記調整試料は光の反射率が異なる領域
を有し、大きさが異なる複数の円形パターンから成る請
求項1に記載の微小領域X線回折装置。
3. The micro area X-ray diffraction apparatus according to claim 1, wherein the adjustment sample has regions having different light reflectivities, and is composed of a plurality of circular patterns having different sizes.
【請求項4】 前記光学的観察手段はビデオカメラを含
む請求項1に記載の微小領域X線回折装置。
4. The small-area X-ray diffraction apparatus according to claim 1, wherein said optical observation means includes a video camera.
JP10069319A 1998-03-04 1998-03-04 Microarea x-ray diffractometer Pending JPH11248651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10069319A JPH11248651A (en) 1998-03-04 1998-03-04 Microarea x-ray diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10069319A JPH11248651A (en) 1998-03-04 1998-03-04 Microarea x-ray diffractometer

Publications (1)

Publication Number Publication Date
JPH11248651A true JPH11248651A (en) 1999-09-17

Family

ID=13399128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10069319A Pending JPH11248651A (en) 1998-03-04 1998-03-04 Microarea x-ray diffractometer

Country Status (1)

Country Link
JP (1) JPH11248651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040952A3 (en) * 1999-01-07 2001-10-18 Europ Lab Molekularbiolog Device for the precision rotation of samples
CN109374659A (en) * 2017-12-28 2019-02-22 中国兵器工业第五九研究所 A kind of localization method of short wave length X-ray diffraction test sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040952A3 (en) * 1999-01-07 2001-10-18 Europ Lab Molekularbiolog Device for the precision rotation of samples
JP2002534675A (en) * 1999-01-07 2002-10-15 ユーロペーイシェ ラボラトリウム フュール モレキュラーバイオロジー(イーエムビーエル) Sample precision rotation device
CN109374659A (en) * 2017-12-28 2019-02-22 中国兵器工业第五九研究所 A kind of localization method of short wave length X-ray diffraction test sample
CN109374659B (en) * 2017-12-28 2020-12-29 中国兵器工业第五九研究所 Positioning method of short-wavelength X-ray diffraction test sample

Similar Documents

Publication Publication Date Title
JP2722362B2 (en) Method and apparatus for measuring particle or defect size information
JPS60502270A (en) Method and apparatus for setting crystal orientation
JPH07208935A (en) Method and means for measuring magnification of zoom optical system
US4788702A (en) Orientation of crystals
US4771446A (en) Grading orientation errors in crystal specimens
JP3598983B2 (en) Ultra-precision shape measuring method and device
JP3597222B2 (en) Eccentricity measurement method for lenses, reflectors, etc., and machines using it
JP2821585B2 (en) In-plane distribution measuring method and apparatus
JPH11248651A (en) Microarea x-ray diffractometer
JP2002257511A (en) Three dimensional measuring device
JP3593161B2 (en) Measuring device for foreign matter position on rotating body
JPS6117007A (en) Automatic measuring apparatus of contact angle
JPH11194276A (en) Infrared microscope
JP3629542B2 (en) X-ray fluorescence analyzer
JP2003142541A (en) Analysis method of particle
JP2002228609A (en) Monochrome X-ray photoelectron spectrometer
JPH04225152A (en) Automatic apparatus for x-ray analysis of crystal orientation
JP3635606B2 (en) Collimator setting device
JPH01312405A (en) Measurement of burying depth
JPH11211611A (en) Eccentricity measuring apparatus
JP2003149179A (en) Orientation measuring device for monocrystal
JPH0972864A (en) X-ray diffraction measuring device
JPH0713058A (en) Method for adjusting optical axis of objective lens
JPH1038556A (en) Shape measuring device
JPH0634344A (en) Device and method of measuring curvature of surface