[go: up one dir, main page]

JPH11207573A - Tool dimension measuring method - Google Patents

Tool dimension measuring method

Info

Publication number
JPH11207573A
JPH11207573A JP1891698A JP1891698A JPH11207573A JP H11207573 A JPH11207573 A JP H11207573A JP 1891698 A JP1891698 A JP 1891698A JP 1891698 A JP1891698 A JP 1891698A JP H11207573 A JPH11207573 A JP H11207573A
Authority
JP
Japan
Prior art keywords
tool
measuring
diameter
measurement
main axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1891698A
Other languages
Japanese (ja)
Inventor
Kazuo Umekage
一男 梅影
Toshiro Watanabe
敏郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP1891698A priority Critical patent/JPH11207573A/en
Publication of JPH11207573A publication Critical patent/JPH11207573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact type tool dimension measuring method that measures tool dimensions, or the length, diameter and taper angle of a tool, precisely and practically without causing any contact of its probe with the tool that is still held in its machining or positively rotating state. SOLUTION: While a tool 8 attached to a main spindle 7 on a machining center is rotated as in normal machining, an electric potential difference is applied between the tool 8 and a probe 11 having a chamfered ridge. In this sate a conduction sensor 10 detects the electrical conduction made by a discharge in this noncontact state and outputs the data to a numerical controller, which in turn reads the coordinate value of the main spindle to compute the length, diameter and tape angle of the tool.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マシニングセンタ
等の工作機械に用いられる加工工具の工具寸法である工
具長及び工具径の測定方法に関し、特に非接触式の測定
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a tool length and a tool diameter, which are tool dimensions of a working tool used for a machine tool such as a machining center, and more particularly to a non-contact type measuring method.

【0002】[0002]

【従来の技術】従来、工具寸法の測定方法としては、工
具を装着した工作機械の主軸の回転を停止した状態で、
感圧式タッチセンサを持つ測定子に接触して電気導通を
取ることにより主軸の位置を測定する方法がある。しか
しながら、前記従来の測定方法では、図8に示すよう
に、主軸7が加工時に回転(正転)すると工具8は、僅
かな主軸の伸び縮みや振れのため、その外形を回転工具
8′(極端に表現してある)のように変化させ、工具長
及び工具径の寸法が停止時に於ける寸法と比較した場
合、誤差を生じることがある。また、その測定圧は30
0〜500gと大きいため、特に小径(例えばφ0.1
〜0.2mm)の工具では、撓みが生じて、高精度の測定
ができなかったり、さらには、測定子と工具との接触に
よる測定子の損耗、工具の刃先の磨耗、チッピング等の
損傷があって加工精度が低下したり、或いは工具が折れ
てしまう等の問題点があった。
2. Description of the Related Art Conventionally, as a method of measuring a tool size, a method in which a spindle of a machine tool equipped with a tool is stopped while the spindle is stopped.
There is a method of measuring the position of the spindle by making contact with a measuring element having a pressure-sensitive touch sensor to establish electrical continuity. However, according to the conventional measuring method, as shown in FIG. 8, when the main shaft 7 rotates (forward rotation) during machining, the tool 8 has a slight external expansion and contraction and runout, so that the outer shape of the tool 8 is changed to a rotary tool 8 '( (Extremely expressed), errors may occur when the dimensions of the tool length and the tool diameter are compared with the dimensions at the time of stop. The measured pressure is 30
Since it is as large as 0 to 500 g, especially small diameter (for example, φ0.1
(0.2mm), the tool may bend, causing high-precision measurement. In addition, the contact between the contact point and the tool may cause wear of the contact point, wear of the cutting edge of the tool, and damage such as chipping. Therefore, there have been problems such as a decrease in machining accuracy or breakage of the tool.

【0003】そこで、上記の問題点を解決する手段とし
て、特開昭64−16353号及び特開昭64−163
54号に開示されたものがある。即ち、NC工作機械
(例えばマシニングセンタ)本体を導電体として、工具
と測定子が接触した際、左右下方に柔軟に移動する測定
子の下部に配置したタッチセンサからタッチ信号が出力
され、該タッチ信号に基づいてNC装置において信号処
理、演算、記憶等を行い、工具寸法である工具長及び工
具径の測定を行なうものである。
In order to solve the above-mentioned problems, Japanese Patent Application Laid-Open Nos. 64-16353 and 64-1633 have been proposed.
No. 54 has been disclosed. That is, when an NC machine tool (for example, a machining center) body is used as a conductor and a tool comes into contact with a probe, a touch signal is output from a touch sensor disposed below the probe that moves flexibly left and right downward, and the touch signal is output. The NC device performs signal processing, calculation, storage, etc. based on the above, and measures the tool length and the tool diameter, which are tool dimensions.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例にあっても、例えば工具長の測定時には主軸を停止
状態にしなければならず、工具径の測定時には主軸を回
転(逆転)状態にして測定を行なうが、最終的には工具
と測定子とが接触するため、撓みや傷、磨耗が生じて工
具及び測定子の耐久性の低下を招いた。また、該撓みや
傷、磨耗のため工具寸法である工具長及び工具径の測定
精度が低下し、結果的に製品(ワーク)の加工精度が低
下した。
However, even in the above-mentioned conventional example, for example, the spindle must be stopped when measuring the tool length, and the spindle is rotated (reverse rotation) when measuring the tool diameter. However, since the tool and the probe eventually come into contact with each other, bending, scratches, and abrasion occur, resulting in reduced durability of the tool and the probe. In addition, the measurement accuracy of the tool length and the tool diameter, which are the tool dimensions, was reduced due to the bending, scratching, and wear, and as a result, the processing accuracy of the product (work) was reduced.

【0005】また、上記従来例にあっては、テーパー工
具の径の測定は不可能であった。一方、工具と測定子と
を接触させない非接触式の工具寸法の測定方法として磁
気センサや光センサ等を用いて測定する測定方法も公知
であるが、いずれもセンサ自身の分解能の不十分さ、加
工時の工具や製品の磁化による影響、工作油等の汚れに
より反射光の低下等の問題があり、高精度な測定に適す
るものではなかった。
Further, in the above-mentioned conventional example, it was impossible to measure the diameter of the tapered tool. On the other hand, as a non-contact type tool dimension measurement method that does not contact the tool and the measuring element, a measurement method using a magnetic sensor or an optical sensor is also known.However, the resolution of the sensor itself is insufficient, There are problems such as the influence of magnetization of tools and products at the time of processing, and a decrease in reflected light due to contamination of machine oil or the like, and this is not suitable for high-precision measurement.

【0006】本発明は、上記の問題点に着目して成され
たものであって、その目的とするところは、工具を加工
状態と同様の状態で正転させながら測定しても、工具が
測定子に接触することなく工具寸法である工具長及び工
具径の測定ができ、またテーパー工具の径やテーパー角
度の測定も可能な高精度で実用的な非接触式の工具寸法
の測定方法を提供することにある。
[0006] The present invention has been made in view of the above problems, and an object of the present invention is to measure a tool while rotating the tool in the same state as the machining state while rotating the tool forward. A highly accurate and practical non-contact tool dimension measurement method that can measure the tool length and tool diameter, which are tool dimensions, without contacting the probe, and can also measure the diameter and taper angle of tapered tools. To provide.

【0007】また、NC(数値制御)装置を用いて、一
つの製品(ワーク)を完成させるには、複数の工具をA
TC(自動工具交換装置)により交換して使用するた
め、工具単体の寸法精度も重要ではあるが、むしろ複数
使用される工具間の累積誤差の方が製品(ワーク)の寸
法に大きく影響し、品質上問題視されること多い。従っ
て、ATC(自動工具交換装置)により交換して使用さ
れる複数の工具の寸法測定が高精度に迅速にできれば、
その結果として高品質、低コストな製品(ワ−ク)を提
供することになる。
In order to complete one product (work) using an NC (numerical control) device, a plurality of tools must be
Since it is used by changing with a TC (automatic tool changer), the dimensional accuracy of a single tool is also important, but rather the cumulative error between a plurality of used tools has a greater effect on the size of a product (work). Often viewed as a quality problem. Therefore, if the dimensions of a plurality of tools exchanged and used by an ATC (automatic tool changer) can be measured quickly with high accuracy,
As a result, a high-quality, low-cost product (work) is provided.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係わる工具寸法の測定方法は、工作機械
の主軸とテーブルとの間に電位差を与えておき、前記主
軸に取り付けた工具と前記テーブルに固定した測定子と
の相対位置を電気導通により検出して前記工具の寸法を
測定する方法において、前記検出は前記工具と前記測定
子との間に非接触状態において発生する放電現象を捉え
て行うことを特徴とする。
In order to achieve the above object, a method for measuring a tool size according to the present invention is characterized in that a potential difference is provided between a spindle of a machine tool and a table, and the tool is attached to the spindle. In the method for measuring the size of the tool by detecting the relative position between the tool and the measuring element fixed to the table by electrical conduction, the detection is performed in a non-contact state between the tool and the measuring element. It is characterized by capturing the phenomenon.

【0009】また、前記工具を回転させながら前記測定
子の前記主軸に垂直な上面に近接させた位置で、前記主
軸を径方向に相対移動させながら検出した主軸方向の位
置に基づいて工具長を測定することを特徴とする。
Further, at a position close to the upper surface of the tracing stylus perpendicular to the main axis while rotating the tool, the tool length is determined based on the position in the main axis direction detected while relatively moving the main axis in the radial direction. It is characterized by measuring.

【0010】また、前記工具を回転させながら前記測定
子の前記主軸に平行な側面に近接させた位置で、前記主
軸を前記平面に平行な径方向に相対移動させながら検出
した径方向の位置に基づいて工具径を測定することを特
徴とする。
Further, at a position close to a side surface parallel to the main axis of the tracing stylus while rotating the tool, at a radial position detected while relatively moving the main axis in a radial direction parallel to the plane. The tool diameter is measured based on the tool diameter.

【0011】また、測定時の前記工具の回転は加工時と
ほぼ同じ回転数であることを特徴とする。
Further, the rotation of the tool at the time of measurement is substantially the same as the rotation at the time of machining.

【0012】また、前記測定子の前記主軸に垂直な上面
と前記主軸に平行な側面との稜線部にRを形成した測定
子を用いてテーパー工具の工具径を測定することを特徴
とする。
Further, the diameter of the tapered tool is measured by using a measuring element having an R formed at a ridge line between an upper surface of the measuring element perpendicular to the main axis and a side surface parallel to the main axis.

【0013】[0013]

【発明の実施の形態】以下、本発明の工具寸法の測定方
法の実施の形態を図面に基づいて説明する。まず、本発
明を実施するための装置例について図1から図3に基づ
いて説明する。図1は本発明に係わる装置例を示す概略
斜視図、図2は導通センサの原理説明図、図3は測定子
の斜視図であり、図3(a)は稜線に一種類の寸法のR
を持ち、図3(b)は2種類の寸法のRを持つものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for measuring a tool size according to the present invention will be described below with reference to the drawings. First, an example of an apparatus for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a schematic perspective view showing an example of an apparatus according to the present invention, FIG. 2 is an explanatory view of the principle of a conduction sensor, FIG. 3 is a perspective view of a tracing stylus, and FIG.
FIG. 3 (b) has R of two kinds of dimensions.

【0014】図1において、工作機械であるマシニング
センタ1は、前記従来例である特開昭64−16353
号及び特開昭64−16354号に開示されたマシニン
グセンタと同様の構成を有しているので、詳細な説明を
省略する。まず、ベッド2上にY軸(矢印Y)方向へ移
動可能なテーブル3を備え、且つ、コラム4及びビーム
5に支持されX軸(矢印X)方向へ移動可能なサドル6
とサドル6に設けられたZ軸(矢印Z)方向へ移動可能
な主軸7を備えた全体構成となっている。主軸7の下端
には、加工内容に応じた工具8が装着される。そして、
9はATCであり、マシニングセンタ1の背部に設置し
てあるツールマガジン9aから所要の工具を取り出し、
主軸7に装着するものである。また、20はNC装置で
あって、マシニングセンタ1、ATC9を制御して所要
の加工作業を行なわせるとともに、テーブル3、サドル
6、主軸7等の座標読取を適宜行なう。
Referring to FIG. 1, a machining center 1 as a machine tool is disclosed in Japanese Patent Laid-Open Publication No.
And has the same configuration as the machining center disclosed in Japanese Patent Application Laid-Open No. 64-16354 and its detailed description is omitted. First, a bed 3 is provided on the bed 2 and is movable in the Y-axis (arrow Y) direction, and is supported by the column 4 and the beam 5 and is movable in the X-axis (arrow X) direction.
And a main shaft 7 provided on the saddle 6 and movable in the Z-axis (arrow Z) direction. At the lower end of the main shaft 7, a tool 8 according to the processing content is mounted. And
Reference numeral 9 denotes an ATC, which takes out a required tool from a tool magazine 9a installed on the back of the machining center 1,
It is mounted on the main shaft 7. Reference numeral 20 denotes an NC device which controls the machining center 1 and the ATC 9 to perform required machining operations, and reads coordinates of the table 3, the saddle 6, the main shaft 7 and the like as appropriate.

【0015】図2に示すように、主軸7とテーブル3間
には主軸7を正極にテーブル3を負極にして電位差Vが
印加されており、保持コラム7A内には、励起コイル1
0Aと検出コイル10Bとより成る公知の導通センサ1
0が配設されている。導通センサ10とNC装置20と
はコントロールアンプ21を介して電気的に接続されて
いる。そして主軸7に装着した工具8と後述する測定子
11との間に電位差Vによる放電現象が発生した瞬間に
閉ループ回路10Cが構成され、マシニングセンタ1内
を導電体として流れる電流により、励起された高周波電
流をコントロールアンプ21で検出、増幅し導通信号と
してNC装置20に伝達する。そしてNC装置20はそ
の時に主軸7の座標を読み取り、導通信号の処理、演
算、記憶及び各動作指令を行なう。
As shown in FIG. 2, a potential difference V is applied between the main shaft 7 and the table 3 with the main shaft 7 as a positive electrode and the table 3 as a negative electrode.
A known conduction sensor 1 composed of a detection coil 10A and a detection coil 10B.
0 is provided. The conduction sensor 10 and the NC device 20 are electrically connected via a control amplifier 21. A closed loop circuit 10C is formed at the moment when a discharge phenomenon occurs due to a potential difference V between the tool 8 mounted on the main shaft 7 and a tracing stylus 11 to be described later. The current is detected and amplified by the control amplifier 21 and transmitted to the NC device 20 as a conduction signal. Then, the NC device 20 reads the coordinates of the spindle 7 at that time, and performs processing, calculation, storage, and various operation commands of the conduction signal.

【0016】また、図3(a)に一例を示すように、1
1はテーブル3にステー12を介して取り付け固定した
略直方体形状の測定子であって、主軸7のZ軸方向に垂
直な平面である上面11Aと、上面11Aとの稜線部1
1Cに同寸法のRを形成して接続するZ軸に垂直でY軸
に平行な平面である一方の側面11Bと同じくこれに対
向する他方の側面11B′とを持ち、各々の平面は鏡面
仕上げされている。
Further, as shown in FIG.
Reference numeral 1 denotes a substantially rectangular parallelepiped measuring element attached and fixed to the table 3 via a stay 12, and an upper surface 11A, which is a plane perpendicular to the Z-axis direction of the main shaft 7, and a ridge portion 1 between the upper surface 11A.
1C has one side 11B which is a plane perpendicular to the Z axis and parallel to the Y axis and connected to the other side 11B ', which is also mirror-finished. Have been.

【0017】次に、上記のように構成されたマシニング
センタ1により実施される、本発明に係わる工具長の測
定方法を図面により説明する。図4はマシニングセンタ
1の正面即ちY軸方向から見た同工具長の測定原理図、
図5は同工具寸法の基本的測定手順を示すフローチャー
トである。
Next, a method of measuring a tool length according to the present invention, which is performed by the machining center 1 configured as described above, will be described with reference to the drawings. FIG. 4 is a diagram illustrating the principle of measuring the tool length when viewed from the front of the machining center 1, that is, from the Y-axis direction.
FIG. 5 is a flowchart showing a basic procedure for measuring the tool dimensions.

【0018】図4において、測定子11の上面11Aの
直上空を測定子の領空と呼ぶことにする。sは回転状態
にある工具8である回転工具8′と測定子11との間で
放電現象が起きる時の放電隙間であって、印加する電位
差Vによりその大きさをある程度任意に設定できるが、
本実施の形態では0.5μmに設定し予めNC装置20
に記憶させてある。従って、工具8と測定子11とは接
触することなく導通センサ10が迅速に導通信号を出力
できる。
In FIG. 4, the space directly above the upper surface 11A of the tracing stylus 11 will be referred to as the territory of the tracing stylus. s is a discharge gap when a discharge phenomenon occurs between the rotating tool 8 ′, which is the rotating tool 8, and the tracing stylus 11, and its magnitude can be arbitrarily set to some extent by the applied potential difference V.
In the present embodiment, it is set to 0.5 μm and the NC device 20 is set in advance.
It is stored in. Therefore, the conduction sensor 10 can quickly output a conduction signal without contact between the tool 8 and the tracing stylus 11.

【0019】まず、主軸7を加工時と同様な状態に回転
させ工具8を回転工具8′とし(図5のステップS
1)、次に回転工具8′が測定子11の領空外であり、
X軸座標が測定子11と干渉しない任意のX1、Y軸座
標が測定子11の側面11Bの幅以内の図示しない任意
の値、Z軸座標が測定子11上方の任意の値Z4である
待機位置に待機させる(ステップS2)。
First, the main shaft 7 is rotated in the same state as during machining, and the tool 8 is turned into a rotary tool 8 '(step S in FIG. 5).
1) Then, the rotary tool 8 'is out of the airspace of the tracing stylus 11,
Standby where the X-axis coordinate does not interfere with the tracing stylus 11, the X-axis coordinate is an arbitrary value (not shown) within the width of the side surface 11 </ b> B of the tracing stylus 11, and the Z-axis coordinate is any value Z4 above the tracing stylus 11 It is made to stand by at a position (step S2).

【0020】次に、前記X、Y座標を保持したまま主軸
7を、Z軸座標がZ4 から平面11Aの高さZ2との
間に隙間tを持つように予め設定したZ5 へ下降(垂
直移動)させて、ここを測定の基準位置とする(ステッ
プS3)。この場合、工具8先端の位置を従来の特開昭
64−16353号の工具長測定方法で測定しておき、
隙間tは既知の平面11Aの高さ位置であるZ2を基準
として設定する。ここで、隙間tの大きさは放電隙間s
より十分大きく、かつ測定時間を無用に長引かせない値
として適宜設定される意味のある値であり、ここでは1
5μmとしている。
Next, the main shaft 7 is lowered to a predetermined Z5 such that the Z-axis coordinate has a gap t between Z4 and the height Z2 of the plane 11A while maintaining the X and Y coordinates (vertical movement). ), And this is set as a reference position for measurement (step S3). In this case, the position of the tip of the tool 8 is measured by the conventional tool length measuring method of JP-A-64-16353, and
The gap t is set with reference to Z2, which is the height position of the known plane 11A. Here, the size of the gap t is the discharge gap s
It is a meaningful value that is set appropriately as a value that is sufficiently larger and does not unnecessarily prolong the measurement time.
It is 5 μm.

【0021】次に、測定基準位置のY、Z座標を保った
まま回転工具8′を測定基準位置のX座標X1から測定
子11の上面11A上に予め設定した任意の測定位置の
X座標X2まで往復移動(ステップS4)させて、その
間に放電現象の発生即ち導通センサ10の検出があった
か否かをチェックする(ステップS5)。そして、検出
がないときは、回転工具8′を測定基準位置におけるZ
軸方向を移動軸として測定子11に近づくように微小送
りする(ステップS6)。
Next, while maintaining the Y and Z coordinates of the measurement reference position, the rotary tool 8 'is moved from the X coordinate X1 of the measurement reference position to the X coordinate X2 of an arbitrary measurement position previously set on the upper surface 11A of the tracing stylus 11. (Step S4), and it is checked whether or not the discharge phenomenon has occurred, that is, whether the conduction sensor 10 has been detected (Step S5). When there is no detection, the rotary tool 8 'is moved to the Z position at the measurement reference position.
With the axial direction as the movement axis, minute feed is performed so as to approach the tracing stylus 11 (step S6).

【0022】そして、上記微小送り(例えば0.5μ
m)後にそのZ軸座標を保ったまま回転工具8′をX軸
方向にX1からX2までの往復移動(ステップS4)を
させ、再び導通センサ10の検出をチェックする(ステ
ップS5)。このようにして導通センサ10が検出する
まで、微小送り(ステップS6)と座標X1からX2ま
での往復移動(ステップS4)を繰り返す。そして回転
工具8′先端が放電隙間s内に入った時に回転工具8′
と測定子11との間に放電現象が起こり、導通センサ1
0が検出して導通信号を発生をする。この時のZ軸座標
がNC装置20に記憶される(ステップS7)。
Then, the fine feed (for example, 0.5 μm)
m) After that, the rotary tool 8 'is reciprocated from X1 to X2 in the X-axis direction (step S4) while maintaining the Z-axis coordinates, and the detection of the conduction sensor 10 is checked again (step S5). In this way, the minute feed (step S6) and the reciprocating movement from the coordinates X1 to X2 (step S4) are repeated until the conduction sensor 10 detects. When the tip of the rotating tool 8 'enters the discharge gap s, the rotating tool 8'
A discharge phenomenon occurs between the contact sensor 11 and the
0 generates a conduction signal upon detection. The Z-axis coordinates at this time are stored in the NC device 20 (step S7).

【0023】センサ検出位置Z3の測定が終了したら測
定結果を後述の式によって演算記憶(ステップ8)して
工具長測定を終了する。なお、測定基準位置から所定距
離下降しても導通信号が検出されない場合は、プログラ
ム上で異常と判断して警報を鳴らすことになる。
When the measurement of the sensor detection position Z3 is completed, the measurement result is calculated and stored according to a formula described later (step 8), and the tool length measurement is completed. If the conduction signal is not detected even after a predetermined distance from the measurement reference position, the program is determined to be abnormal and an alarm is sounded.

【0024】ここで、テーブル3上面のZ軸座標Z1、
測定子11上面11AのZ軸座標Z2は予め分かってお
り、よって、距離|Z1−Z2|は既知の値である。そ
して、回転工具8′の先端が上記待機位置における高さ
Z4から下降して、測定子11の上面11A近傍で放電
し導通信号を発生するまでに移動した座標変位を|Z3
−Z4|とすると、|Z1−Z4|=|Z1−Z2|+
s+|Z3−Z4|の式が成り立ち、回転工具8′の移
動距離|Z3−Z4|を測定すれば、上式をもって工具
長としての座標変位|Z1−Z4|が算出できる。
Here, the Z-axis coordinate Z1 on the upper surface of the table 3 is
The Z-axis coordinate Z2 of the upper surface 11A of the tracing stylus 11 is known in advance, and therefore, the distance | Z1-Z2 | is a known value. Then, the coordinate displacement moved until the tip of the rotary tool 8 'descends from the height Z4 at the standby position and discharges near the upper surface 11A of the tracing stylus 11 to generate a conduction signal is | Z3.
−Z4 |, | Z1-Z4 | = | Z1-Z2 | +
The formula of s + | Z3-Z4 | holds, and if the moving distance | Z3-Z4 | of the rotary tool 8 'is measured, the coordinate displacement | Z1-Z4 | as the tool length can be calculated by the above formula.

【0025】上記本実施の形態において、「工具長」は
テーブル3上面から回転工具8′の先端までの高さ|Z
1−Z4|(待機位置の工具高さ)を「工具長」として
測定する。なお、「工具長」を狭義に解すると、図4に
Hで示す工具両端間の長さを意味することになるが、加
工作業においては、上記Hよりも待機位置の工具高さ|
Z1−Z4|を測定し、この高さ位置から製品(ワー
ク)までの間隔を算出する方が一般的であり、広い意味
で|Z1−Z4|の測定をも「工具長測定」と言う。本
実施の形態においては「工具長」を広義にとらえてい
る。
In the above embodiment, the "tool length" is the height | Z from the upper surface of the table 3 to the tip of the rotary tool 8 '.
1-Z4 | (tool height at standby position) is measured as "tool length". When "tool length" is interpreted in a narrow sense, it means the length between both ends of the tool indicated by H in FIG. 4, but in the machining operation, the tool height |
It is common to measure Z1-Z4 | and calculate the distance from this height position to the product (work). In a broad sense, the measurement of | Z1-Z4 | is also referred to as "tool length measurement". In the present embodiment, “tool length” is broadly considered.

【0026】次に、上記同装置を用いて行う本発明に係
わる工具径の測定方法について図面に基づいて説明す
る。図6(a)は、本発明に係わる工具径の測定動作を
示す要部概略正面図、図6(b)は、同要部概略平面図
である。工具径測定の場合の工程フローチャートは図5
と同じであるから、図5を用いて説明する。
Next, a method for measuring a tool diameter according to the present invention using the above-described apparatus will be described with reference to the drawings. FIG. 6A is a schematic front view of a main part showing an operation of measuring a tool diameter according to the present invention, and FIG. 6B is a schematic plan view of the main part. FIG. 5 is a process flowchart in the case of tool diameter measurement.
Since this is the same as that of FIG.

【0027】工具長の測定の場合と同様に、まず、主軸
7を加工時と同様な状態に回転させ工具8を回転工具
8′とし(図5のステップS1)、回転工具8′が測定
子11の領空外であり、X座標が側面11B(X座標X
5)から隙間w離れたX3、Y座標が図6(b)に示す
ように側面11Bの幅外である任意の位置Y1、Z軸座
標が測定子11より上方のZ軸座標である図示しない待
機位置に移動させる(ステップS2)。ここで、隙間wの
大きさは放電隙間sより十分大きく、かつ測定時間を無
用に長引かせない値として適宜設定される値であり、こ
こでは15μmとしている。
As in the case of the measurement of the tool length, first, the main shaft 7 is rotated in the same state as in the machining, and the tool 8 is set as the rotary tool 8 '(step S1 in FIG. 5). 11 and the X coordinate is the side surface 11B (X coordinate X
6B, X3 and Y coordinates apart from the tracing stylus 11 are arbitrary positions Y1 and Y coordinates outside the width of the side surface 11B as shown in FIG. 6B. It is moved to the standby position (step S2). Here, the size of the gap w is sufficiently larger than the discharge gap s and is a value appropriately set as a value that does not unnecessarily prolong the measurement time, and is 15 μm here.

【0028】次に、上記待機位置よりX、Y座標を保持
したまま図6(a)に示すように、工具8′の先端が側
面11Bの平面部分の高さ範囲内のZ軸座標Z6まで主
軸7を下降(垂直移動)させ(ステップS3)、ここを測
定の基準位置とする。
Next, as shown in FIG. 6A, while holding the X and Y coordinates from the standby position, the tip of the tool 8 'is moved to the Z-axis coordinate Z6 within the height range of the plane portion of the side surface 11B. The main shaft 7 is lowered (moved vertically) (step S3), and this is set as a measurement reference position.

【0029】次に、この測定基準位置から回転工具8′
をX、Z軸座標を保持しながらY軸座標をY1から測定
子11の側面11Bの幅内に予め設定してある測定位置
Y2まで、側面11Bに平行に往復移動(ステップS4)
させ、その間に導通センサ10の検出があったか否かを
チェックする(ステップS5)。そして、検出がなければ
測定基準位置のX軸方向を移動軸として回転工具8′を
側面11Bの方へ微小送りして接近(ステップS6)させ
た後、基準位置のY座標Y1から測定位置Y2までの往
復移動(ステップS4)を、導通センサ10が検出して導
通信号を発生をする(ステップS5)まで繰り返しなが
ら、工具8′を測定子11方向に接近させる。
Next, from this measurement reference position, the rotary tool 8 '
Is reciprocated in parallel with the side surface 11B from the Y1 coordinate to the measurement position Y2 set in advance within the width of the side surface 11B of the tracing stylus 11 while holding the X and Z axis coordinates (step S4).
Then, it is checked whether or not the conduction sensor 10 has been detected during that time (step S5). If there is no detection, the rotary tool 8 'is minutely fed toward the side surface 11B with the X-axis direction of the measurement reference position as a movement axis and is approached (step S6). Then, the measurement position Y2 is calculated from the Y coordinate Y1 of the reference position. The tool 8 'is made to approach the tracing stylus 11 while repeating the reciprocating movement (step S4) until the conduction sensor 10 detects and generates a conduction signal (step S5).

【0030】そして、上記工程の後、導通センサ10に
より、導通信号を発生した位置(センサ検出位置)X4
はNC装置20により記憶される(ステップS7)。以下
の工程は工具長の測定の場合と同様なので説明を省略す
る。
After the above process, the conduction sensor 10 generates a conduction signal (sensor detection position) X4.
Is stored by the NC device 20 (step S7). The following steps are the same as those in the case of the measurement of the tool length, and the description will be omitted.

【0031】上記実施の形態において、センサ検出位置
X4から測定子11の側面11BであるX軸座標X5ま
での距離は|X4−X5|であり、工具径Dは回転工具
8′の回転軸心Cから回転工具8′の最外側端8′Aま
での距離の2倍であるから、式D=2(|X4−X5|
−s)で演算できる。従って、側面11BのX軸座標X
5が既知である場合には、回転工具8′の最外側端8′
Aが測定子11の側面11B近傍で放電し、導通信号を
発生した時点での回転工具8′の回転軸心CであるX軸
座標X4を測定すれば、上記関係式によって工具径Dを
算出できる。このように測定子11の一方の側面におけ
る測定のみで、加工時と略同じ工具径Dが測定可能とな
る。
In the above embodiment, the distance from the sensor detection position X4 to the X-axis coordinate X5, which is the side surface 11B of the tracing stylus 11, is | X4-X5 |, and the tool diameter D is the rotation axis of the rotary tool 8 '. Since the distance from C to the outermost end 8'A of the rotary tool 8 'is twice, the formula D = 2 (| X4-X5 |
−s). Therefore, the X-axis coordinate X of the side surface 11B
5 is known, the outermost end 8 'of the rotary tool 8'
When A discharges near the side surface 11B of the tracing stylus 11 and measures the X-axis coordinate X4, which is the rotation axis C of the rotating tool 8 'at the time when the conduction signal is generated, the tool diameter D is calculated by the above relational expression. it can. As described above, only the measurement on one side surface of the tracing stylus 11 makes it possible to measure the tool diameter D which is substantially the same as that at the time of machining.

【0032】なお、主軸7の座標は回転により発生する
熱変位によりX、Y軸座標が設定値に対して僅かな誤差
を生ずることが考えられ、これを無視できない場合に
は、図6(a)に示すように、主軸7を側面11B′側
の測定の基準位置であるX3′に移動させ、側面11
B′においても側面11B側と同様な工程を経てセンサ
検出位置X4′を測定してNC装置20に記憶させ、D
=|X4−X4′|−(b+2s)で演算すればこの誤
差を吸収できる。ここで、放電隙間s並びに対向側面1
1B、11B′間の距離bは既知の値であるから、両側
面11B、11B′のセンサ検出位置X4、X4′を測
定し記憶すれば、NC装置20による上式の演算により
回転工具8′の工具径が求められ記憶される。
It is conceivable that the coordinates of the main shaft 7 may cause slight errors in the X and Y axis coordinates with respect to the set values due to the thermal displacement caused by rotation. If this cannot be ignored, FIG. ), The main shaft 7 is moved to the reference position X3 'for measurement on the side surface 11B' side, and
For B ', the sensor detection position X4' is measured through the same process as that for the side surface 11B side and stored in the NC device 20, and D
= | X4-X4 '|-(b + 2s) can absorb this error. Here, the discharge gap s and the opposing side surface 1
Since the distance b between 1B and 11B 'is a known value, if the sensor detection positions X4 and X4' of both side surfaces 11B and 11B 'are measured and stored, the rotary tool 8' Is obtained and stored.

【0033】以上のように工具8と測定子11との導通
を非接触の放電現象を捉えて行うことにより工具8及び
測定子11に測定圧を加えることがないので、工具8及
び測定子11の撓みや磨耗の発生を防止し、φ数10mm
径の工具は勿論、φ0.1〜0.2mmの小径工具を高精
度に測定することができる。
As described above, by conducting the conduction between the tool 8 and the measuring element 11 by detecting the non-contact discharge phenomenon, no measuring pressure is applied to the tool 8 and the measuring element 11, so that the tool 8 and the measuring element 11 Prevents bending and wear of 、
Not only tools with a diameter but also tools with a small diameter of 0.1 to 0.2 mm can be measured with high accuracy.

【0034】次に、上記同装置を用いて本発明に係わる
テーパー工具の径の測定方法について図面に基づいて説
明する。図7は本発明に係わるテーパー工具径の測定原
理図である。
Next, a method for measuring the diameter of a tapered tool according to the present invention using the above-mentioned apparatus will be described with reference to the drawings. FIG. 7 is a diagram illustrating the principle of measuring the taper tool diameter according to the present invention.

【0035】この方法では、図7に示すように、放電隙
間sを回転テーパー工具80′と測定子11の稜線部1
1Cとの間に設定するところに特徴がある。そして回転
テーパー工具80′の先端から任意の高さh1、h2で
ある2個所の工具径D1、D2を測定すればテーパー角
度も計算できるわけである。なお、ここで測定子11の
位置が正確に把握されていることが前提となる。まず、
工具径D1の測定であるが、前記ストレート工具径測定
の場合と同様な図示しない待機位置から測定基準位置ま
で下降させる。この場合の主軸7の測定基準位置は、予
め本発明の工具長測定方法で測定しておいた回転テーパ
ー工具80′先端のZ軸座標Z7を基準にして高さh1
の位置を、予めテーパー角度(勾配の呼び寸法θ)から
計算される回転テーパー工具80′と稜線部11Cとの
当接点PのZ軸座標と一致させ、X軸座標は、当接点P
と該当接点Pに当接するやはり工具先端の呼び径から計
算で求めた工具側の当接点P1との距離がX軸方向に隙
間u離した位置となるX6として、Y軸座標は回転テー
パー工具80′が測定子11と干渉しない側面11Bの
幅方向の外側にあるような位置とする。
In this method, as shown in FIG. 7, the discharge gap s is formed by rotating the taper tool 80 'and the ridge 1 of the tracing stylus 11.
There is a characteristic in that it is set between 1C. The taper angle can also be calculated by measuring the tool diameters D1 and D2 at two arbitrary heights h1 and h2 from the tip of the rotary taper tool 80 '. Here, it is assumed that the position of the tracing stylus 11 is accurately grasped. First,
The tool diameter D1 is measured, but is lowered from a standby position (not shown) similar to the straight tool diameter measurement to a measurement reference position. In this case, the measurement reference position of the main shaft 7 is determined by the height h1 based on the Z-axis coordinate Z7 of the tip of the rotary taper tool 80 'measured in advance by the tool length measurement method of the present invention.
Is matched with the Z-axis coordinate of the contact point P between the rotary taper tool 80 'and the ridge 11C, which is calculated in advance from the taper angle (nominal dimension θ of the gradient), and the X-axis coordinate is
The distance between the tool and the contact point P1 on the tool side, which is calculated from the nominal diameter of the tool tip and comes into contact with the corresponding contact point P, is a position separated by a gap u in the X-axis direction. Is located outside the width direction of the side surface 11B which does not interfere with the tracing stylus 11.

【0036】ここで、隙間uの意味は前述の工具長測定
の場合の隙間t並びに工具径測定の場合の隙間wと同様
であり、放電隙間sより十分大きく、かつ無用に測定時
間を長引かせない寸法の範囲で適宜設定する値であっ
て、この場合も15μmとしている。
Here, the meaning of the gap u is the same as the gap t in the case of the tool length measurement and the gap w in the case of the tool diameter measurement, and is sufficiently larger than the discharge gap s and unnecessarily prolongs the measurement time. It is a value appropriately set within a range of no dimensions, and in this case also, it is 15 μm.

【0037】そして、上記したストレート工具の工具径
の測定方法と同様の方法で、測定子11の稜線部11C
との放電により電気導通が得られるセンサ検出位置のX
座標X7を測定することにより算出できる。また、工具
径D2も工具径D1の場合と全く同様に測定することが
出来る。以上のようにして求めた工具径D1、D2の値
とその間の距離|h2−h1|とから、正確な実際のテ
ーパー角度(勾配θ)が、式θ=tan−1(|D2−
D1|/2×|h2−h1|)によって求められる。そ
して、測定して得られた実際のテーパー角度(勾配θ)
を基にして、回転テーパー工具80′の正確な実際の先
端径が演算で求められることになる。
The ridge 11C of the tracing stylus 11 is measured in the same manner as the method for measuring the tool diameter of the straight tool described above.
X at the sensor detection position where electrical continuity is obtained by discharging with
It can be calculated by measuring the coordinate X7. Also, the tool diameter D2 can be measured in exactly the same way as in the case of the tool diameter D1. From the values of the tool diameters D1 and D2 obtained as described above and the distance | h2-h1 | between them, an accurate actual taper angle (gradient θ) can be calculated by the equation θ = tan-1 (| D2-
D1 | / 2 × | h2-h1 |). And the actual taper angle (gradient θ) obtained by measurement
Based on the above, the exact actual tip diameter of the rotary taper tool 80 'is calculated.

【0038】上記の工具長及び工具径の測定時の微小送
り量は、0.5μm間隔のステップ移動により行なうの
で、結果的に0.5μm単位の測定の分解能を有するこ
とになり、実際の放電隙間sは設定値よりも小さいこと
が考えられるが、その誤差は僅かであるから許容でき
る。さらに、放電隙間sや微小ステップ送りの寸法を小
さく設定すれば測定精度はあがるが、実用上ではその必
要がない。
Since the minute feed amount at the time of measuring the tool length and the tool diameter described above is performed by a step movement at intervals of 0.5 μm, the measurement has a resolution of 0.5 μm unit. The gap s may be smaller than the set value, but the error is small and is acceptable. Further, if the discharge gap s and the size of the minute step feed are set small, the measurement accuracy is improved, but it is not necessary in practical use.

【0039】なお、本発明に用いるR付測定子は上記し
た実施の形態に限定されるものではなく、図3(b)に
示すように両稜線部にそれぞれ対向するように寸法の異
なるRであるR1(例えば1mmR)、R2(例えば0.
5mmR)を形成しておくことにより、工具寸法の異なる
テーパー工具の測定を段取り換えをすることなく一つの
測定子で行うことができる。さらにまた、工具をスタイ
ラスに、測定子を金属加工物に置き換えて、金属加工物
の寸法測定に応用することができることは言うまでもな
い。また、以上の実施の形態では主軸が縦型のマシニン
グセンタとなっているが、主軸が横型の工作機械にも全
く同様に適用できることは言うまでもない。また、X軸
座標、Y軸座標は互いに入れ替わっていてもよい。
Note that the measuring element with R used in the present invention is not limited to the above-described embodiment, and R having different dimensions so as to face both ridges as shown in FIG. 3B. R1 (for example, 1 mmR), R2 (for example, 0.
By forming 5 mmR), measurement of tapered tools having different tool dimensions can be performed with one measuring element without changing the setup. Furthermore, it is needless to say that the tool can be replaced with a stylus and the probe can be replaced with a metal workpiece, and can be applied to the dimension measurement of the metal workpiece. Further, in the above embodiment, the spindle is a vertical machining center, but it is needless to say that the present invention can be applied to a machine tool having a horizontal spindle. Further, the X-axis coordinates and the Y-axis coordinates may be interchanged.

【0040】[0040]

【発明の効果】以上、説明したように、本発明に係わる
工具寸法の測定方法によれば、工具長及び工具径の測定
方法は、例えば0.5μm間隔の微小送りにより最終的
な測定を行なうので、工具長を高精度に測定できること
は言うまでもなく、φ数10mm径の工具は勿論、φ0.
1〜0.2mmの小径工具を高精度に測定することがで
き、この結果、超高精度な加工が実現した。さらに、非
接触により導通センサ10を作動させることにより工具
及び測定子に測定圧を加えることがないので、工具及び
測定子の撓みや傷、磨耗の発生を防止した。従って工具
及び測定子の耐久性が大巾に向上した。さらに、R付測
定子を用いることで、テーパー工具の径及びテーパー角
度の正確な測定も可能となった。
As described above, according to the method for measuring the tool dimensions according to the present invention, the method for measuring the tool length and the tool diameter performs the final measurement by, for example, minute feed at intervals of 0.5 μm. Therefore, it is needless to say that the tool length can be measured with high accuracy.
A tool with a small diameter of 1 to 0.2 mm can be measured with high precision, and as a result, ultra-high precision machining has been realized. Further, by operating the conduction sensor 10 in a non-contact manner, no measurement pressure is applied to the tool and the stylus, so that bending, scratches and wear of the tool and the stylus are prevented. Therefore, the durability of the tool and the probe has been greatly improved. Furthermore, the use of the R-measurement element allows accurate measurement of the diameter and the taper angle of the tapered tool.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる実施の形態の装置例を示す概略
斜視図である。
FIG. 1 is a schematic perspective view showing an example of an apparatus according to an embodiment of the present invention.

【図2】図1の装置の導通センサの説明図である。FIG. 2 is an explanatory view of a conduction sensor of the device of FIG.

【図3】本発明に係わる測定子の斜視図である。FIG. 3 is a perspective view of a tracing stylus according to the present invention.

【図4】本発明に係わる工具長の測定原理図である。FIG. 4 is a diagram illustrating a principle of measuring a tool length according to the present invention.

【図5】本発明に係わる工具長の基本的測定手順を示す
フローチャートである。
FIG. 5 is a flowchart showing a basic procedure for measuring a tool length according to the present invention.

【図6】本発明に係わる工具径の測定原理図である。FIG. 6 is a diagram illustrating a principle of measuring a tool diameter according to the present invention.

【図7】本発明に係わるテーパー工具径の測定原理図で
ある。
FIG. 7 is a diagram illustrating a principle of measuring a taper tool diameter according to the present invention.

【図8】回転時における工具の概略外形図である。FIG. 8 is a schematic external view of the tool during rotation.

【符号の説明】[Explanation of symbols]

1 マシニングセンタ 3 テーブル 7 主軸 8 工具 8′ 回転工具 10 導通センサ 11 測定子 11A 上面 11B、11B′ 側面 11C 稜線部 80 テーパー工具 80′ 回転テーパー工具 s 放電隙間 DESCRIPTION OF SYMBOLS 1 Machining center 3 Table 7 Spindle 8 Tool 8 'Rotating tool 10 Conduction sensor 11 Measuring element 11A Top surface 11B, 11B' Side surface 11C Ridge part 80 Taper tool 80 'Rotary taper tool s Discharge gap

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 工作機械の主軸とテーブルとの間に電位
差を与えておき、前記主軸に取り付けた工具と前記テー
ブルに固定した測定子との相対位置を電気導通により検
出して前記工具の寸法を測定する方法において、前記検
出は前記工具と前記測定子との間に非接触状態において
発生する放電現象を捉えて行うことを特徴とする工具寸
法の測定方法。
An electric potential difference is provided between a main shaft of a machine tool and a table, and a relative position between a tool attached to the main shaft and a measuring element fixed to the table is detected by electrical conduction to measure the size of the tool. In the method for measuring a tool size, the detection is performed by catching a discharge phenomenon occurring in a non-contact state between the tool and the tracing stylus.
【請求項2】 前記工具を回転させながら前記測定子の
前記主軸に垂直な上面に近接させた位置で、前記主軸を
径方向に相対移動させながら検出した主軸方向の位置に
基づいて工具長を測定することを特徴とする請求項1記
載の工具寸法の測定方法。
2. A tool length is determined based on a position in a main axis direction detected while relatively moving the main axis in a radial direction at a position close to an upper surface perpendicular to the main axis of the tracing stylus while rotating the tool. The method for measuring tool dimensions according to claim 1, wherein the measurement is performed.
【請求項3】 前記工具を回転させながら前記測定子の
前記主軸に平行な平面に近接させた位置で、前記主軸を
前記平面に平行な径方向に相対移動させながら検出した
径方向の位置に基づいて工具径を測定することを特徴と
する請求項1記載の工具寸法の測定方法。
3. At a position close to a plane parallel to the main axis of the tracing stylus while rotating the tool, at a radial position detected while relatively moving the main axis in a radial direction parallel to the plane. 2. The method for measuring tool dimensions according to claim 1, wherein the tool diameter is measured based on the tool diameter.
【請求項4】 前記工具の回転は加工時とほぼ同じ回転
数であることを特徴とする請求項2または請求項3記載
の工具寸法の測定方法。
4. The method according to claim 2, wherein the number of rotations of the tool is substantially the same as the number of rotations during machining.
【請求項5】 前記主軸に垂直な上面と前記主軸に平行
な側面との稜線部にRを形成した測定子を用いてテーパ
ー工具の工具径を測定することを特徴とする請求項3記
載の工具寸法の測定方法。
5. The taper tool according to claim 3, wherein the diameter of the tapered tool is measured by using a measuring element having an R formed at a ridge line between an upper surface perpendicular to the main axis and a side surface parallel to the main axis. How to measure tool dimensions.
JP1891698A 1998-01-30 1998-01-30 Tool dimension measuring method Pending JPH11207573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1891698A JPH11207573A (en) 1998-01-30 1998-01-30 Tool dimension measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1891698A JPH11207573A (en) 1998-01-30 1998-01-30 Tool dimension measuring method

Publications (1)

Publication Number Publication Date
JPH11207573A true JPH11207573A (en) 1999-08-03

Family

ID=11984945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1891698A Pending JPH11207573A (en) 1998-01-30 1998-01-30 Tool dimension measuring method

Country Status (1)

Country Link
JP (1) JPH11207573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087883A (en) * 2012-10-30 2014-05-15 Toshiba Mach Co Ltd Method for measuring tool length, and machine tool
CN112902837A (en) * 2020-12-29 2021-06-04 山西裕鼎精密科技有限公司 Knife detection instrument and knife detection method applied to same
CN113681352A (en) * 2021-09-18 2021-11-23 中国航空工业集团公司北京航空精密机械研究所 Numerical control machine tool on-machine measuring method based on double-contact workpiece measuring head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087883A (en) * 2012-10-30 2014-05-15 Toshiba Mach Co Ltd Method for measuring tool length, and machine tool
CN112902837A (en) * 2020-12-29 2021-06-04 山西裕鼎精密科技有限公司 Knife detection instrument and knife detection method applied to same
CN113681352A (en) * 2021-09-18 2021-11-23 中国航空工业集团公司北京航空精密机械研究所 Numerical control machine tool on-machine measuring method based on double-contact workpiece measuring head
CN113681352B (en) * 2021-09-18 2023-12-15 中国航空工业集团公司北京航空精密机械研究所 On-machine measurement method of numerical control machine tool based on double-contact workpiece measuring head

Similar Documents

Publication Publication Date Title
JP4229698B2 (en) Measuring method and apparatus for cutting edge position of tool, workpiece processing method, and machine tool
EP2647950B1 (en) Apparatus for measuring an object
JP4840144B2 (en) Positioning device and positioning method
Yandayan et al. In-process dimensional measurement and control of workpiece accuracy
EP3510351B1 (en) Measurement of toothed articles utilizing multiple sensors
JP5235284B2 (en) Measuring method and machine tool
JP6075797B2 (en) Measurement system based on micro-discharge
JP2008105134A (en) Machine tool and machining method
CN103170878A (en) Novel method for on-line positioning of superfine milling cutter and workpiece
Popov et al. New tool-workpiece setting up technology for micro-milling
JPH09253979A (en) Tool edge position measuring device
CN107900781B (en) Calibration device and calibration method of contact online detection system for lathes
US4417490A (en) Lathe tool calibrator and method
JP4891629B2 (en) Surface texture measuring machine, shape analysis program and recording medium
JPH11207573A (en) Tool dimension measuring method
JP2651151B2 (en) Tool diameter measurement method
JP2002022433A (en) Sensor and equipment for measuring work shape
CN113579850B (en) Visual measurement system and method for thermal error of multi-axis machine tool
JP2004243426A (en) Measuring method of tool dimensions
JP2760986B2 (en) Tool length measurement method
JP5219480B2 (en) Workpiece machining method
JPH10277889A (en) Cutter tip position measuring device
CN109822397B (en) Mechanism and method for adjusting Raney Shaoxing probe
JP3939805B2 (en) NC machine tool workpiece measurement method
JPH08229776A (en) NC machine tool with tool edge position displacement measurement function

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

RD03 Notification of appointment of power of attorney

Effective date: 20071109

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422