[go: up one dir, main page]

JPH11135812A - Method of forming solar cell element - Google Patents

Method of forming solar cell element

Info

Publication number
JPH11135812A
JPH11135812A JP9297055A JP29705597A JPH11135812A JP H11135812 A JPH11135812 A JP H11135812A JP 9297055 A JP9297055 A JP 9297055A JP 29705597 A JP29705597 A JP 29705597A JP H11135812 A JPH11135812 A JP H11135812A
Authority
JP
Japan
Prior art keywords
forming
electrode
semiconductor substrate
solar cell
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9297055A
Other languages
Japanese (ja)
Inventor
Shuichi Fujii
修一 藤井
Kenji Fukui
健次 福井
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9297055A priority Critical patent/JPH11135812A/en
Publication of JPH11135812A publication Critical patent/JPH11135812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 【課題】 反射防止膜のパターニングよる減少によって
太陽電池の出力特性が低下し、また電極が反射防止膜上
に形成されると電極剥がれが発生するという問題があっ
た。 【解決手段】 一導電型を呈する半導体基板1の一主面
側に逆導電型半導体不純物1aを拡散して、一主面側に
バスバー部3aとフィンガー部3bから成る格子状の表
面電極3と反射防止膜2を形成し、他の主面側に裏面電
極4を形成する太陽電池素子の形成方法であって、半導
体基板1の一主面側に表面電極3を形成した後に反射防
止膜2を形成し、次いでこの反射防止膜2上から表面電
極3のバスバー部3a上に銀ペースト3cを塗布して焼
き付けてとバスバー部3aと接合する。
(57) [Problem] To provide a problem that output characteristics of a solar cell are deteriorated due to reduction by patterning of an antireflection film, and that if an electrode is formed on the antireflection film, electrode peeling occurs. SOLUTION: A semiconductor impurity 1a of opposite conductivity type is diffused on one main surface side of a semiconductor substrate 1 having one conductivity type, and a grid-like surface electrode 3 comprising a bus bar portion 3a and a finger portion 3b is formed on one main surface side. A method for forming a solar cell element in which an anti-reflection film 2 is formed and a back electrode 4 is formed on another main surface side, wherein the front electrode 3 is formed on one main surface side of the semiconductor substrate 1 and then the anti-reflection film 2 is formed. Then, a silver paste 3c is applied and baked from the antireflection film 2 onto the bus bar portion 3a of the surface electrode 3, and then joined to the bus bar portion 3a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池素子の形成
方法に関し、特にバスバー部とフィンガー部から成る格
子状の表面電極を有する太陽電池素子の形成方法に関す
る。
The present invention relates to a method for forming a solar cell element, and more particularly to a method for forming a solar cell element having a grid-like surface electrode composed of a bus bar portion and a finger portion.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来の
太陽電池素子の形成方法を図5に示す。まず、一導電型
を呈する半導体基板1の表面部に逆導電型半導体不純物
が拡散された領域1aを形成する(同図(a)参照)。
次に、半導体基板1の他の主面側に一導電型半導体不純
物を高濃度に含有する層1bを形成する(同図(b)参
照)。次に、半導体基板1の一主面側に反射防止膜2を
形成する(同図(c)参照)。次に、半導体基板1の側
面部分をエッチング除去することによって、pn層を分
離する(同図(d)参照)。次に、反射防止膜2のう
ち、表面電極3を形成する部分Rを除去してパターニン
グする(同図(e)参照)。次に、半導体基板1の他の
主面側と一主面側の反射防止膜2を除去した部分Rに、
銀ペーストをスクリーン印刷して700〜800℃程度
の温度で焼き付けることにより、裏面電極4と表面電極
3を形成する(同図(f)参照)。なお、表面電極3
は、図6に示すように、複数の太陽電池素子を銅箔など
で接続する際に接続領域となるバスバー部3aと、半導
体接合部で発生した電子を集めるフィンガー部3bで構
成され、いずれも半導体基板1に直接接合して形成され
る。また、表面電極3自体は、ガラスフリットを少量含
有する銀で構成される。
2. Description of the Related Art A conventional method for forming a solar cell element is shown in FIG. First, a region 1a in which a semiconductor impurity of the opposite conductivity type is diffused is formed on a surface portion of the semiconductor substrate 1 having one conductivity type (see FIG. 1A).
Next, a layer 1b containing one conductivity type semiconductor impurity at a high concentration is formed on the other main surface side of the semiconductor substrate 1 (see FIG. 2B). Next, an antireflection film 2 is formed on one main surface side of the semiconductor substrate 1 (see FIG. 3C). Next, the pn layer is separated by etching away the side surface portion of the semiconductor substrate 1 (see FIG. 4D). Next, a portion R of the antireflection film 2 where the surface electrode 3 is to be formed is removed and patterned (see FIG. 3E). Next, on the other main surface side of the semiconductor substrate 1 and the portion R where the antireflection film 2 is removed on one main surface side,
A silver paste is screen-printed and baked at a temperature of about 700 to 800 ° C. to form the back electrode 4 and the front electrode 3 (see FIG. 4F). The surface electrode 3
As shown in FIG. 6, a plurality of solar cell elements are constituted by a bus bar section 3a serving as a connection area when connecting a plurality of solar cell elements with copper foil or the like, and a finger section 3b for collecting electrons generated at a semiconductor junction section. It is formed by directly bonding to the semiconductor substrate 1. The surface electrode 3 itself is made of silver containing a small amount of glass frit.

【0003】この従来の太陽電池素子の形成方法では、
表面電極3を形成する際に、表面電極3の形状にそって
反射防止膜2を除去した後に、この除去部分Rに表面電
極3を形成するものの、スクリーン印刷のパターン精度
の問題から、反射防止膜2の除去パターンRと表面電極
3のパターンが位置ずれしないように、反射防止膜2に
おける表面電極3の形成部分Rを50〜100μm程度
広く除去しなければならないという問題があった。反射
防止膜2における表面電極3の形成部分R、特にフィン
ガー部3b部分の反射防止膜2を広く除去すると、反射
防止効果が低減し、太陽電池としての出力特性、とりわ
け短絡電流値が低下するという問題があった。
In this conventional method for forming a solar cell element,
When the surface electrode 3 is formed, the anti-reflection film 2 is removed along the shape of the surface electrode 3 and then the surface electrode 3 is formed on the removed portion R. There is a problem that the portion R where the surface electrode 3 is formed in the anti-reflection film 2 must be widely removed by about 50 to 100 μm so that the removal pattern R of the film 2 and the pattern of the surface electrode 3 do not shift. If the portion R where the surface electrode 3 is formed in the anti-reflection film 2, particularly the anti-reflection film 2 in the finger portion 3 b, is widely removed, the anti-reflection effect is reduced, and the output characteristics of the solar cell, particularly, the short-circuit current value are reduced. There was a problem.

【0004】また、図7に示すような太陽電池素子の形
成方法もある。まず、一導電型を呈する半導体基板1の
表面部に逆導電型半導体不純物を含有する領域1aを形
成する(同図(a)参照)。次に、半導体基板1の他の
主面側に一導電型半導体不純物を高濃度に含有する層1
bを形成する(同図(b)参照)。次に、半導体基板1
の一主面側に窒化シリコン膜(SiNx )などから成る
反射防止膜2を700〜900Å程度の厚みに形成する
(同図(c)参照)。次に、半導体基板1の側面部をエ
ッチングしてpn層を分離をする(同図(d)参照)。
次に、反射防止膜2上に銀ペーストをスクリーン印刷し
て700〜800℃程度の温度で焼き付けることによ
り、半導体基板1の表面部にバスバー部3aとフィンガ
ー部3bから成る表面電極3を形成する(同図(e)参
照)。この場合、表面電極3のバスバー部3aとフィン
ガー部3bは、図8に示すように、全て反射防止膜2上
に形成される。
There is also a method for forming a solar cell element as shown in FIG. First, a region 1a containing a semiconductor impurity of the opposite conductivity type is formed on the surface of the semiconductor substrate 1 having one conductivity type (see FIG. 1A). Next, on the other main surface side of the semiconductor substrate 1, a layer 1 containing one conductivity type semiconductor impurity at a high concentration is formed.
b is formed (see FIG. 3B). Next, the semiconductor substrate 1
An anti-reflection film 2 made of a silicon nitride film (SiN x ) or the like is formed to a thickness of about 700 to 900 ° on one principal surface side (see FIG. 3C). Next, the pn layer is separated by etching the side surface of the semiconductor substrate 1 (see FIG. 4D).
Next, a silver paste is screen-printed on the anti-reflection film 2 and baked at a temperature of about 700 to 800 ° C. to form a surface electrode 3 including a bus bar portion 3 a and a finger portion 3 b on the surface of the semiconductor substrate 1. (Refer to (e) of the figure). In this case, the bus bar portion 3a and the finger portion 3b of the surface electrode 3 are all formed on the antireflection film 2, as shown in FIG.

【0005】ところが、この従来の太陽電池素子の形成
方法では、反射防止膜2がプラズマCVD法などで形成
されて、半導体基板1とは化学的に結合しておらず、こ
の反射防止膜2上に表面電極3を形成することから、表
面電極3が剥離しやすくなり、特に複数の太陽電池を接
続してモジュール化する際に、銅箔が接続される表面電
極3のバスバー部3aが剥離しやすいという問題があっ
た。
However, in this conventional method for forming a solar cell element, the antireflection film 2 is formed by a plasma CVD method or the like, and is not chemically bonded to the semiconductor substrate 1. Since the surface electrode 3 is formed on the surface electrode, the surface electrode 3 is easily peeled off, and particularly when connecting a plurality of solar cells into a module, the bus bar portion 3a of the surface electrode 3 to which the copper foil is connected is peeled off. There was a problem that it was easy.

【0006】本発明は、このような従来方法の問題点に
鑑みて発明されたものであり、太陽電池の出力特性の低
下と、電極の剥がれを解消した太陽電池素子の形成方法
を提供することを目的とする。
The present invention has been made in view of such problems of the conventional method, and provides a method for forming a solar cell element in which the output characteristics of the solar cell are reduced and the electrode is not peeled off. With the goal.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る太陽電池素子の形成方法では、一導
電型を呈する半導体基板の一主面側に逆導電型半導体不
純物を拡散して、一主面側にバスバー部とフィンガー部
から成る格子状の表面電極と反射防止膜を形成し、他の
主面側に裏面電極を形成する太陽電池素子の形成方法に
おいて、前記半導体基板の一主面側に前記表面電極を形
成した後に前記反射防止膜を形成し、次いでこの反射防
止膜上から前記表面電極のバスバー部上に銀ペーストを
塗布して焼き付ける。
In order to achieve the above object, in the method for forming a solar cell element according to the first aspect, a semiconductor impurity having a reverse conductivity type is diffused into one main surface of a semiconductor substrate having a single conductivity type. Forming a grid-like surface electrode comprising a bus bar portion and a finger portion and an anti-reflection film on one main surface side, and forming a back surface electrode on the other main surface side; After forming the surface electrode on one principal surface side, the antireflection film is formed, and then a silver paste is applied from above the antireflection film to the bus bar portion of the surface electrode and baked.

【0008】また、請求項2に係る太陽電池素子の形成
方法では、一導電型を呈する半導体基板の一主面側に逆
導電型半導体不純物を拡散して、一主面側にバスバー部
とフィンガー部から成る格子状の表面電極と反射防止膜
を形成し、他の主面側に表面電極を形成する太陽電池素
子の形成方法において、前記半導体基板の一主面側に前
記反射防止膜を形成した後に、この反射防止膜における
前記表面電極のバスバー部形成部分を除去し、次いで前
記反射防止膜上に前記表面電極のフィンガー部を形成す
ると共に、前記反射防止膜の除去部分にバスバー部を形
成する。
According to a second aspect of the present invention, in the method for forming a solar cell element, a semiconductor impurity of one conductivity type is diffused into one main surface of a semiconductor substrate, and a bus bar portion and a finger are spread on one main surface. Forming a grid-shaped surface electrode and an anti-reflection film comprising a portion, and forming a surface electrode on the other main surface side, wherein the anti-reflection film is formed on one main surface side of the semiconductor substrate After that, the bus bar portion forming portion of the surface electrode in the anti-reflection film is removed, and then the finger portion of the surface electrode is formed on the anti-reflection film, and the bus bar portion is formed in the removed portion of the anti-reflection film. I do.

【0009】[0009]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。図1は、請求項1に係る太陽電池素子
の形成方法の一実施形態を示す工程図であり、1は半導
体基板、2は反射防止膜、3は表面電極、4は裏面電極
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a process diagram showing one embodiment of a method for forming a solar cell element according to claim 1, wherein 1 is a semiconductor substrate, 2 is an antireflection film, 3 is a front electrode, and 4 is a back electrode.

【0010】半導体基板1は、単結晶シリコンや多結晶
シリコンなどから成り、例えばボロン(B)などの一導
電型半導体不純物を1×1016〜1018atoms/c
3程度含有する。この半導体基板1は、単結晶シリコ
ンで形成する場合はCZ法などで形成され、多結晶シリ
コンで形成する場合は鋳造法などで形成される。いずれ
の場合も、0.5mm程度の厚みにスライスされる。
The semiconductor substrate 1 is made of single-crystal silicon, polycrystalline silicon, or the like, and is made of one conductivity type semiconductor impurity such as boron (B) at 1 × 10 16 to 10 18 atoms / c.
containing about m 3. The semiconductor substrate 1 is formed by a CZ method or the like when formed from single crystal silicon, and formed by a casting method or the like when formed from polycrystalline silicon. In each case, it is sliced to a thickness of about 0.5 mm.

【0011】この半導体基板1の一主面側には、例えば
燐(P)などの逆導電型半導体不純物を含有する領域1
aが形成されている。この逆導電型半導体不純物を含有
する領域1aは、POCl3 を用いた気相拡散法、P2
5 を用いた塗布拡散法、およびP+ イオンを直接注入
するイオン注入法などによって形成され、0.1〜0.
5μm程度の深さに形成される(図1(a)参照)。
On one main surface side of the semiconductor substrate 1, a region 1 containing a reverse conductivity type semiconductor impurity such as phosphorus (P) is provided.
a is formed. The region 1a containing the opposite conductivity type semiconductor impurity is formed by a gas phase diffusion method using POCl 3 , P 2
It is formed by a coating diffusion method using O 5 , an ion implantation method of directly implanting P + ions, and the like.
It is formed to a depth of about 5 μm (see FIG. 1A).

【0012】前記半導体基板1の他の主面側(裏面側)
には、裏面近くでのキャリアの再結合による効率の低下
を防ぐために、アルミニウム(Al)などの一導電型半
導体不純物を高濃度に含有する層1bが形成される(同
図(b)参照)。この一導電型半導体不純物を高濃度に
含有する層1bは、例えばアルミニウムペーストを塗布
して焼き付けることにより形成される。この一導電型半
導体不純物を高濃度に含有する層1bは、長波長光の光
感度を良好にするために有効であり、それを期待しない
場合は必ずしも設ける必要はない。
Another main surface side (back side) of the semiconductor substrate 1
A layer 1b containing a high concentration of one conductivity type semiconductor impurity such as aluminum (Al) is formed in order to prevent a decrease in efficiency due to recombination of carriers near the back surface (see FIG. 2B). . The layer 1b containing the one-conductivity-type semiconductor impurity at a high concentration is formed, for example, by applying and baking an aluminum paste. The layer 1b containing the one-conductivity-type semiconductor impurity at a high concentration is effective for improving the photosensitivity of long-wavelength light, and is not necessarily provided when it is not expected.

【0013】次に、半導体基板1の一主面側にガラスフ
リットを少量含んだ銀ペーストをスクリーン印刷して7
00〜800℃程度の温度で焼き付けることにより、表
面電極3を形成する(同図(c)参照)。この表面電極
3は集電用のフィンガー部3bとリード線接続用のバス
バー部3aとから成る。この表面電極3のバスバー部3
aは、幅2mm程度に、また厚み8〜10μm程度に形
成される。また、フィンガー部3bは、幅100〜20
0μm程度に、また厚み8〜10μm程度に形成され
る。
Next, a silver paste containing a small amount of glass frit is screen-printed on one main surface side of the semiconductor substrate 1 by a screen printing method.
The surface electrode 3 is formed by baking at a temperature of about 00 to 800 ° C. (see FIG. 3C). The surface electrode 3 includes a finger part 3b for current collection and a bus bar part 3a for connecting a lead wire. The bus bar portion 3 of the surface electrode 3
a is formed to have a width of about 2 mm and a thickness of about 8 to 10 μm. The finger portion 3b has a width of 100 to 20.
It is formed to a thickness of about 0 μm and a thickness of about 8 to 10 μm.

【0014】次に、半導体基板1の一主面側に反射防止
膜2を形成する。この反射防止膜2は窒化シリコン膜
(SiNx )などから成り、プラズマCVD法などで7
00〜900Å程度の厚みに形成される(同図(d)参
照)。この場合、表面電極3のバスバー部3aとフィン
ガー部3bは、反射防止膜2の下部に位置する。
Next, an antireflection film 2 is formed on one main surface of the semiconductor substrate 1. This antireflection film 2 is made of a silicon nitride film (SiN x ) or the like, and is formed by plasma CVD or the like.
It is formed to a thickness of about 00 to 900 ° (see FIG. 3D). In this case, the bus bar portion 3a and the finger portion 3b of the surface electrode 3 are located below the antireflection film 2.

【0015】次に、半導体基板1の側面部の逆導電型半
導体不純物を含有する領域1aを除去することによっ
て、pn層を分離する(同図(e)参照)。
Next, the pn layer is separated by removing the region 1a containing the opposite conductivity type semiconductor impurity on the side surface of the semiconductor substrate 1 (see FIG. 1E).

【0016】次に、表面電極3のバスバー部3a上に反
射防止膜2上から、ガラスフリットを少量含有する銀ペ
ースト3cをスクリーン印刷して700〜800℃程度
の温度で焼き付ける(同図(f)参照)。反射防止膜2
は700〜900Å程度と極めて薄い層であるため、銀
ペースト3cを塗布して700〜800℃程度で数分間
焼成すると、銀ペースト3cは、反射防止膜2を排除し
て表面電極3のバスバー部3aに接続され、バスバー3
aと銀ペースト3cとで導通を得ることができる。
Next, a silver paste 3c containing a small amount of glass frit is screen-printed on the anti-reflection film 2 on the bus bar portion 3a of the surface electrode 3 and baked at a temperature of about 700 to 800 ° C. (FIG. )reference). Anti-reflection film 2
Is a very thin layer of about 700 to 900 °, the silver paste 3c is applied and baked at about 700 to 800 ° C. for several minutes. 3a, the bus bar 3
a can be obtained with the silver paste 3c.

【0017】また、表面電極3のフィンガー部3bは、
半導体基板1の表面に直接形成されていることから、こ
の表面電極3のフィンガー部3bを形成するために、反
射防止膜2を除去する必要はない。したがって、反射防
止膜2の面積が減少することによって出力特性が低下す
ることはない。
The finger 3b of the surface electrode 3 is
Since it is formed directly on the surface of the semiconductor substrate 1, it is not necessary to remove the antireflection film 2 to form the finger portions 3b of the surface electrode 3. Therefore, the output characteristics do not decrease due to the decrease in the area of the antireflection film 2.

【0018】なお、表面電極3をスクリーン印刷する直
前に、半導体基板1の裏面側に裏面電極4をスクリーン
印刷して、表面電極3と同時に焼き付けることによっ
て、半導体基板1の裏面側に裏面電極4が形成される。
また、焼き付けた銀ペースト3c部分と裏面電極4の表
面部分には、モジュール化する際の便宜のために、必要
に応じてハンダ層(不図示)が2〜3μm程度の厚みに
形成される。
Immediately before the surface electrode 3 is screen-printed, the back electrode 4 is screen-printed on the back surface of the semiconductor substrate 1 and baked at the same time as the front electrode 3 so that the back electrode 4 is printed on the back surface of the semiconductor substrate 1. Is formed.
Further, a solder layer (not shown) is formed to a thickness of about 2 to 3 μm on the baked silver paste 3c portion and the surface portion of the back electrode 4 as necessary for the convenience of modularization.

【0019】次に、請求項2に係る太陽電池素子の形成
方法を図3に基づいて説明する。まず、一導電型半導体
不純物を含有する半導体基板1の一主面側に逆導電型半
導体不純物を含有する領域1aを形成する(同図(a)
参照)。
Next, a method for forming a solar cell element according to claim 2 will be described with reference to FIG. First, a region 1a containing a semiconductor impurity of the opposite conductivity type is formed on one main surface side of the semiconductor substrate 1 containing a semiconductor impurity of one conductivity type (FIG. 3A).
reference).

【0020】次に、半導体基板1の他の主面側に一導電
型半導体不純物を高濃度に含有する層1bを形成する
(同図(b)参照)。
Next, a layer 1b containing one conductivity type semiconductor impurity at a high concentration is formed on the other main surface side of the semiconductor substrate 1 (see FIG. 1B).

【0021】次に、半導体基板1の一主面側に厚み70
0〜900Å程度の窒化シリコン膜などから成る反射防
止膜2をプラズマCVD法などで形成する(同図(c)
参照)。
Next, a thickness 70 is formed on one main surface side of the semiconductor substrate 1.
An anti-reflection film 2 made of a silicon nitride film of about 0 to 900 ° is formed by a plasma CVD method or the like (FIG. 3C).
reference).

【0022】次に、半導体基板1の側面部の逆導電型半
導体不純物を含有する領域1aを除去することによっ
て、pn相を分離する(同図(d)参照)。
Next, the pn phase is separated by removing the region 1a containing the semiconductor impurity of the opposite conductivity type from the side surface of the semiconductor substrate 1 (see FIG. 1D).

【0023】また、反射防止膜2における表面電極3の
バスバー部3a形成部分をエッチングにより除去する。
このエッチングは、バッファー弗酸(BHF)などによ
って行われる。
The portion of the anti-reflection film 2 where the bus bar 3a of the surface electrode 3 is formed is removed by etching.
This etching is performed by using buffered hydrofluoric acid (BHF) or the like.

【0024】次に、ガラスフリットを少量含有する銀ペ
ーストをスクリーン印刷して700〜900℃の温度で
焼き付けることにより、表面電極3のバスバー部3aと
フィンガー部3bを形成する(同図(e)参照)。この
場合、バスバー部3aは反射防止膜2が形成されていな
い半導体基板1上に直接接合して形成される。したがっ
て、表面電極3の接合強度は充分得られる。また、フィ
ンガー部3bは反射防止膜2上に形成されることから、
フィンガー部3bを形成するために、反射防止膜2を除
去する必要はない。したがって、反射防止膜2の減少に
よる出力特性の低下が防止できる。なお、表面電極3の
バスバー部3aは、2mm程度に幅広に形成されること
から、反射防止膜2の除去部分に位置ずれなどを発生さ
せることなく形成することができる。
Next, a silver paste containing a small amount of glass frit is screen-printed and baked at a temperature of 700 to 900 ° C. to form the bus bar portion 3a and the finger portion 3b of the surface electrode 3 (FIG. 4E). reference). In this case, the bus bar portion 3a is formed directly on the semiconductor substrate 1 on which the antireflection film 2 is not formed. Therefore, the bonding strength of the surface electrode 3 can be sufficiently obtained. Further, since the finger portion 3b is formed on the antireflection film 2,
It is not necessary to remove the anti-reflection film 2 to form the finger portions 3b. Therefore, it is possible to prevent a decrease in output characteristics due to a decrease in the antireflection film 2. Since the bus bar portion 3a of the surface electrode 3 is formed to have a width of about 2 mm, the bus bar portion 3a can be formed without causing a displacement or the like in a portion where the antireflection film 2 is removed.

【0025】なお、表面電極3を形成する直前に、半導
体基板1の裏面側にも銀ペーストが塗布されて、表面電
極3と同時に焼き付けられることによって、裏面電極4
が形成される。また、表面電極3および裏面電極4の表
面部分には、複数の太陽電池素子を銅箔などで接続する
モジュール化の際の便宜のために、必要に応じてハンダ
層(不図示)が2〜3μm程度の厚みに形成される。
Immediately before forming the front surface electrode 3, a silver paste is also applied to the back surface side of the semiconductor substrate 1 and baked simultaneously with the front surface electrode 3, so that the back surface electrode 4 is formed.
Is formed. In addition, solder layers (not shown) may be provided on the surface portions of the front surface electrode 3 and the back surface electrode 4 for convenience in modularization in which a plurality of solar cell elements are connected by copper foil or the like. It is formed to a thickness of about 3 μm.

【0026】[0026]

【発明の効果】以上のように、請求項1に係る太陽電池
素子の形成方法によれば、半導体基板の一主面側に表面
電極を形成した後に反射防止膜を形成し、次いでこの反
射防止膜上から表面電極のバスバー部上に銀ペーストを
塗布して焼き付けてバスバー部と接合させることから、
太陽電池素子の受光面側の電極形成部分以外はすべて反
射防止膜で被覆され、反射防止効果が低減することはな
く、もって太陽電池としての出力特性、とりわけ短絡電
流値の低下を招来することがない。また、表面電極は、
半導体基板上に直接形成されることから、表面電極の接
合強度も向上し、電極の剥がれなどを誘発することがな
い。
As described above, according to the method for forming a solar cell element according to the first aspect, an antireflection film is formed after forming a surface electrode on one principal surface side of a semiconductor substrate, and then the antireflection film is formed. From applying silver paste on the bus bar part of the surface electrode from the film and baking it and joining it with the bus bar part,
Except for the electrode forming portion on the light-receiving surface side of the solar cell element, the entire surface is covered with an anti-reflection film, and the anti-reflection effect is not reduced, so that the output characteristics of the solar cell, particularly the short-circuit current value, may be reduced. Absent. Also, the surface electrode is
Since it is formed directly on the semiconductor substrate, the bonding strength of the surface electrode is also improved, and the electrode is not peeled off.

【0027】また、請求項2に係る太陽電池素子の形成
方法によれば、半導体基板の一主面側に反射防止膜を形
成した後に、この反射防止膜における表面電極のバスバ
ー部形成部分を除去し、次いでこの反射防止膜上に表面
電極のフィンガー部を形成すると共に、反射防止膜の除
去部分にバスバー部を形成することから、太陽電池素子
の受光面側の電極形成部分以外は殆どすべて反射防止膜
で被覆され、反射防止効果が低減することはなく、もっ
て太陽電池としての出力特性、とりわけ短絡電流値の低
下を招来することがない。また、表面電極のバスバー部
は、半導体基板上に直接形成されることから、表面電極
の接合強度も向上し、電極の剥がれなどを誘発すること
がない。
According to the method for forming a solar cell element of the second aspect, after forming an anti-reflection film on one principal surface side of the semiconductor substrate, a portion of the anti-reflection film where a bus bar portion of a surface electrode is formed is removed. Then, the finger portion of the surface electrode is formed on the anti-reflection film, and the bus bar portion is formed on the removed portion of the anti-reflection film. Therefore, almost all portions except the electrode forming portion on the light receiving surface side of the solar cell element are reflected. It is not covered with an anti-reflection film, and the anti-reflection effect is not reduced, so that the output characteristics, especially the short-circuit current value, of the solar cell are not reduced. Further, since the bus bar portion of the surface electrode is formed directly on the semiconductor substrate, the bonding strength of the surface electrode is also improved, and the electrode is not peeled off.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係る太陽電池素子の形成方法を示す
工程図である。
FIG. 1 is a process chart showing a method for forming a solar cell element according to claim 1.

【図2】請求項1の形成方法による太陽電池素子を平面
視した状態を示す図である。
FIG. 2 is a view showing a state of the solar cell element according to the method of claim 1 as viewed in plan.

【図3】請求項2に係る太陽電池素子の形成方法を示す
工程図である。
FIG. 3 is a process chart showing a method for forming a solar cell element according to claim 2;

【図4】請求項2の形成方法による太陽電池素子を平面
視した状態を示す図である。
FIG. 4 is a view showing a state in plan view of a solar cell element according to the forming method of claim 2;

【図5】従来の太陽電池素子の形成方法を示す工程図で
ある。
FIG. 5 is a process chart showing a conventional method for forming a solar cell element.

【図6】従来の形成方法による太陽電池素子を平面視し
た状態を示す図である。
FIG. 6 is a diagram showing a state in plan view of a solar cell element formed by a conventional forming method.

【図7】従来の他の太陽電池素子の形成方法を示す工程
図である。
FIG. 7 is a process chart showing another conventional method for forming a solar cell element.

【図8】従来の他の形成方法による太陽電池素子を平面
視した状態を示す図である。
FIG. 8 is a view showing a state in a plan view of a solar cell element according to another conventional forming method.

【符号の説明】[Explanation of symbols]

1‥‥‥半導体基板、1a‥‥‥逆導電型半導体不純物
を含有する領域、2‥‥‥反射防止膜、3‥‥‥表面電
極、3a‥‥‥バスバー部、3b‥‥‥フィンガー部、
4‥‥‥裏面電極
1 {semiconductor substrate, 1a} region containing semiconductor impurity of opposite conductivity type, 2} antireflection film, 3} surface electrode, 3a} bus bar portion, 3b} finger portion,
4 ‥‥‥ Back electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型を呈する半導体基板の一主面側
に逆導電型半導体不純物を拡散して、一主面側にバスバ
ー部とフィンガー部から成る格子状の表面電極と反射防
止膜を形成し、他の主面側に裏面電極を形成する太陽電
池素子の形成方法において、前記半導体基板の一主面側
に前記表面電極を形成した後に前記反射防止膜を形成
し、次いでこの反射防止膜上から前記表面電極のバスバ
ー部上に銀ーストを塗布して焼き付けることを特徴とす
る太陽電池素子の形成方法。
A semiconductor substrate exhibiting one conductivity type is diffused with a semiconductor impurity of the opposite conductivity type on one main surface side, and a lattice-shaped surface electrode comprising a bus bar portion and a finger portion and an antireflection film are formed on one main surface side. Forming a back electrode on the other main surface side, forming the anti-reflection film after forming the front electrode on one main surface side of the semiconductor substrate, and then forming the anti-reflection film. A method for forming a solar cell element, wherein silver paste is applied from the film onto the bus bar portion of the surface electrode and baked.
【請求項2】 一導電型を呈する半導体基板の一主面側
に逆導電型半導体不純物を拡散して、一主面側にバスバ
ー部とフィンガー部から成る格子状の表面電極と反射防
止膜を形成し、他の主面側に表面電極を形成する太陽電
池素子の形成方法において、前記半導体基板の一主面側
に前記反射防止膜を形成した後に、この反射防止膜にお
ける前記表面電極のバスバー部形成部分を除去し、次い
で前記反射防止膜上に前記表面電極のフィンガー部を形
成すると共に、前記反射防止膜の除去部分にバスバー部
を形成することを特徴とする太陽電池素子の形成方法。
2. A semiconductor substrate exhibiting one conductivity type, wherein a semiconductor impurity of the opposite conductivity type is diffused on one main surface side of the semiconductor substrate, and a grid-like surface electrode comprising a bus bar portion and a finger portion and an antireflection film are provided on one main surface side. In the method for forming a solar cell element wherein a surface electrode is formed on the other main surface side, after forming the antireflection film on one main surface side of the semiconductor substrate, a bus bar of the surface electrode in the antireflection film is formed. A method for forming a solar cell element, comprising: removing a portion where a portion is formed; forming finger portions of the surface electrode on the antireflection film; and forming a bus bar portion on the portion where the antireflection film is removed.
JP9297055A 1997-10-29 1997-10-29 Method of forming solar cell element Pending JPH11135812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9297055A JPH11135812A (en) 1997-10-29 1997-10-29 Method of forming solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9297055A JPH11135812A (en) 1997-10-29 1997-10-29 Method of forming solar cell element

Publications (1)

Publication Number Publication Date
JPH11135812A true JPH11135812A (en) 1999-05-21

Family

ID=17841638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9297055A Pending JPH11135812A (en) 1997-10-29 1997-10-29 Method of forming solar cell element

Country Status (1)

Country Link
JP (1) JPH11135812A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340812A (en) * 1999-05-28 2000-12-08 Kyocera Corp Solar cell
WO2008023795A1 (en) * 2006-08-25 2008-02-28 Sanyo Electric Co., Ltd. Solar battery module and solar battery module manufacturing method
JP2011035101A (en) * 2009-07-31 2011-02-17 Shin-Etsu Chemical Co Ltd Solar cell and manufacturing method thereof
JP2013149815A (en) * 2012-01-20 2013-08-01 Shin Etsu Chem Co Ltd Solar battery and method of manufacturing the same
JP2013183114A (en) * 2012-03-05 2013-09-12 Sharp Corp Manufacturing method and manufacturing apparatus of solar cell, and solar cell
JP2015062251A (en) * 2014-11-28 2015-04-02 信越化学工業株式会社 Solar cell and method for manufacturing the same
JP2016072601A (en) * 2014-09-29 2016-05-09 パナソニックIpマネジメント株式会社 Manufacturing method of solar cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340812A (en) * 1999-05-28 2000-12-08 Kyocera Corp Solar cell
WO2008023795A1 (en) * 2006-08-25 2008-02-28 Sanyo Electric Co., Ltd. Solar battery module and solar battery module manufacturing method
CN101506993B (en) 2006-08-25 2011-04-06 三洋电机株式会社 Solar battery module and solar battery module manufacturing method
JP5213712B2 (en) * 2006-08-25 2013-06-19 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module
US9660120B2 (en) 2006-08-25 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
US10043931B2 (en) 2006-08-25 2018-08-07 Panasonic Itellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
JP2011035101A (en) * 2009-07-31 2011-02-17 Shin-Etsu Chemical Co Ltd Solar cell and manufacturing method thereof
JP2013149815A (en) * 2012-01-20 2013-08-01 Shin Etsu Chem Co Ltd Solar battery and method of manufacturing the same
JP2013183114A (en) * 2012-03-05 2013-09-12 Sharp Corp Manufacturing method and manufacturing apparatus of solar cell, and solar cell
JP2016072601A (en) * 2014-09-29 2016-05-09 パナソニックIpマネジメント株式会社 Manufacturing method of solar cell
JP2015062251A (en) * 2014-11-28 2015-04-02 信越化学工業株式会社 Solar cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6143976A (en) Solar cell with reduced shading and method of producing the same
US5665607A (en) Method for producing thin film solar cell
EP1887633B1 (en) Solar cell and solar cell manufacturing method
US6441297B1 (en) Solar cell arrangement
JP3169497B2 (en) Solar cell manufacturing method
JP4837662B2 (en) Method for manufacturing solar cell element
EP0881694A1 (en) Solar cell and process of manufacturing the same
US20080092944A1 (en) Semiconductor structure and process for forming ohmic connections to a semiconductor structure
JP2002532888A (en) Thin film solar cell array system and method of manufacturing the same
CN104272475A (en) Cell and module processing of semiconductor wafers for back-contacted solar photovoltaic module
JP2001068699A (en) Solar cell
JPH0231508B2 (en)
JP2003197932A (en) Solar cell element and method of manufacturing the same
JP2878031B2 (en) Thin solar cell and manufacturing method
JPH11135812A (en) Method of forming solar cell element
JP2005353851A (en) Solar cell module
JP2000340812A (en) Solar cell
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JP4658380B2 (en) Solar cell element and solar cell module using the same
JP2003273379A (en) Solar cell element
JP3676954B2 (en) Photoelectric conversion element and manufacturing method thereof
JPH11307792A (en) Solar cell element
JP4203247B2 (en) Method for forming solar cell element
JP2007266649A (en) Method for manufacturing solar cell element
JP3850784B2 (en) Manufacturing method of solar cell