JPH1092620A - Magnetic powder for magnetic recording - Google Patents
Magnetic powder for magnetic recordingInfo
- Publication number
- JPH1092620A JPH1092620A JP8241827A JP24182796A JPH1092620A JP H1092620 A JPH1092620 A JP H1092620A JP 8241827 A JP8241827 A JP 8241827A JP 24182796 A JP24182796 A JP 24182796A JP H1092620 A JPH1092620 A JP H1092620A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic powder
- powder
- magnetic field
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Magnetic Record Carriers (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高密度記録・再生
が可能な塗布型磁気記録媒体に適した磁性粉に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic powder suitable for a coated magnetic recording medium capable of high-density recording and reproduction.
【0002】[0002]
【従来の技術】情報化社会が急速に進む中で、磁気記録
の高記録密度化への要求がますます強まっており、塗布
型磁気記録媒体の分野においても短波長記録・再生の要
求が高まっている。これらの要求に応えるべく磁気記録
媒体の線記録密度を高める目的で、これまでにも、たと
えば磁性粉として使用される磁性体に関しては、粒径を
より小さく保磁力を大きく、かつ磁化反転分布幅(swic
hing field distribution:以下SFDと略す)を小さく
して、記録減磁をできるだけ小さくするなどの方向で開
発がなされている。現在、たとえば六方晶系フェライト
では、磁性粉として粒径300nmから数十nm程度ま
でに微粒子化されたものが多用されている。しかしなが
ら、微粒子化が進められた磁性体を用いて作製した磁気
記録媒体においては、短波長出力およびS/N比の改善
は認められてはいるものの、未だ充分とはいえない。そ
のため、粒径が小さいだけでなく磁気特性もすぐれた微
粒子磁性粉が求められている。2. Description of the Related Art With the rapid progress of the information society, the demand for higher recording density of magnetic recording is increasing, and the demand for short-wavelength recording / reproducing is also increasing in the field of coating type magnetic recording media. ing. For the purpose of increasing the linear recording density of a magnetic recording medium to meet these demands, for example, a magnetic material used as a magnetic powder, for example, has a smaller particle size, a larger coercive force, and a width of magnetization reversal distribution. (Swic
Development is being made in such a direction as to reduce recording field demagnetization as much as possible (hing field distribution: hereinafter abbreviated as SFD). At present, for example, in the case of hexagonal ferrite, magnetic powder having a particle size of 300 nm to about several tens nm is widely used as magnetic powder. However, although a short wavelength output and an improvement in S / N ratio have been observed in a magnetic recording medium manufactured using a magnetic material whose particle size has been advanced, it cannot be said that it is still sufficient. Therefore, there is a demand for a fine particle magnetic powder having not only a small particle size but also excellent magnetic properties.
【0003】なお、SFDとは、磁性粉に磁場をかけて
その残留磁化(σr)を測定して磁化曲線を作製し、第
2象限の磁化曲線における微分曲線(dσ/dH)の半
値幅ΔHをこの磁性粉末の保磁力Hcで除した値と定義
され、保磁力Hc近傍での磁化曲線の勾配を表してい
る。このSFDは、磁性粉の保磁力分布の広がりを示す
パラメータとして知られ、一般にこの値が小さいほど短
波長特性が伸びるといわれている。[0003] The SFD means that a magnetic field is applied to a magnetic powder to measure a remanent magnetization (σr) of the magnetic powder to prepare a magnetization curve, and a half-value width ΔH of a differential curve (dσ / dH) in the magnetization curve of the second quadrant. Is divided by the coercive force Hc of the magnetic powder, and represents the gradient of the magnetization curve near the coercive force Hc. This SFD is known as a parameter indicating the spread of the coercive force distribution of the magnetic powder, and it is generally said that the shorter the value is, the longer the short wavelength characteristic is.
【0004】[0004]
【発明が解決しようとする課題】ところで、磁性体の微
粒子化を進めるにつれ、たとえば六方晶系フェライトな
どでは粒径40nm以下のサイズにまで粒径を小さくす
ると、SFDの値の著しい増大が起こってしまうことが
判明した。さらに、微粒子化が進められたこの種の磁性
粉を用いて磁性塗料を調製し塗布により磁性膜を形成し
た場合には、従来の粒径の磁性粉を用いた場合に比較し
て、配向性・充填性が劣ることも明らかになった。そし
て、その結果として飽和磁化量・残留磁化量の低下、S
FD特性の悪化という不都合が生じていた。したがって
磁気記録媒体を作製した場合には、ノイズの低下は認め
られるものの再生出力の低下が著しいため、S/Nの向
上という利得をもたらすまでには至っていない。By the way, as the particle size of a magnetic material is reduced, for example, when the particle size of a hexagonal ferrite or the like is reduced to a size of 40 nm or less, a remarkable increase in the value of SFD occurs. It turned out to be. In addition, when a magnetic coating is prepared using this type of magnetic powder, which has been made finer, and a magnetic film is formed by coating, the orientation property is higher than when a magnetic powder having a conventional particle size is used. -It became clear that the filling property was inferior. As a result, the saturation magnetization and the residual magnetization decrease, and S
The inconvenience of deterioration of FD characteristics has occurred. Therefore, when a magnetic recording medium is manufactured, although a reduction in noise is recognized, a reduction in the reproduction output is remarkable, and the gain of improving the S / N has not yet been achieved.
【0005】本発明は、磁性粉の微粒子化に伴うこのよ
うな不都合を解消し高密度記録に対応させるためになさ
れたものであり、SFDが小さく高密度記録再生に適し
た磁性粉を提供することを、その目的としている。SUMMARY OF THE INVENTION The present invention has been made in order to solve such inconveniences caused by fine magnetic powder and to cope with high-density recording. The present invention provides a magnetic powder having a small SFD and suitable for high-density recording and reproduction. That is its purpose.
【0006】[0006]
【課題を解決するための手段】上記目的のため鋭意研究
の結果、上記不都合を引起こす原因が、微粒子化により
得られた磁性粉の粒度分布の幅が広くまた正規分布形か
ら離れ対称性に欠けていること、そしてそれに因って保
磁力分布の幅が広がり片寄りが生じることであると、推
察するに至った。As a result of intensive study for the above purpose, the cause of the above-mentioned inconvenience is that the magnetic powder obtained by micronization has a wide particle size distribution and is symmetrical away from the normal distribution type. It was speculated that the lack was caused, and that the coercive force distribution was widened and offset.
【0007】そして、磁性粉の保磁力分布が均整がとれ
ているかどうかを表現する方法として、SFD、すなわ
ち磁性粉の第2象限の磁化曲線における微分曲線(dσ
/dH)の半値幅をこの磁性粉末の保磁力Hcで除した
値と定義される数値を指標とするとともに、この微分曲
線の頂点近傍の形状の対称性を表す数値を指標に導入す
ることにした。そしてこれら2つの指標で磁性粉の特性
を規定することによって、SFDの広がりが抑えられ、
かつ塗膜中で充填性・配向性が阻害されることがなく高
密度記録再生に適した磁性粉を得るようにしたのであ
る。As a method of expressing whether or not the coercive force distribution of the magnetic powder is balanced, SFD, that is, a differential curve (dσ) in the magnetization curve of the second quadrant of the magnetic powder is used.
/ DH) is defined as a numerical value defined as a value obtained by dividing the half width of the magnetic powder by the coercive force Hc of the magnetic powder, and a numerical value representing the symmetry of the shape near the apex of the differential curve is introduced as the index. did. By defining the characteristics of the magnetic powder with these two indices, the spread of SFD is suppressed,
In addition, a magnetic powder suitable for high-density recording / reproduction is obtained without impairing the filling property and orientation in the coating film.
【0008】すなわち、本発明の磁気記録用磁性粉は、
第2象限の磁化曲線における微分曲線(dσ/dH)の
半値幅ΔHを頂点からの垂線で2分割したとき、下記2
式 (|ΔH1 −ΔH2 |)/Hm≦0.12 ΔH/Hm=(ΔH1 +ΔH2 )/Hm≦1.2 (ただし、ΔH1 は2分割されたΔHの低磁場側、ΔH
2 は同じく高磁場側を表し、Hmは最大微係数を与える
磁界を表す。)をともに満たすことを特徴としている。That is, the magnetic powder for magnetic recording of the present invention comprises:
When the half width ΔH of the differential curve (dσ / dH) in the magnetization curve of the second quadrant is divided into two by a perpendicular from the apex,
Equation (| ΔH 1 −ΔH 2 |) /Hm≦0.12 ΔH / Hm = (ΔH 1 + ΔH 2 ) /Hm≦1.2 (where ΔH 1 is the low magnetic field side of ΔH divided into two, ΔH
2 represents the high magnetic field side, and Hm represents the magnetic field giving the maximum derivative. ).
【0009】本発明において、(|ΔH1 −ΔH2 |)
/Hmは0.12以下であることが好ましく、より好ま
しくは0.1以下の範囲にあることである。(|ΔH1
−ΔH2 |)/Hmの値が大きくなるということは、微
分曲線(dσ/dH)の非対称性が増加するということ
を表している。In the present invention, (| ΔH 1 −ΔH 2 |)
/ Hm is preferably 0.12 or less, more preferably 0.1 or less. (| ΔH 1
An increase in the value of −ΔH 2 |) / Hm indicates that the asymmetry of the differential curve (dσ / dH) increases.
【0010】ΔH1 >ΔH2 の場合には、微分曲線のピ
ーク面積をΔH1 が含まれる低磁場側とΔH2 が含まれ
る高磁場側とに2分割したとき、低磁場側が大きくな
る。このとき、(|ΔH1 −ΔH2 |)/Hmの値が
0.12を超えると、磁性粉の平均としての保磁力に比
べて保磁力の低い粒子、すなわち軟磁性的粒子の割合が
大きすぎるようになり、記録の保持が困難になるなどの
問題が生じるので、好ましくない。In the case of ΔH 1 > ΔH 2 , when the peak area of the differential curve is divided into a low magnetic field side including ΔH 1 and a high magnetic field side including ΔH 2 , the low magnetic field side becomes large. At this time, if the value of (| ΔH 1 −ΔH 2 |) / Hm exceeds 0.12, the ratio of the particles having a low coercive force, that is, the ratio of the soft magnetic particles is large as compared with the average coercive force of the magnetic powder. This is not preferable because it causes problems such as excessive recording and difficulty in holding records.
【0011】一方、ΔH1 <ΔH2 の場合で(|ΔH1
−ΔH2 |)/Hmが0.12を超えると、微分曲線の
高磁場側が大きくなる。この場合には磁性粉の保磁力に
比べて保磁力の大きい粒子の割合が大きすぎるようにな
るため、書き込みが困難になるなどの問題が生じるの
で、やはり好ましくない。On the other hand, when ΔH 1 <ΔH 2 , (| ΔH 1
When −ΔH 2 |) / Hm exceeds 0.12, the high magnetic field side of the differential curve becomes large. In this case, the ratio of the particles having a large coercive force becomes too large as compared with the coercive force of the magnetic powder, which causes a problem such as difficulty in writing.
【0012】ΔH/Hm、すなわち(ΔH1 +ΔH2 )
/Hmで表される磁性粉のSFDは小さいほど好まし
く、本発明において1.2以下、好ましくは1.0以下
であることが望ましい。SFDの値が1.2を超える場
合には、Hcの分布の幅が広がりすぎて高記録密度化に
必要な短波長特性が損なわれるため、好ましくない。ΔH / Hm, that is, (ΔH 1 + ΔH 2 )
The SFD of the magnetic powder represented by / Hm is preferably as small as possible, and in the present invention, it is desirably 1.2 or less, preferably 1.0 or less. If the value of SFD exceeds 1.2, the distribution of Hc is too wide and the short-wavelength characteristic required for high recording density is impaired, which is not preferable.
【0013】なお、上記した磁性粉のΔH、ΔH1 、Δ
H2 、およびHmの値は、VSM(振動試料型磁化測定
装置)などを用いて容易に求めることができる。Note that ΔH, ΔH 1 , ΔH
The values of H 2 and Hm can be easily obtained using a VSM (vibration sample type magnetometer) or the like.
【0014】本発明において、磁性粉の平均粒径は20
〜100nmの範囲にあることが好ましく、さらに好ま
しくは20〜60nmの範囲内である。100nmを超
える平均粒径では粒度分布が広がりすぎて媒体を作製し
たときにノイズ成分が増大することが確認されており、
本発明の意図する高密度記録には適さない。平均粒径2
0nm以下では、個々の粒子体積が小さいために熱振動
で磁気モーメントが磁化安定軸から外れて絶えず揺動し
保磁力も消失するという、いわゆる超常磁性(superpar
amagnetism)を示す粒子の割合が大きくなって、やはり
磁気記録には適さなくなる。In the present invention, the average particle size of the magnetic powder is 20
It is preferably in the range of -100 nm, more preferably in the range of 20-60 nm. It has been confirmed that when the average particle diameter exceeds 100 nm, the particle size distribution is too wide and the noise component increases when a medium is produced.
It is not suitable for high density recording intended by the present invention. Average particle size 2
Below 0 nm, the so-called superparamagnetism (superparamagnetism) in which the magnetic moment deviates from the magnetization stable axis due to thermal vibration due to the small individual particle volume and the coercive force disappears constantly.
The ratio of particles exhibiting amagnetism increases, which is also unsuitable for magnetic recording.
【0015】以下、本発明の磁性粉を六方晶系フェライ
トを例にとり、さらに詳しく説明する。六方晶系フェラ
イト磁性粉を作製するにあたっては、この分野で公知の
さまざまな方法、たとえば、ガラス結晶化法、共沈法、
フラックス法、あるいは水熱合成法などによって製造す
ることができるが、とくにガラス結晶化法は本発明の磁
性粉を製造する方法として有効である。Hereinafter, the magnetic powder of the present invention will be described in more detail by taking hexagonal ferrite as an example. In preparing the hexagonal ferrite magnetic powder, various methods known in the art, for example, a glass crystallization method, a coprecipitation method,
Although it can be produced by a flux method or a hydrothermal synthesis method, a glass crystallization method is particularly effective as a method for producing the magnetic powder of the present invention.
【0016】さらに、本発明の磁性粉を製造するにあた
っては、結晶を析出させ成長させる熱処理の過程を厳密
に制御することが非常に重要である。Further, in producing the magnetic powder of the present invention, it is very important to strictly control the heat treatment process for depositing and growing crystals.
【0017】すなわち、本発明の磁性粉を製造するにあ
たっては第一次結晶化温度(結晶核析出温度)で十分に
長い保持時間をとることで核形成を選択的に行い、次に
第一次結晶化温度より高い第二次結晶化温度(結晶成長
温度)で結晶成長を選択的に行って、所望の粒径に成長
させるようにする。また、第一次結晶化温度から第二次
結晶化温度への昇温速度が緩やかであるとこの間にも新
たな核生成が起こり易いので、第一次結晶化温度から第
二次結晶化温度への移行をできる限りすばやく行うこと
が重要である。第二次結晶化温度への移行に時間がかか
る場合には、たとえば従来の一段階の熱処理による製造
方法のように、十分に核形成が行われないまま同時に結
晶成長が行われてしまうことになり、核形成時の温度の
差や成長速度の差が、粒度分布の広がりあるいは微分曲
線の片寄りをもたらす結果となるため、好ましくない。That is, in producing the magnetic powder of the present invention, nucleation is selectively performed by taking a sufficiently long holding time at the primary crystallization temperature (crystal nucleus precipitation temperature), Crystal growth is performed selectively at a secondary crystallization temperature (crystal growth temperature) higher than the crystallization temperature so as to grow to a desired grain size. Also, if the rate of temperature rise from the primary crystallization temperature to the secondary crystallization temperature is slow, new nucleation is likely to occur during this time, so the primary crystallization temperature is reduced to the secondary crystallization temperature. It is important to make the transition to as soon as possible. When it takes time to shift to the secondary crystallization temperature, for example, as in a conventional manufacturing method using a one-step heat treatment, crystal growth is performed simultaneously without sufficient nucleation. In other words, a difference in temperature and a difference in growth rate during nucleation results in an increase in the particle size distribution or an offset in the differential curve, which is not preferable.
【0018】上記方法により製造可能な本発明の六方晶
系フェライト磁性粉は、たとえば次の組成式 MO・Fe12-xM´x O18 (ただし、MはCa,Sr,Ba,およびPbから選ば
れる少なくとも1種以上の元素を表し、M´は原子数平
均価数が3価になるように調節された原子群を表す。)
で表せるものである。The hexagonal ferrite magnetic powder of the present invention, which can be produced by the above method, has, for example, the following composition formula: MO.Fe 12-x M ' x O 18 (where M is Ca, Sr, Ba, and Pb Represents at least one or more elements selected, and M ′ represents an atomic group adjusted so that the average number of valences becomes trivalent.)
It can be expressed by
【0019】本発明において、磁性粉の保磁力は300
〜3000 Oeの範囲にあることが望ましい。300
Oe未満では記録減磁が著しく高密度記録に適さず、
3000 Oeを超える場合にはこれを十分に磁化する
ヘッドが現時点ではないので飽和を起こしてしまうた
め、どちらの場合も好ましくない。In the present invention, the coercive force of the magnetic powder is 300
It is desirable to be in the range of ~ 3000 Oe. 300
If it is less than Oe, recording demagnetization is remarkably not suitable for high-density recording,
In the case of exceeding 3000 Oe, since the head which sufficiently magnetizes this is not present, saturation occurs, and both cases are not preferable.
【0020】保磁力をこのような範囲に制御するため
に、上記組成式においてFeの一部を適当な金属元素で
置換することが望ましい。この際、置換イオンの価数が
原子数平均3価になるようにすることが望ましい。M´
は原子数平均価数が3価になるように調節された原子群
を意味する。たとえばM´の1種として2価金属元素を
用いた場合、4価、5価、6価元素を併用して置換元素
の価数が原子数平均3価になるように調節する。ここに
2価元素として、Mn,Fe,Co,Ni,Cu,Z
n,Mg,Cd等が例示され、3価元素としてはSc,
Al,Y,Ga,In,Tl,Rh等、4価元素として
はTi,Zr,Hf,Sn,Ge,Τe,Ru等、5価
元素としてはV,Nb,Ta,Bi,Sb等、6価元素
としてはMo,W等が例示される。In order to control the coercive force in such a range, it is desirable to replace a part of Fe in the above composition formula with an appropriate metal element. At this time, it is desirable that the valence of the substituted ion be trivalent on average. M '
Represents an atomic group adjusted so that the average valence of atoms becomes trivalent. For example, when a divalent metal element is used as one type of M ′, tetravalent, pentavalent, and hexavalent elements are used in combination so that the valence of the substitution element is adjusted so that the average number of atoms is trivalent. Here, as divalent elements, Mn, Fe, Co, Ni, Cu, Z
n, Mg, Cd, etc. are exemplified.
Al, Y, Ga, In, Tl, Rh and the like; tetravalent elements such as Ti, Zr, Hf, Sn, Ge, Δe and Ru; and pentavalent elements as V, Nb, Ta, Bi, Sb and the like; Examples of the valence element include Mo, W, and the like.
【0021】本発明の磁性粉の常温での飽和磁化量は4
0〜75emu/gの範囲にあることが望ましい。40
emu/g未満の磁化量では、作製した磁気記録媒体の
長波長出力が不足をきたすため、好ましくない。飽和磁
化量は大きいほど好ましいが、M型構造であって本発明
の粒径範囲の磁性粉では、75emu/gを超える磁化
量は達成困難である。The saturation magnetization of the magnetic powder of the present invention at room temperature is 4
It is desirable to be in the range of 0 to 75 emu / g. 40
If the amount of magnetization is less than emu / g, the output of the manufactured magnetic recording medium at a long wavelength is insufficient, which is not preferable. The larger the saturation magnetization is, the more preferable. However, it is difficult to achieve a magnetization exceeding 75 emu / g with the magnetic powder having the M-type structure and the particle size range of the present invention.
【0022】本発明において磁性粉は上記の粒径、形状
の範囲にあって、かつ比表面積はBEΤ法による値で2
5〜70m2 /gの範囲にあることが望ましい。比表面
積をこのような数値範囲に限定したのは、比表面積が、
媒体製造にあたり磁性塗料調製の際に磁性粒子が樹脂バ
インダと相互作用する度合いに関連する量であるためで
ある。すなわち25m2 /g未満では、バインダから受
ける抵抗が少なく磁性粉の配向性は向上するものの、磁
性塗料中における磁性粉分散安定性の確保が困難となる
ので、好ましくない。また70m2 /gを超える場合に
は、磁性粉の配向性・充填性が低下し高密度記録には適
さなくなるので、やはり好ましくない。In the present invention, the magnetic powder is in the above-mentioned range of particle size and shape, and has a specific surface area of 2 as determined by the BEΤ method.
It is desirably in the range of 5 to 70 m 2 / g. The reason for limiting the specific surface area to such a numerical range is that the specific surface area is
This is because the amount is related to the degree to which the magnetic particles interact with the resin binder during the preparation of the magnetic paint in the production of the medium. In other words, if it is less than 25 m 2 / g, although the resistance received from the binder is small and the orientation of the magnetic powder is improved, it is difficult to secure the dispersion stability of the magnetic powder in the magnetic paint, which is not preferable. On the other hand, if it exceeds 70 m 2 / g, the orientation and filling properties of the magnetic powder are reduced, and the magnetic powder is not suitable for high-density recording.
【0023】本発明の磁性粉において、板状比は媒体中
の充填性・配向性を勘案すると2〜9であることが望ま
しく、さらに望ましくは3〜6の範囲にあることであ
る。板状比が大きくなるにしたがって配向性の向上、S
FDの狭小化が見られるが、充填性は逆に低下する。作
製した磁気記録媒体の再生出力を増大させるためには、
磁性粉において充填性の向上、配向性の向上、およびS
FDの狭小化という3つの特性のバランスがよいことが
重要である。本発明においては、そのような観点から、
板状比の望ましい範囲として2〜9、さらに好ましい範
囲として3〜6が導かれる。In the magnetic powder of the present invention, the plate ratio is preferably from 2 to 9 in consideration of the filling property and orientation in the medium, and more preferably from 3 to 6. As the plate ratio increases, the orientation improves,
Although the FD is narrowed, the filling property is reduced. In order to increase the reproduction output of the manufactured magnetic recording medium,
In magnetic powder, improvement of filling property, improvement of orientation, and S
It is important that the three characteristics of narrowing the FD be well balanced. In the present invention, from such a viewpoint,
The preferred range of the plate ratio is 2 to 9, and the more preferred range is 3 to 6.
【0024】以上、本発明を六方晶系フェライトを例に
して説明してきたが、本発明は、六方晶系フェライト磁
性粉に限定されるものではなく、Fe、Fe−Co、F
e−Co−Niなどの針状磁性粉に対しても好適に適用
可能である。Although the present invention has been described above by taking hexagonal ferrite as an example, the present invention is not limited to hexagonal ferrite magnetic powders, but includes Fe, Fe--Co, F
It can be suitably applied to acicular magnetic powder such as e-Co-Ni.
【0025】[0025]
【発明の実施の形態】以下、本発明を実施例を用いて詳
しく説明する。磁性粉としては下記組成式 BaO・Fe12-3(x+y)/2 Cox Zny Nb(x+y)/2 O
18 で表される六方晶系フェライト磁性粉をとりあげた。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. As the magnetic powder, the following composition formula: BaO · Fe 12-3 (x + y) / 2 Co x Zn y Nb (x + y) / 2 O
The hexagonal ferrite magnetic powder represented by 18 was picked up.
【0026】実施例1 磁性粉の製造はBaO−B2 O3 をガラス母相とするガ
ラス結晶化法によって行った。公知の方法にしたがって
上記組成式においてx=0.2、y=0.6とした組成
のフェライトの原料成分とガラス母相成分とをよく混合
した後、加熱溶融し得られた溶融物を双ロールにて急冷
して、非晶質体を作製した。なお、原料混合にあたり母
相成分/フェライト成分の質量比は60/40とした。Example 1 A magnetic powder was produced by a glass crystallization method using BaO-B 2 O 3 as a glass matrix. According to a known method, a raw material component of ferrite having a composition where x = 0.2 and y = 0.6 in the above composition formula and a glass matrix component are mixed well, and the melt obtained by heating and melting is subjected to a twin-cast process. It was quenched with a roll to produce an amorphous body. In addition, in mixing the raw materials, the mass ratio of the matrix component / ferrite component was set to 60/40.
【0027】次いで、核形成を主体とする第一次結晶化
温度480℃で25時間の熱処理を行い、次いで15℃
/分の昇温速度で第二次結晶化温度の760℃にまで昇
温させ、760℃で4時間の熱処理を施した。その後、
公知の方法にしたがい洗浄処理を施してガラス母相成分
を溶解除去して、本発明の磁性粉である六方晶系フェラ
イト粉末を得た。Next, a heat treatment for 25 hours is performed at a primary crystallization temperature of 480 ° C., mainly for nucleation, and then at 15 ° C.
The temperature was raised to the secondary crystallization temperature of 760 ° C. at a heating rate of / min, and heat treatment was performed at 760 ° C. for 4 hours. afterwards,
A glass matrix component was dissolved and removed by a washing treatment according to a known method to obtain a hexagonal ferrite powder which is a magnetic powder of the present invention.
【0028】得られた磁性粉末の磁気特性を、VSMを
用いて調べたところ、保磁力Hcは1590 Oe、磁
化量は55emu/g、SFDは0.7であった。な
お、磁性粉末のSFDは、直径4mm、厚み1mmの非
磁性セルに粉末を充填して得られる反磁界補正を施さな
いメイジャーヒステリシスループより求めた値である。
同ループから(|ΔH1 −ΔH2 |)/Hmを算出した
ところ、0.06であった。When the magnetic properties of the obtained magnetic powder were examined using a VSM, the coercive force Hc was 1590 Oe, the magnetization was 55 emu / g, and the SFD was 0.7. The SFD of the magnetic powder is a value obtained from a major hysteresis loop obtained by filling a nonmagnetic cell having a diameter of 4 mm and a thickness of 1 mm with the powder and not performing demagnetization correction.
When (| ΔH 1 −ΔH 2 |) / Hm was calculated from the same loop, it was 0.06.
【0029】磁性粉末の粒径・形状は、倍率20万倍の
透過型電子顕微鏡像より無作為に200個の粒子を選び
出してその粒径と板厚みを測定し、それぞれの算術平均
を求めた。その結果、平均粒径は30nm、板状比は4
であった。なお、BET法(ガス吸着法)による比表面
積の値は、高感度面積計を用いて測定したところ、44
m2 /gであった。The particle size and shape of the magnetic powder were determined by randomly selecting 200 particles from a transmission electron microscope image at a magnification of 200,000, measuring the particle size and plate thickness, and calculating the arithmetic mean of each. . As a result, the average particle size was 30 nm and the plate ratio was 4
Met. The value of the specific surface area by the BET method (gas adsorption method) was measured using a high-sensitivity area meter.
m 2 / g.
【0030】次いで、得られた磁性粉の特性を調べるた
め、下記組成の磁性塗料を調製し、アプリケータを用い
てポリエチレンテレフタレートフィルム上に塗布して塗
膜を形成した。磁性塗料の調製に際しては、サンドグラ
インダによって5時間の混練を行った。Next, in order to examine the properties of the obtained magnetic powder, a magnetic paint having the following composition was prepared and applied to a polyethylene terephthalate film using an applicator to form a coating film. In preparing the magnetic paint, kneading was performed for 5 hours using a sand grinder.
【0031】<磁性塗料組成> 磁性粉末 100質量部 極性基含有ポリウレタン樹脂 5質量部 極性基含有塩化ビニル樹脂 5質量部 溶剤(メチルエチルケトン/シクロヘキサノン/トルエ
ン)300質量部 磁性塗料の塗布後、塗液が乾ききらないうちに塗膜を6
kOeの磁界中に塗膜が磁界と平行になるように配置
し、磁界内でそのまま自然乾燥させて塗膜に配向処理を
施した。<Magnetic coating composition> Magnetic powder 100 parts by mass Polar group-containing polyurethane resin 5 parts by mass Polar group-containing vinyl chloride resin 5 parts by mass Solvent (methyl ethyl ketone / cyclohexanone / toluene) 300 parts by mass 6 coats before drying
The coating film was placed in a kOe magnetic field so as to be parallel to the magnetic field, and was naturally dried in the magnetic field, and the coating film was subjected to an orientation treatment.
【0032】そして、得られた配向膜についてVSMを
用いて残留磁化量/飽和磁化量の比を求めて、これを配
向率としたところ75%であった。この配向した状態の
塗膜についてもSFDを測定したところ、0.2であっ
た。Then, the ratio of residual magnetization amount / saturation magnetization amount of the obtained alignment film was determined by using VSM, and the ratio was 75% as an orientation ratio. The SFD of this oriented coating film was 0.2 as a result.
【0033】実施例2 第二次結晶化温度を800℃に変えた他は実施例1と同
様にして、六方晶系フェライト粉末を製造した。得られ
た磁性粉末について、実施例1と同様にして磁気特性、
(|ΔH1 −ΔH2 |)/Hm、および粒径・形状を測
定し、さらに配向膜を作製して配向率とSFDを測定し
た。以上の測定結果は、実施例1の測定結果と併せて後
出の表1に示されている。Example 2 A hexagonal ferrite powder was produced in the same manner as in Example 1 except that the secondary crystallization temperature was changed to 800 ° C. The magnetic properties of the obtained magnetic powder were determined in the same manner as in Example 1.
(| ΔH 1 −ΔH 2 |) / Hm, and the particle size and shape were measured. Further, an alignment film was prepared, and the alignment ratio and SFD were measured. The above measurement results are shown in Table 1 below together with the measurement results of Example 1.
【0034】実施例3 フェライト組成を、上記組成式においてx=0.1、y
=0.7とし、第一次結晶化温度520℃で20時間の
熱処理を行い、次いで10℃/分の昇温速度で第二次結
晶化温度725℃まで昇温させ、5時間の熱処理を施す
ようにした他は実施例1と同様にして、六方晶系フェラ
イト粉末を製造した。得られた磁性粉末について、実施
例1と同様にして磁気特性、(|ΔH1 −ΔH2 |)/
Hm、および粒径・形状を測定し、さらに配向膜を作製
して配向率とSFDを測定した。以上の測定結果を、後
出の表1に示す。Example 3 The ferrite composition was determined as follows: x = 0.1, y
= 0.7, heat treatment at a primary crystallization temperature of 520 ° C. for 20 hours, then heating at a rate of 10 ° C./min to a secondary crystallization temperature of 725 ° C., and a heat treatment for 5 hours A hexagonal ferrite powder was produced in the same manner as in Example 1 except that the application was performed. The magnetic properties of the obtained magnetic powder were calculated in the same manner as in Example 1; (| ΔH 1 −ΔH 2 |) /
The Hm, the particle size and the shape were measured, and an orientation film was further prepared to measure the orientation ratio and SFD. The above measurement results are shown in Table 1 below.
【0035】実施例4 第二次結晶化温度を830℃に変えた他は実施例3と同
様にして、六方晶系フェライト粉末を製造した。得られ
た磁性粉末について、実施例1と同様にして磁気特性、
(|ΔH1 −ΔH2 |)/Hm、および粒径・形状を測
定し、さらに配向膜を作製して配向率とSFDを測定し
た。その測定結果を後出の表1に示す。Example 4 A hexagonal ferrite powder was produced in the same manner as in Example 3 except that the secondary crystallization temperature was changed to 830 ° C. The magnetic properties of the obtained magnetic powder were determined in the same manner as in Example 1.
(| ΔH 1 −ΔH 2 |) / Hm, and the particle size and shape were measured. Further, an alignment film was prepared, and the alignment ratio and SFD were measured. The measurement results are shown in Table 1 below.
【0036】実施例5 実施例1と同じ組成の六方晶系フェライト磁性粉末を共
沈法により作製するにあたり、フェライトを構成する元
素を含む金属塩溶液を、50℃で当量の2倍量の苛性ソ
ーダの投入により共沈させた。得られた共沈物を炉別し
たのち水洗して乾燥した後、第一次結晶化温度500℃
で30時間の熱処理ののち、20℃/分の昇温速度で第
二次結晶化温度780℃まで昇温させ、2時間の熱処理
を行った。そして本発明の磁性粉である六方晶系フェラ
イト粉末を得た。得られた磁性粉末について、実施例1
と同様にして磁気特性、(|ΔH1 −ΔH2 |)/H
m、および粒径・形状を測定し、さらに配向膜を作製し
て配向率とSFDを測定した。以上の測定結果は、次の
表1に示す。Example 5 In preparing a hexagonal ferrite magnetic powder having the same composition as in Example 1 by a coprecipitation method, a metal salt solution containing an element constituting ferrite was mixed at 50 ° C. with twice the equivalent of caustic soda. And coprecipitated. After the obtained coprecipitate was filtered off, washed with water and dried, the primary crystallization temperature was 500 ° C.
After the heat treatment for 30 hours, the temperature was raised to the secondary crystallization temperature of 780 ° C. at a rate of 20 ° C./min, and the heat treatment was performed for 2 hours. Then, a hexagonal ferrite powder as the magnetic powder of the present invention was obtained. Example 1 about the obtained magnetic powder
Magnetic properties, (| ΔH 1 −ΔH 2 |) / H
m, and the particle size and shape were measured, and an orientation film was further prepared to measure the orientation ratio and SFD. The above measurement results are shown in Table 1 below.
【0037】[0037]
【表1】 次に、比較例として、本発明にしたがわない六方晶系フ
ェライト磁性粉末を製造した。得られた磁性粉末につい
ても、実施例1と同様にして特性を評価した。その測定
結果を、後出の表2に示した。[Table 1] Next, as a comparative example, a hexagonal ferrite magnetic powder not according to the present invention was manufactured. The properties of the obtained magnetic powder were evaluated in the same manner as in Example 1. The measurement results are shown in Table 2 below.
【0038】比較例1 480℃で25時間の第一次結晶化工程を省略した他は
実施例1と同様にして、六方晶系フェライト粉末を得
た。Comparative Example 1 A hexagonal ferrite powder was obtained in the same manner as in Example 1 except that the primary crystallization step at 480 ° C. for 25 hours was omitted.
【0039】比較例2 520℃で20時間の第一次結晶化工程を省略した他は
実施例3と同様にして、六方晶系フェライト粉末を得
た。Comparative Example 2 A hexagonal ferrite powder was obtained in the same manner as in Example 3 except that the primary crystallization step at 520 ° C. for 20 hours was omitted.
【0040】比較例3 500℃で30時間の第一次熱処理工程を省略した他は
実施例5と同様にして、六方晶系フェライト粉末を得
た。Comparative Example 3 A hexagonal ferrite powder was obtained in the same manner as in Example 5, except that the first heat treatment step at 500 ° C. for 30 hours was omitted.
【0041】[0041]
【表2】 表1および表2の比較からも明らかなように、磁化曲線
の微分曲線の対称性にすぐれSFDが小さい本発明の磁
性粉は、飽和磁化も大きく磁性膜形成時の配向率も高
く、高密度の磁気記録に適している。[Table 2] As is clear from the comparison between Tables 1 and 2, the magnetic powder of the present invention, which has excellent symmetry of the differential curve of the magnetization curve and low SFD, has a large saturation magnetization, a high orientation ratio when forming a magnetic film, and a high density. Suitable for magnetic recording.
【0042】[0042]
【発明の効果】以上説明したように、本発明の磁性粉は
微粒子でありながらSFDの値が小さく、しかも保磁力
分布の対称性が良好というすぐれた磁気特性を有してい
る。それゆえ、高記録密度用の塗布型媒体を作製するた
めの磁性粉に、好適である。As described above, the magnetic powder of the present invention has excellent magnetic characteristics such as a small SFD value and good symmetry of the coercive force distribution despite being fine particles. Therefore, it is suitable for a magnetic powder for producing a coating medium for high recording density.
【0043】[0043]
Claims (2)
(dσ/dH)の半値幅ΔHを頂点からの垂線で2分割
したとき、下記の2式 (|ΔH1 −ΔH2 |)/Hm≦0.12 ΔH/Hm=(ΔH1 +ΔH2 )/Hm≦1.2 (ただし、ΔH1 は2分割されたΔHの低磁場側、ΔH
2 は同じく高磁場側を表し、Hmは最大微係数を与える
磁界を表す。)をともに満たすことを特徴とする磁気記
録用磁性粉。When a half width ΔH of a differential curve (dσ / dH) in a magnetization curve of a second quadrant is divided into two by a perpendicular line from a vertex, the following two formulas (| ΔH 1 −ΔH 2 |) / Hm ≦ 0.12 ΔH / Hm = (ΔH 1 + ΔH 2 ) /Hm≦1.2 (where ΔH 1 is the low magnetic field side of ΔH divided into two, ΔH
2 represents the high magnetic field side, and Hm represents the magnetic field giving the maximum derivative. A) a magnetic powder for magnetic recording, which satisfies both the above conditions.
あることを特徴とする特許請求の範囲請求項1記載の磁
気記録用磁性粉。2. The magnetic powder for magnetic recording according to claim 1, wherein the average particle diameter is in the range of 20 to 100 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24182796A JP3576332B2 (en) | 1996-09-12 | 1996-09-12 | Magnetic powder for magnetic recording |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24182796A JP3576332B2 (en) | 1996-09-12 | 1996-09-12 | Magnetic powder for magnetic recording |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1092620A true JPH1092620A (en) | 1998-04-10 |
JP3576332B2 JP3576332B2 (en) | 2004-10-13 |
Family
ID=17080092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24182796A Expired - Lifetime JP3576332B2 (en) | 1996-09-12 | 1996-09-12 | Magnetic powder for magnetic recording |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3576332B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003022517A (en) * | 2001-07-11 | 2003-01-24 | Dowa Mining Co Ltd | Ferrite magnetic powder for magnetic card |
JP2006005300A (en) * | 2004-06-21 | 2006-01-05 | Fuji Photo Film Co Ltd | Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium |
US7132164B2 (en) | 2004-06-21 | 2006-11-07 | Fuji Photo Film Co., Ltd. | Hexagonal ferrite magnetic powder, method for producing the same and magnetic recording medium |
WO2021161913A1 (en) * | 2020-02-10 | 2021-08-19 | Dowaエレクトロニクス株式会社 | Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8801956B2 (en) | 2009-10-20 | 2014-08-12 | Dowa Electronics Materials Co., Ltd. | Hexagonal crystal ferrite magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium using the powder |
-
1996
- 1996-09-12 JP JP24182796A patent/JP3576332B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003022517A (en) * | 2001-07-11 | 2003-01-24 | Dowa Mining Co Ltd | Ferrite magnetic powder for magnetic card |
JP2006005300A (en) * | 2004-06-21 | 2006-01-05 | Fuji Photo Film Co Ltd | Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium |
US7132164B2 (en) | 2004-06-21 | 2006-11-07 | Fuji Photo Film Co., Ltd. | Hexagonal ferrite magnetic powder, method for producing the same and magnetic recording medium |
JP4530733B2 (en) * | 2004-06-21 | 2010-08-25 | 富士フイルム株式会社 | Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium |
WO2021161913A1 (en) * | 2020-02-10 | 2021-08-19 | Dowaエレクトロニクス株式会社 | Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP3576332B2 (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5403278B2 (en) | Hexagonal ferrite particle powder and magnetic recording medium | |
JPH07101495B2 (en) | Magnetic recording medium | |
US20100021771A1 (en) | Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium and method of manufacturing the same | |
US5075169A (en) | Plate-like composite ferrite particles for magnetic recording and process for producing the same | |
JP2000200410A (en) | Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording apparatus | |
JP3576332B2 (en) | Magnetic powder for magnetic recording | |
JP3251753B2 (en) | Method for producing Ba ferrite magnetic powder | |
JPS62287604A (en) | Magnetic material and manufacture of the same and magnetic recording medium | |
JP5439861B2 (en) | Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium | |
JP2003006830A (en) | Magnetic recording medium and its production method | |
JP5712594B2 (en) | Hexagonal ferrite particles for magnetic recording media | |
JP5403242B2 (en) | Hexagonal ferrite particles for magnetic recording media | |
JPH09213513A (en) | Magnetic powder of hexagonal system ferrite | |
JPH1092618A (en) | Hexagonal ferrite magnetic powder and its manufacture | |
JPH09232123A (en) | Hexagonal system ferrite magnetic powder | |
JP5712595B2 (en) | Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium | |
JP3429881B2 (en) | Composite type hexagonal ferrite magnetic powder and method for producing the same | |
JP5311074B2 (en) | Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium | |
JPH09115728A (en) | Compound hexagonal system ferrite magnetic powder and its manufacture | |
JP2691790B2 (en) | Method for producing magnetic powder for magnetic recording medium | |
JP2735281B2 (en) | Method for producing magnetic powder for magnetic recording medium | |
JP3654917B2 (en) | Method of manufacturing magnetic recording medium using hexagonal ferrite powder | |
JP2807278B2 (en) | Method for producing magnetic powder for magnetic recording medium | |
JPH07254506A (en) | Magnetic powder and its production | |
De Wit et al. | Nanocrystalline Materials for video recorder heads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040707 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |