[go: up one dir, main page]

JP3576332B2 - Magnetic powder for magnetic recording - Google Patents

Magnetic powder for magnetic recording Download PDF

Info

Publication number
JP3576332B2
JP3576332B2 JP24182796A JP24182796A JP3576332B2 JP 3576332 B2 JP3576332 B2 JP 3576332B2 JP 24182796 A JP24182796 A JP 24182796A JP 24182796 A JP24182796 A JP 24182796A JP 3576332 B2 JP3576332 B2 JP 3576332B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
powder
recording
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24182796A
Other languages
Japanese (ja)
Other versions
JPH1092620A (en
Inventor
和史 中野
肇 竹内
修 久保
Original Assignee
旭テクノグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭テクノグラス株式会社 filed Critical 旭テクノグラス株式会社
Priority to JP24182796A priority Critical patent/JP3576332B2/en
Publication of JPH1092620A publication Critical patent/JPH1092620A/en
Application granted granted Critical
Publication of JP3576332B2 publication Critical patent/JP3576332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高密度記録・再生が可能な塗布型磁気記録媒体に適した磁性粉に関する。
【0002】
【従来の技術】
情報化社会が急速に進む中で、磁気記録の高記録密度化への要求がますます強まっており、塗布型磁気記録媒体の分野においても短波長記録・再生の要求が高まっている。これらの要求に応えるべく磁気記録媒体の線記録密度を高める目的で、これまでにも、たとえば磁性粉として使用される磁性体に関しては、粒径をより小さく保磁力を大きく、かつ磁化反転分布幅(swiching field distribution:以下SFDと略す)を小さくして、記録減磁をできるだけ小さくするなどの方向で開発がなされている。現在、たとえば六方晶系フェライトでは、磁性粉として粒径300nmから数十nm程度までに微粒子化されたものが多用されている。しかしながら、微粒子化が進められた磁性体を用いて作製した磁気記録媒体においては、短波長出力およびS/N比の改善は認められてはいるものの、未だ充分とはいえない。そのため、粒径が小さいだけでなく磁気特性もすぐれた微粒子磁性粉が求められている。
【0003】
なお、SFDとは、磁性粉に磁場をかけてその残留磁化(σr)を測定して磁化曲線を作製し、第2象限の磁化曲線における微分曲線(dσ/dH)の半値幅ΔHをこの磁性粉末の保磁力Hcで除した値と定義され、保磁力Hc近傍での磁化曲線の勾配を表している。このSFDは、磁性粉の保磁力分布の広がりを示すパラメータとして知られ、一般にこの値が小さいほど短波長特性が伸びるといわれている。
【0004】
【発明が解決しようとする課題】
ところで、磁性体の微粒子化を進めるにつれ、たとえば六方晶系フェライトなどでは粒径40nm以下のサイズにまで粒径を小さくすると、SFDの値の著しい増大が起こってしまうことが判明した。さらに、微粒子化が進められたこの種の磁性粉を用いて磁性塗料を調製し塗布により磁性膜を形成した場合には、従来の粒径の磁性粉を用いた場合に比較して、配向性・充填性が劣ることも明らかになった。そして、その結果として飽和磁化量・残留磁化量の低下、SFD特性の悪化という不都合が生じていた。したがって磁気記録媒体を作製した場合には、ノイズの低下は認められるものの再生出力の低下が著しいため、S/Nの向上という利得をもたらすまでには至っていない。
【0005】
本発明は、磁性粉の微粒子化に伴うこのような不都合を解消し高密度記録に対応させるためになされたものであり、SFDが小さく高密度記録再生に適した磁性粉を提供することを、その目的としている。
【0006】
【課題を解決するための手段】
上記目的のため鋭意研究の結果、上記不都合を引起こす原因が、微粒子化により得られた磁性粉の粒度分布の幅が広くまた正規分布形から離れ対称性に欠けていること、そしてそれに因って保磁力分布の幅が広がり片寄りが生じることであると、推察するに至った。
【0007】
そして、磁性粉の保磁力分布が均整がとれているかどうかを表現する方法として、SFD、すなわち磁性粉の第2象限の磁化曲線における微分曲線(dσ/dH)の半値幅をこの磁性粉末の保磁力Hcで除した値と定義される数値を指標とするとともに、この微分曲線の頂点近傍の形状の対称性を表す数値を指標に導入することにした。そしてこれら2つの指標で磁性粉の特性を規定することによって、SFDの広がりが抑えられ、かつ塗膜中で充填性・配向性が阻害されることがなく高密度記録再生に適した磁性粉を得るようにしたのである。
【0008】
すなわち、本発明の磁気記録用六方晶系フェライト磁性粉は、組成式MO・Fe 12−x M´ 18 (ただし、MはCa,Sr,Ba,およびPbから選ばれる少なくとも1種以上の元素を表し、M´は原子数平均価数が3価になるように調節された原子群を表す。)で表される磁気記録用六方晶系フェライト磁性粉であって、平均粒径が20〜100nmであり、板状比が2〜9であり、BEΤ法による比表面積が25〜70m /gであり、この磁性粉の磁化曲線における第2象限の微分曲線(dσ/dH)の半値幅ΔHを頂点からの垂線で2分割したとき、下記の2式
(|ΔH1 −ΔH2 |)/Hm≦0.12
ΔH/Hm=(ΔH1 +ΔH2 )/Hm≦1.2
(ただし、ΔH1 は2分割されたΔHの低磁場側、ΔH2 は同じく高磁場側を表し、Hmは最大微係数を与える磁界を表す。)をともに満たすことを特徴としている。
【0009】
本発明において、(|ΔH−ΔH|)/Hmは0.12以下であることが好ましく、より好ましくは0.1以下の範囲にあることである。(|ΔH−ΔH|)/Hmの値が大きくなるということは、微分曲線(dσ/dH)の非対称性が増加するということを表している。
【0010】
ΔH>ΔHの場合には、微分曲線のピーク面積をΔHが含まれる低磁場側とΔHが含まれる高磁場側とに2分割したとき、低磁場側が大きくなる。このとき、(|ΔH−ΔH|)/Hmの値が0.12を超えると、磁性粉の平均としての保磁力に比べて保磁力の低い粒子、すなわち軟磁性的粒子の割合が大きすぎるようになり、記録の保持が困難になるなどの問題が生じるので、好ましくない。
【0011】
一方、ΔH<ΔHの場合で(|ΔH−ΔH|)/Hmが0.12を超えると、微分曲線の高磁場側が大きくなる。この場合には磁性粉の保磁力に比べて保磁力の大きい粒子の割合が大きすぎるようになるため、書き込みが困難になるなどの問題が生じるので、やはり好ましくない。
【0012】
ΔH/Hm、すなわち(ΔH+ΔH)/Hmで表される磁性粉のSFDは小さいほど好ましく、本発明において1.2以下、好ましくは1.0以下であることが望ましい。SFDの値が1.2を超える場合には、Hcの分布の幅が広がりすぎて高記録密度化に必要な短波長特性が損なわれるため、好ましくない。
【0013】
なお、上記した磁性粉のΔH、ΔH、ΔH、およびHmの値は、VSM
(振動試料型磁化測定装置)などを用いて容易に求めることができる。
【0014】
本発明において、磁性粉の平均粒径は20〜100nmの範囲にあることが好ましく、さらに好ましくは20〜60nmの範囲内である。100nmを超える平均粒径では粒度分布が広がりすぎて媒体を作製したときにノイズ成分が増大することが確認されており、本発明の意図する高密度記録には適さない。平均粒径20nm以下では、個々の粒子体積が小さいために熱振動で磁気モーメントが磁化安定軸から外れて絶えず揺動し保磁力も消失するという、いわゆる超常磁性
(superparamagnetism)を示す粒子の割合が大きくなって、やはり磁気記録には適さなくなる。
【0015】
以下、本発明の磁性粉を六方晶系フェライトを例にとり、さらに詳しく説明する。六方晶系フェライト磁性粉を作製するにあたっては、この分野で公知のさまざまな方法、たとえば、ガラス結晶化法、共沈法、フラックス法、あるいは水熱合成法などによって製造することができるが、とくにガラス結晶化法は本発明の磁性粉を製造する方法として有効である。
【0016】
さらに、本発明の磁性粉を製造するにあたっては、結晶を析出させ成長させる熱処理の過程を厳密に制御することが非常に重要である。
【0017】
すなわち、本発明の磁性粉を製造するにあたっては第一次結晶化温度(結晶核析出温度)で十分に長い保持時間をとることで核形成を選択的に行い、次に第一次結晶化温度より高い第二次結晶化温度(結晶成長温度)で結晶成長を選択的に行って、所望の粒径に成長させるようにする。また、第一次結晶化温度から第二次結晶化温度への昇温速度が緩やかであるとこの間にも新たな核生成が起こり易いので、第一次結晶化温度から第二次結晶化温度への移行をできる限りすばやく行うことが重要である。第二次結晶化温度への移行に時間がかかる場合には、たとえば従来の一段階の熱処理による製造方法のように、十分に核形成が行われないまま同時に結晶成長が行われてしまうことになり、核形成時の温度の差や成長速度の差が、粒度分布の広がりあるいは微分曲線の片寄りをもたらす結果となるため、好ましくない。
【0018】
上記方法により製造可能な本発明の六方晶系フェライト磁性粉は、たとえば次の組成式
MO・Fe12−xM´18
(ただし、MはCa,Sr,Ba,およびPbから選ばれる少なくとも1種以上の元素を表し、M´は原子数平均価数が3価になるように調節された原子群を表す。)
で表せるものである。
【0019】
本発明において、磁性粉の保磁力は300〜3000 Oeの範囲にあることが望ましい。300 Oe未満では記録減磁が著しく高密度記録に適さず、3000 Oeを超える場合にはこれを十分に磁化するヘッドが現時点ではないので飽和を起こしてしまうため、どちらの場合も好ましくない。
【0020】
保磁力をこのような範囲に制御するために、上記組成式においてFeの一部を適当な金属元素で置換することが望ましい。この際、置換イオンの価数が原子数平均3価になるようにすることが望ましい。M´は原子数平均価数が3価になるように調節された原子群を意味する。たとえばM´の1種として2価金属元素を用いた場合、4価、5価、6価元素を併用して置換元素の価数が原子数平均3価になるように調節する。ここに2価元素として、Mn,Fe,Co,Ni,Cu,Zn,Mg,Cd等が例示され、3価元素としてはSc,Al,Y,Ga,In,Tl,Rh等、4価元素としてはTi,Zr,Hf,Sn,Ge,Τe,Ru等、5価元素としてはV,Nb,Ta,Bi,Sb等、6価元素としてはMo,W等が例示される。
【0021】
本発明の磁性粉の常温での飽和磁化量は40〜75emu/gの範囲にあることが望ましい。40emu/g未満の磁化量では、作製した磁気記録媒体の長波長出力が不足をきたすため、好ましくない。飽和磁化量は大きいほど好ましいが、M型構造であって本発明の粒径範囲の磁性粉では、75emu/gを超える磁化量は達成困難である。
【0022】
本発明において磁性粉は上記の粒径、形状の範囲にあって、かつ比表面積はBEΤ法による値で25〜70m/gの範囲にあることが望ましい。比表面積をこのような数値範囲に限定したのは、比表面積が、媒体製造にあたり磁性塗料調製の際に磁性粒子が樹脂バインダと相互作用する度合いに関連する量であるためである。すなわち25m/g未満では、バインダから受ける抵抗が少なく磁性粉の配向性は向上するものの、磁性塗料中における磁性粉分散安定性の確保が困難となるので、好ましくない。また70m/gを超える場合には、磁性粉の配向性・充填性が低下し高密度記録には適さなくなるので、やはり好ましくない。
【0023】
本発明の磁性粉において、板状比は媒体中の充填性・配向性を勘案すると2〜9であることが望ましく、さらに望ましくは3〜6の範囲にあることである。板状比が大きくなるにしたがって配向性の向上、SFDの狭小化が見られるが、充填性は逆に低下する。作製した磁気記録媒体の再生出力を増大させるためには、磁性粉において充填性の向上、配向性の向上、およびSFDの狭小化という3つの特性のバランスがよいことが重要である。本発明においては、そのような観点から、板状比の望ましい範囲として2〜9、さらに好ましい範囲として3〜6が導かれる。
【0024】
以上、本発明を六方晶系フェライトを例にして説明してきたが、本発明は、六方晶系フェライト磁性粉に限定されるものではなく、Fe、Fe−Co、Fe−Co−Niなどの針状磁性粉に対しても好適に適用可能である。
【0025】
【発明の実施の形態】
以下、本発明を実施例を用いて詳しく説明する。磁性粉としては下記組成式
BaO・Fe12−3(x+y)/2 CoZnNb(x+y)/2 18
で表される六方晶系フェライト磁性粉をとりあげた。
【0026】
実施例1
磁性粉の製造はBaO−Bをガラス母相とするガラス結晶化法によって行った。公知の方法にしたがって上記組成式においてx=0.2、y=0.6とした組成のフェライトの原料成分とガラス母相成分とをよく混合した後、加熱溶融し得られた溶融物を双ロールにて急冷して、非晶質体を作製した。なお、原料混合にあたり母相成分/フェライト成分の質量比は60/40とした。
【0027】
次いで、核形成を主体とする第一次結晶化温度480℃で25時間の熱処理を行い、次いで15℃/分の昇温速度で第二次結晶化温度の760℃にまで昇温させ、760℃で4時間の熱処理を施した。その後、公知の方法にしたがい洗浄処理を施してガラス母相成分を溶解除去して、本発明の磁性粉である六方晶系フェライト粉末を得た。
【0028】
得られた磁性粉末の磁気特性を、VSMを用いて調べたところ、保磁力Hcは1590 Oe、磁化量は55emu/g、SFDは0.7であった。なお、磁性粉末のSFDは、直径4mm、厚み1mmの非磁性セルに粉末を充填して得られる反磁界補正を施さないメイジャーヒステリシスループより求めた値である。同ループから(|ΔH−ΔH|)/Hmを算出したところ、0.06であった。
【0029】
磁性粉末の粒径・形状は、倍率20万倍の透過型電子顕微鏡像より無作為に200個の粒子を選び出してその粒径と板厚みを測定し、それぞれの算術平均を求めた。その結果、平均粒径は30nm、板状比は4であった。なお、BET法
(ガス吸着法)による比表面積の値は、高感度面積計を用いて測定したところ、44m/gであった。
【0030】
次いで、得られた磁性粉の特性を調べるため、下記組成の磁性塗料を調製し、アプリケータを用いてポリエチレンテレフタレートフィルム上に塗布して塗膜を形成した。磁性塗料の調製に際しては、サンドグラインダによって5時間の混練を行った。
【0031】
<磁性塗料組成>
磁性粉末 100質量部
極性基含有ポリウレタン樹脂 5質量部
極性基含有塩化ビニル樹脂 5質量部
溶剤(メチルエチルケトン/シクロヘキサノン/トルエン)300質量部
磁性塗料の塗布後、塗液が乾ききらないうちに塗膜を6kOeの磁界中に塗膜が磁界と平行になるように配置し、磁界内でそのまま自然乾燥させて塗膜に配向処理を施した。
【0032】
そして、得られた配向膜についてVSMを用いて残留磁化量/飽和磁化量の比を求めて、これを配向率としたところ75%であった。この配向した状態の塗膜についてもSFDを測定したところ、0.2であった。
【0033】
実施例2
第二次結晶化温度を800℃に変えた他は実施例1と同様にして、六方晶系フェライト粉末を製造した。得られた磁性粉末について、実施例1と同様にして磁気特性、(|ΔH−ΔH|)/Hm、および粒径・形状を測定し、さらに配向膜を作製して配向率とSFDを測定した。以上の測定結果は、実施例1の測定結果と併せて後出の表1に示されている。
【0034】
実施例3
フェライト組成を、上記組成式においてx=0.1、y=0.7とし、第一次結晶化温度520℃で20時間の熱処理を行い、次いで10℃/分の昇温速度で第二次結晶化温度725℃まで昇温させ、5時間の熱処理を施すようにした他は実施例1と同様にして、六方晶系フェライト粉末を製造した。得られた磁性粉末について、実施例1と同様にして磁気特性、(|ΔH−ΔH|)/Hm、および粒径・形状を測定し、さらに配向膜を作製して配向率とSFDを測定した。以上の測定結果を、後出の表1に示す。
【0035】
実施例4
第二次結晶化温度を830℃に変えた他は実施例3と同様にして、六方晶系フェライト粉末を製造した。得られた磁性粉末について、実施例1と同様にして磁気特性、(|ΔH−ΔH|)/Hm、および粒径・形状を測定し、さらに配向膜を作製して配向率とSFDを測定した。その測定結果を後出の表1に示す。
【0036】
実施例5
実施例1と同じ組成の六方晶系フェライト磁性粉末を共沈法により作製するにあたり、フェライトを構成する元素を含む金属塩溶液を、50℃で当量の2倍量の苛性ソーダの投入により共沈させた。得られた共沈物を炉別したのち水洗して乾燥した後、第一次結晶化温度500℃で30時間の熱処理ののち、20℃/分の昇温速度で第二次結晶化温度780℃まで昇温させ、2時間の熱処理を行った。そして本発明の磁性粉である六方晶系フェライト粉末を得た。得られた磁性粉末について、実施例1と同様にして磁気特性、(|ΔH−ΔH|)/Hm、および粒径・形状を測定し、さらに配向膜を作製して配向率とSFDを測定した。以上の測定結果は、次の表1に示す。
【0037】
【表1】

Figure 0003576332
次に、比較例として、本発明にしたがわない六方晶系フェライト磁性粉末を製造した。得られた磁性粉末についても、実施例1と同様にして特性を評価した。その測定結果を、後出の表2に示した。
【0038】
比較例1
480℃で25時間の第一次結晶化工程を省略した他は実施例1と同様にして、六方晶系フェライト粉末を得た。
【0039】
比較例2
520℃で20時間の第一次結晶化工程を省略した他は実施例3と同様にして、六方晶系フェライト粉末を得た。
【0040】
比較例3
500℃で30時間の第一次熱処理工程を省略した他は実施例5と同様にして、六方晶系フェライト粉末を得た。
【0041】
【表2】
Figure 0003576332
表1および表2の比較からも明らかなように、磁化曲線の微分曲線の対称性にすぐれSFDが小さい本発明の磁性粉は、飽和磁化も大きく磁性膜形成時の配向率も高く、高密度の磁気記録に適している。
【0042】
【発明の効果】
以上説明したように、本発明の磁性粉は微粒子でありながらSFDの値が小さく、しかも保磁力分布の対称性が良好というすぐれた磁気特性を有している。それゆえ、高記録密度用の塗布型媒体を作製するための磁性粉に、好適である。
【0043】[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic powder suitable for a coated magnetic recording medium capable of high-density recording and reproduction.
[0002]
[Prior art]
With the rapid progress of the information-oriented society, the demand for higher recording density of magnetic recording is increasing more and more, and the demand for short-wavelength recording / reproduction is also increasing in the field of coating type magnetic recording media. For the purpose of increasing the linear recording density of a magnetic recording medium to meet these demands, for example, a magnetic material used as a magnetic powder has a smaller particle size, a larger coercive force, and a width of magnetization reversal distribution. (Switching field distribution: hereafter abbreviated as SFD), and development has been made in such a direction as to minimize recording demagnetization. At present, for example, in hexagonal ferrite, magnetic powder that is finely divided to a particle size of about 300 nm to about several tens of nm is frequently used. However, although short-wavelength output and improvement in S / N ratio have been observed in a magnetic recording medium manufactured using a magnetic material whose particle size has been reduced, it is still not sufficient. Therefore, there is a demand for fine-particle magnetic powder having not only a small particle size but also excellent magnetic properties.
[0003]
The SFD means that a magnetic field is applied to a magnetic powder to measure a residual magnetization (σr) of the magnetic powder to prepare a magnetization curve, and a half value width ΔH of a differential curve (dσ / dH) in the magnetization curve of the second quadrant is determined by this magnetic field. It is defined as the value divided by the coercive force Hc of the powder, and represents the gradient of the magnetization curve near the coercive force Hc. This SFD is known as a parameter indicating the spread of the coercive force distribution of the magnetic powder, and it is generally said that the smaller this value is, the longer the short wavelength characteristic is.
[0004]
[Problems to be solved by the invention]
By the way, it has been found that as the magnetic material becomes finer, if the particle size of a hexagonal ferrite or the like is reduced to a particle size of 40 nm or less, the value of SFD significantly increases. Furthermore, when a magnetic paint is prepared using this type of magnetic powder, which has been made finer, and a magnetic film is formed by coating, the orientation is higher than when a magnetic powder having a conventional particle size is used. -It became clear that the filling property was inferior. As a result, inconveniences such as a decrease in the amount of saturation magnetization / remaining magnetization and deterioration of the SFD characteristics have occurred. Therefore, when a magnetic recording medium is manufactured, although a reduction in noise is recognized, a reduction in the reproduction output is remarkable, and the gain of improving the S / N has not yet been achieved.
[0005]
The present invention has been made in order to solve such inconveniences associated with the micronization of magnetic powder and to cope with high-density recording, and to provide a magnetic powder having a small SFD and suitable for high-density recording and reproduction. That is the purpose.
[0006]
[Means for Solving the Problems]
As a result of intensive studies for the above purpose, the cause of the above-mentioned inconvenience is that the magnetic powder obtained by micronization has a wide particle size distribution and departs from the normal distribution form and lacks symmetry. It was speculated that the width of the coercive force distribution would be widened and offset.
[0007]
Then, as a method of expressing whether or not the coercive force distribution of the magnetic powder is balanced, the SFD, that is, the half value width of the differential curve (dσ / dH) in the magnetization curve of the second quadrant of the magnetic powder is determined. The numerical value defined as the value divided by the magnetic force Hc is used as an index, and a numerical value representing the symmetry of the shape near the apex of the differential curve is introduced as the index. By defining the characteristics of the magnetic powder with these two indices, the spread of the SFD can be suppressed, and the magnetic powder suitable for high-density recording and reproduction can be obtained without impairing the filling property and orientation in the coating film. I got it.
[0008]
That is, the hexagonal ferrite magnetic powder for magnetic recording of the present invention has a composition formula of MO.Fe 12-x M ′ x O 18 (where M represents at least one or more elements selected from Ca, Sr, Ba, and Pb, and M ′ represents an atomic group adjusted so that the average number of atoms is three. A) a hexagonal ferrite magnetic powder for magnetic recording, represented by the formula (1), having an average particle size of 20 to 100 nm, a plate-like ratio of 2 to 9 and a specific surface area of 25 to 70 m 2 / g by BEB method. When the half width ΔH of the differential curve (dσ / dH) of the second quadrant in the magnetization curve of the magnetic powder is divided into two by a perpendicular from the apex, the following two equations (| ΔH1−ΔH2 |) / Hm ≦ 0.12
ΔH / Hm = (ΔH1 + ΔH2) /Hm≦1.2
(However, ΔH1 represents the low magnetic field side of ΔH divided into two, ΔH2 represents the high magnetic field side, and Hm represents the magnetic field that gives the maximum differential coefficient.)
[0009]
In the present invention, (| ΔH 1 −ΔH 2 |) / Hm is preferably 0.12 or less, more preferably 0.1 or less. An increase in the value of (| ΔH 1 −ΔH 2 |) / Hm indicates that the asymmetry of the differential curve (dσ / dH) increases.
[0010]
In the case of ΔH 1 > ΔH 2 , when the peak area of the differential curve is divided into a low magnetic field side including ΔH 1 and a high magnetic field side including ΔH 2 , the low magnetic field side becomes large. At this time, when the value of (| ΔH 1 −ΔH 2 |) / Hm exceeds 0.12, the ratio of the particles having a low coercive force, that is, the ratio of the soft magnetic particles is large as compared with the average coercive force of the magnetic powder. This is not preferable because it causes problems such as excessive recording and difficulty in holding records.
[0011]
On the other hand, when (| ΔH 1 −ΔH 2 |) / Hm exceeds 0.12 in the case of ΔH 1 <ΔH 2 , the high magnetic field side of the differential curve increases. In this case, the ratio of particles having a large coercive force becomes too large as compared with the coercive force of the magnetic powder.
[0012]
The smaller the SFD of the magnetic powder represented by ΔH / Hm, that is, (ΔH 1 + ΔH 2 ) / Hm, the better, and it is desirable in the present invention to be 1.2 or less, preferably 1.0 or less. If the SFD value exceeds 1.2, the distribution of Hc is too wide, and the short-wavelength characteristics required for higher recording density are impaired.
[0013]
Note that the values of ΔH, ΔH 1 , ΔH 2 , and Hm of the magnetic powder described above are VSM
(Vibration sample type magnetization measurement device) or the like.
[0014]
In the present invention, the average particle size of the magnetic powder is preferably in the range of 20 to 100 nm, more preferably in the range of 20 to 60 nm. It has been confirmed that when the average particle diameter exceeds 100 nm, the particle size distribution is too wide and the noise component increases when a medium is manufactured, which is not suitable for the high-density recording intended by the present invention. When the average particle diameter is 20 nm or less, the proportion of particles exhibiting so-called superparamagnetism, in which the magnetic moment deviates from the magnetization stable axis due to thermal oscillation and continually loses the coercive force due to the small particle volume, is reduced. It becomes too large for magnetic recording.
[0015]
Hereinafter, the magnetic powder of the present invention will be described in more detail by taking hexagonal ferrite as an example. In preparing the hexagonal ferrite magnetic powder, it can be produced by various methods known in the art, for example, a glass crystallization method, a coprecipitation method, a flux method, or a hydrothermal synthesis method. The glass crystallization method is effective as a method for producing the magnetic powder of the present invention.
[0016]
Further, in producing the magnetic powder of the present invention, it is very important to strictly control the heat treatment process for precipitating and growing crystals.
[0017]
That is, in producing the magnetic powder of the present invention, nucleation is selectively performed by taking a sufficiently long holding time at the primary crystallization temperature (crystal nucleus precipitation temperature), and then the primary crystallization temperature is reduced. Crystal growth is performed selectively at a higher secondary crystallization temperature (crystal growth temperature) so as to grow to a desired grain size. Also, if the rate of temperature rise from the primary crystallization temperature to the secondary crystallization temperature is slow, new nucleation is likely to occur during this time, so the primary crystallization temperature is reduced to the secondary crystallization temperature. It is important to make the transition to as soon as possible. If it takes time to shift to the secondary crystallization temperature, for example, as in a conventional manufacturing method using a one-step heat treatment, crystal growth is performed simultaneously without sufficient nucleation. Therefore, a difference in temperature and a difference in growth rate at the time of nucleation are not preferable because they result in broadening of the particle size distribution or deviation of the differential curve.
[0018]
Hexagonal ferrite magnetic powders capable of manufacturing the present invention by the above method, for example, the following composition formula MO · Fe 12-x M'x O 18
(However, M represents at least one or more elements selected from Ca, Sr, Ba, and Pb, and M ′ represents an atomic group adjusted so that the average number of valences becomes trivalent.)
It can be expressed by
[0019]
In the present invention, the coercive force of the magnetic powder is desirably in the range of 300 to 3000 Oe. If it is less than 300 Oe, recording demagnetization is remarkably unsuitable for high-density recording, and if it exceeds 3000 Oe, since a head for sufficiently magnetizing this is not present, saturation occurs, and both cases are not preferable.
[0020]
In order to control the coercive force in such a range, it is desirable to replace a part of Fe with an appropriate metal element in the above composition formula. At this time, it is desirable that the valence of the substituted ion is trivalent on average. M ′ means an atomic group adjusted so that the average valence of atoms becomes trivalent. For example, when a divalent metal element is used as one kind of M ′, tetravalent, pentavalent, and hexavalent elements are used in combination so that the valence of the substitution element is adjusted so that the average number of atoms is trivalent. Here, examples of the divalent element include Mn, Fe, Co, Ni, Cu, Zn, Mg, and Cd, and examples of the trivalent element include Sc, Al, Y, Ga, In, Tl, and Rh. Examples thereof include Ti, Zr, Hf, Sn, Ge, Τe, and Ru, and pentavalent elements such as V, Nb, Ta, Bi, and Sb, and hexavalent elements such as Mo and W.
[0021]
The saturation magnetization of the magnetic powder of the present invention at room temperature is preferably in the range of 40 to 75 emu / g. If the amount of magnetization is less than 40 emu / g, the long-wavelength output of the manufactured magnetic recording medium becomes insufficient, which is not preferable. The larger the saturation magnetization is, the more preferable. However, it is difficult to achieve the magnetization exceeding 75 emu / g with the magnetic powder having the M-type structure and the particle size range of the present invention.
[0022]
In the present invention, it is desirable that the magnetic powder is in the above-mentioned range of particle size and shape, and that the specific surface area is in the range of 25 to 70 m 2 / g as determined by the BEΤ method. The specific surface area is limited to such a numerical range because the specific surface area is an amount related to the degree to which the magnetic particles interact with the resin binder during the preparation of the magnetic paint in the production of the medium. In other words, if it is less than 25 m 2 / g, although the resistance received from the binder is small and the orientation of the magnetic powder is improved, it is difficult to secure the dispersion stability of the magnetic powder in the magnetic paint. On the other hand, if it exceeds 70 m 2 / g, the orientation and filling properties of the magnetic powder are reduced, and the magnetic powder is not suitable for high-density recording.
[0023]
In the magnetic powder of the present invention, the plate ratio is preferably 2 to 9 in consideration of the filling property and orientation in the medium, and more preferably 3 to 6. As the plate ratio increases, the orientation is improved and the SFD is narrowed, but the fillability is reduced. In order to increase the reproduction output of the manufactured magnetic recording medium, it is important that the magnetic powder has a good balance of the three characteristics of improving the filling property, improving the orientation, and narrowing the SFD. In the present invention, from such a viewpoint, a desirable range of the plate ratio is 2 to 9, and a more preferable range is 3 to 6.
[0024]
As described above, the present invention has been described using hexagonal ferrite as an example. However, the present invention is not limited to hexagonal ferrite magnetic powder, and needles such as Fe, Fe-Co, Fe-Co-Ni, etc. The present invention can also be suitably applied to magnetic powders in the form of particles.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples. As the magnetic powder, the following composition formula: BaO · Fe 12-3 (x + y) / 2 Co x Zn y Nb (x + y) / 2 O 18
Hexagonal ferrite magnetic powder represented by
[0026]
Example 1
Manufacture of magnetic powder of BaO-B 2 O 3 was carried out by the glass crystallization method and the glass matrix. According to a known method, a raw material component of ferrite having a composition in which x = 0.2 and y = 0.6 in the above composition formula is well mixed with a glass matrix component, and the melt obtained by heating and melting is mixed. It was quenched with a roll to produce an amorphous body. In addition, in mixing the raw materials, the mass ratio of the matrix component / ferrite component was set to 60/40.
[0027]
Next, heat treatment is performed at a primary crystallization temperature of 480 ° C for 25 hours mainly for nucleation, and then the temperature is increased to 760 ° C of a second crystallization temperature at a heating rate of 15 ° C / min. Heat treatment was performed at 4 ° C. for 4 hours. Thereafter, a washing process was performed according to a known method to dissolve and remove the glass matrix component, thereby obtaining a hexagonal ferrite powder as the magnetic powder of the present invention.
[0028]
When the magnetic properties of the obtained magnetic powder were examined using VSM, the coercive force Hc was 1590 Oe, the magnetization was 55 emu / g, and the SFD was 0.7. The SFD of the magnetic powder is a value obtained from a major hysteresis loop obtained by filling a non-magnetic cell having a diameter of 4 mm and a thickness of 1 mm with the powder and not performing demagnetization correction. When (| ΔH 1 −ΔH 2 |) / Hm was calculated from the same loop, it was 0.06.
[0029]
As for the particle diameter and shape of the magnetic powder, 200 particles were randomly selected from a transmission electron microscope image at a magnification of 200,000, their particle diameter and plate thickness were measured, and the arithmetic average of each was obtained. As a result, the average particle size was 30 nm, and the plate ratio was 4. In addition, the value of the specific surface area by the BET method (gas adsorption method) was 44 m 2 / g when measured using a high-sensitivity area meter.
[0030]
Next, in order to examine the characteristics of the obtained magnetic powder, a magnetic paint having the following composition was prepared and applied to a polyethylene terephthalate film using an applicator to form a coating film. In preparing the magnetic paint, kneading was performed for 5 hours using a sand grinder.
[0031]
<Magnetic paint composition>
Magnetic powder 100 parts by mass Polar group-containing polyurethane resin 5 parts by mass Polar group-containing vinyl chloride resin 5 parts by mass Solvent (methyl ethyl ketone / cyclohexanone / toluene) 300 parts by mass After applying the magnetic paint, apply the coating before the coating liquid is completely dried. The coating film was arranged in a magnetic field of 6 kOe so as to be parallel to the magnetic field, air-dried as it was in the magnetic field, and subjected to an orientation treatment.
[0032]
Then, the ratio of residual magnetization amount / saturation magnetization amount was determined for the obtained alignment film using VSM, and the ratio was 75% when the ratio was determined as the orientation ratio. The SFD of the coated film in this oriented state was 0.2.
[0033]
Example 2
A hexagonal ferrite powder was produced in the same manner as in Example 1 except that the secondary crystallization temperature was changed to 800 ° C. The magnetic properties, (| ΔH 1 −ΔH 2 |) / Hm, and the particle size and shape of the obtained magnetic powder were measured in the same manner as in Example 1, and an orientation film was prepared to determine the orientation ratio and SFD. It was measured. The above measurement results are shown in Table 1 below together with the measurement results of Example 1.
[0034]
Example 3
The ferrite composition is set to x = 0.1 and y = 0.7 in the above composition formula, and heat treatment is performed at a primary crystallization temperature of 520 ° C. for 20 hours, and then at a rate of 10 ° C./min. A hexagonal ferrite powder was produced in the same manner as in Example 1 except that the crystallization temperature was raised to 725 ° C. and the heat treatment was performed for 5 hours. The magnetic properties, (| ΔH 1 −ΔH 2 |) / Hm, and the particle size and shape of the obtained magnetic powder were measured in the same manner as in Example 1, and an orientation film was prepared to determine the orientation ratio and SFD. It was measured. The above measurement results are shown in Table 1 below.
[0035]
Example 4
A hexagonal ferrite powder was produced in the same manner as in Example 3 except that the secondary crystallization temperature was changed to 830 ° C. The magnetic properties, (| ΔH 1 −ΔH 2 |) / Hm, and the particle size and shape of the obtained magnetic powder were measured in the same manner as in Example 1, and an orientation film was prepared to determine the orientation ratio and SFD. It was measured. The measurement results are shown in Table 1 below.
[0036]
Example 5
In preparing a hexagonal ferrite magnetic powder having the same composition as in Example 1 by a coprecipitation method, a metal salt solution containing an element constituting ferrite was coprecipitated at 50 ° C. by charging twice the equivalent of caustic soda. Was. The obtained coprecipitate was filtered off, washed with water and dried. After a heat treatment at a primary crystallization temperature of 500 ° C. for 30 hours, a secondary crystallization temperature of 780 was increased at a rate of 20 ° C./min. C., and heat-treated for 2 hours. Then, a hexagonal ferrite powder as the magnetic powder of the present invention was obtained. The magnetic properties, (| ΔH 1 −ΔH 2 |) / Hm, and the particle size and shape of the obtained magnetic powder were measured in the same manner as in Example 1, and an orientation film was prepared to determine the orientation ratio and SFD. It was measured. The above measurement results are shown in Table 1 below.
[0037]
[Table 1]
Figure 0003576332
Next, as a comparative example, a hexagonal ferrite magnetic powder not according to the present invention was manufactured. The properties of the obtained magnetic powder were evaluated in the same manner as in Example 1. The measurement results are shown in Table 2 below.
[0038]
Comparative Example 1
A hexagonal ferrite powder was obtained in the same manner as in Example 1 except that the primary crystallization step at 480 ° C. for 25 hours was omitted.
[0039]
Comparative Example 2
A hexagonal ferrite powder was obtained in the same manner as in Example 3, except that the primary crystallization step at 520 ° C. for 20 hours was omitted.
[0040]
Comparative Example 3
A hexagonal ferrite powder was obtained in the same manner as in Example 5, except that the first heat treatment step at 500 ° C. for 30 hours was omitted.
[0041]
[Table 2]
Figure 0003576332
As is clear from the comparison between Tables 1 and 2, the magnetic powder of the present invention having excellent symmetry of the differential curve of the magnetization curve and small SFD has a large saturation magnetization, a high orientation ratio at the time of forming a magnetic film, and a high density. Suitable for magnetic recording.
[0042]
【The invention's effect】
As described above, the magnetic powder of the present invention has excellent magnetic properties such as a small SFD value and good symmetry of the coercive force distribution despite being fine particles. Therefore, it is suitable for a magnetic powder for producing a coating medium for high recording density.
[0043]

Claims (1)

組成式MO・Fe 12−x M´ 18 (ただし、MはCa,Sr,Ba,およびPbから選ばれる少なくとも1種以上の元素を表し、M´は原子数平均価数が3価になるように調節された原子群を表す。)で表される磁気記録用六方晶系フェライト磁性粉であって、
平均粒径が20〜100nmであり、
板状比が2〜9であり、
BEΤ法による比表面積が25〜70m /gであり、
この磁性粉の磁化曲線における第2象限の微分曲線(dσ/dH)の半値幅ΔHを頂点からの垂線で2分割したとき、下記の2式
(|ΔH1 −ΔH2 |)/Hm≦0.12
ΔH/Hm=(ΔH1 +ΔH2 )/Hm≦1.2
(ただし、ΔH1 は2分割されたΔHの低磁場側、ΔH2 は同じく高磁場側を表し、Hmは最大微係数を与える磁界を表す。)をともに満たすことを特徴とする磁気記録用六方晶系フェライト磁性粉。
Composition formula MO · Fe 12-x M ′ x O 18 (where M represents at least one or more elements selected from Ca, Sr, Ba, and Pb, and M ′ represents an atomic group adjusted so that the average number of atoms is three. A) hexagonal ferrite magnetic powder for magnetic recording represented by
Average particle size is 20 to 100 nm,
The plate ratio is 2 to 9,
The specific surface area by BEΤ method is 25 to 70 m 2 / g,
When the half width ΔH of the differential curve (dσ / dH) of the second quadrant in the magnetization curve of the magnetic powder is divided into two by a perpendicular line from the apex, the following two equations (| ΔH1−ΔH2 |) /Hm≦0.12
ΔH / Hm = (ΔH1 + ΔH2) /Hm≦1.2
(However, .DELTA.H1 the two divided downfield [Delta] H, [Delta] H2 is also represents a high magnetic field side, Hm represents the magnetic field that gives the maximum differential coefficient.) The magnetic recording hexagonal and satisfies the both Ferrite magnetic powder.
JP24182796A 1996-09-12 1996-09-12 Magnetic powder for magnetic recording Expired - Lifetime JP3576332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24182796A JP3576332B2 (en) 1996-09-12 1996-09-12 Magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24182796A JP3576332B2 (en) 1996-09-12 1996-09-12 Magnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPH1092620A JPH1092620A (en) 1998-04-10
JP3576332B2 true JP3576332B2 (en) 2004-10-13

Family

ID=17080092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24182796A Expired - Lifetime JP3576332B2 (en) 1996-09-12 1996-09-12 Magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JP3576332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801956B2 (en) 2009-10-20 2014-08-12 Dowa Electronics Materials Co., Ltd. Hexagonal crystal ferrite magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium using the powder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022517A (en) * 2001-07-11 2003-01-24 Dowa Mining Co Ltd Ferrite magnetic powder for magnetic card
JP4530733B2 (en) * 2004-06-21 2010-08-25 富士フイルム株式会社 Hexagonal ferrite magnetic powder, method for producing the same, and magnetic recording medium
JP4644535B2 (en) 2004-06-21 2011-03-02 富士フイルム株式会社 Method for producing hexagonal ferrite magnetic powder and method for producing magnetic recording medium
JP2021125661A (en) * 2020-02-10 2021-08-30 Dowaエレクトロニクス株式会社 Magnetic powder of magnetoplumbite type hexagonal ferrite and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801956B2 (en) 2009-10-20 2014-08-12 Dowa Electronics Materials Co., Ltd. Hexagonal crystal ferrite magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium using the powder

Also Published As

Publication number Publication date
JPH1092620A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
JP5284707B2 (en) Method for producing hexagonal ferrite magnetic powder, magnetic recording medium and method for producing the same
JPH07101495B2 (en) Magnetic recording medium
JP5502357B2 (en) Method for producing hexagonal ferrite magnetic powder and method for producing magnetic recording medium
JP3576332B2 (en) Magnetic powder for magnetic recording
EP0247681B1 (en) Magnetic material, magnetic recording medium, and method of manufacturing a magnetic material
JP3862088B2 (en) Spinel ferrimagnetic powder and magnetic recording medium
US5576114A (en) High density magnetic recording medium containing hexagonal system ferrite powder
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPS61136923A (en) Hexagonal ferrite magnetic body for magnetic recording and its manufacture
JP2003006830A (en) Magnetic recording medium and its production method
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JPH1092618A (en) Hexagonal ferrite magnetic powder and its manufacture
JP5712595B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5403242B2 (en) Hexagonal ferrite particles for magnetic recording media
JPH09213513A (en) Magnetic powder of hexagonal system ferrite
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
JP3897347B2 (en) Spinel-type ferrimagnetic fine particle powder comprising Fe-Co-Ni and method for producing the same
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS616127A (en) Manufacture of cobalt-containing isotropic magnetic iron oxide
JP3654917B2 (en) Method of manufacturing magnetic recording medium using hexagonal ferrite powder
JPH09115728A (en) Compound hexagonal system ferrite magnetic powder and its manufacture
JP2735281B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6355122A (en) Magnetic powder
JP2807278B2 (en) Method for producing magnetic powder for magnetic recording medium
KR960000502B1 (en) Manufacturing method of hexagonal ferrite fine powder for magnetic recording

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term