JP3251753B2 - Method for producing Ba ferrite magnetic powder - Google Patents
Method for producing Ba ferrite magnetic powderInfo
- Publication number
- JP3251753B2 JP3251753B2 JP33569393A JP33569393A JP3251753B2 JP 3251753 B2 JP3251753 B2 JP 3251753B2 JP 33569393 A JP33569393 A JP 33569393A JP 33569393 A JP33569393 A JP 33569393A JP 3251753 B2 JP3251753 B2 JP 3251753B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic powder
- hexagonal ferrite
- fine particles
- glass
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compounds Of Iron (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高密度磁気記録、高性
能永久磁石、磁気繊維用に適用可能な六方晶系フェライ
トの微粒子の製造方法に関するものであり、とりわけ高
密度磁気記録用材料として好適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hexagonal ferrite fine particles applicable to high-density magnetic recording, high-performance permanent magnets, and magnetic fibers. It is suitable.
【0002】[0002]
【従来の技術】六方晶系フェライト磁性粉は、高密度磁
気記録、高性能永久磁石、磁気繊維用材料として用いら
れる。とくに近年、磁気記録の分野では、Baフェライ
トに代表される六方晶系フェライトの微粒子磁性粉を塗
布した垂直配向媒体が注目されている。この六方晶系フ
ェライトは板状結晶であり、板面に垂直方向に磁化容易
軸を有するため、垂直配向媒体の作製が可能となり、こ
れを用いて得られる磁気記録媒体は針状磁性粉を用いた
従来媒体にくらべて短波長領域で高い出力で得られると
いう特徴がある。このような高密度磁気記録用磁性粉の
製造方法としては、ガラス結晶化法、水熱合成法、共沈
フラックス法などがよく知られるが、広範囲な粒径、形
状制御が可能なガラス結晶化法が特に好ましい。2. Description of the Related Art Hexagonal ferrite magnetic powder is used as a material for high-density magnetic recording, high-performance permanent magnets, and magnetic fibers. In particular, in recent years, in the field of magnetic recording, a perpendicularly oriented medium coated with fine magnetic powder of hexagonal ferrite represented by Ba ferrite has attracted attention. This hexagonal ferrite is a plate-like crystal and has an easy axis of magnetization in the direction perpendicular to the plate surface, so that it is possible to produce a perpendicularly-oriented medium. Compared with the conventional medium, there is a feature that a higher output can be obtained in a short wavelength region. As a method of producing such magnetic powder for high-density magnetic recording, a glass crystallization method, a hydrothermal synthesis method, a coprecipitation flux method, and the like are well known. The method is particularly preferred.
【0003】このガラス結晶化法のプロセスは、まずガ
ラス形成物質と、六方晶系フェライト成分を混合したの
ち、高温にて溶融し、その溶融物を急冷することにより
非晶質体を作製する。ついでその非晶体をガラス転移点
以上の温度で熱処理することにより、その非晶質体中に
六方晶系フェライトの微粒子を結晶化させる。そして最
後に六方晶系フェライト以外のガラス成分を、たとえば
酢酸、塩酸などの薄い溶液で選択除去することにより、
六方晶系フェライト微粒子のみを抽出した。In the glass crystallization process, first, a glass forming substance and a hexagonal ferrite component are mixed, then melted at a high temperature, and the melt is rapidly cooled to produce an amorphous body. Then, the amorphous body is heat-treated at a temperature equal to or higher than the glass transition point to crystallize hexagonal ferrite fine particles in the amorphous body. And finally, by selectively removing glass components other than hexagonal ferrite with a thin solution such as acetic acid or hydrochloric acid,
Only hexagonal ferrite fine particles were extracted.
【0004】[0004]
【発明が解決しようとする課題】ところで最近の塗布型
媒体においては、短波長特性を改善し高密度記録を達成
するため、微粒子化が一般的傾向である。また最近記録
密度を向上させるためには磁性粉のSFDrが小さいこ
とが重要であることも明らかになりつつある。ここでS
FDrとは残留磁化曲線(remanence magnetization)の
微分曲線における半値幅を残留保磁力Hrで除したもの
で、従来よく用いられてきたSFD(swithcing field
distribution)よりもより実際の記録再生過程を反映し
たもので、物理的には粒子集合体の非可逆的磁化反転分
布に対応するものと解釈される。By the way, in recent coating-type media, in order to improve short wavelength characteristics and achieve high-density recording, there is a general tendency to form fine particles. Recently, it is becoming clear that it is important that the SFDr of the magnetic powder is small in order to improve the recording density. Where S
The FDr is a value obtained by dividing a half-value width in a differential curve of a remanence magnetization curve by a remanent coercive force Hr, and an SFD (swithcing field) which has been often used conventionally.
distribution) rather than the actual recording / reproducing process, and physically interpreted as corresponding to the irreversible magnetization reversal distribution of the particle aggregate.
【0005】ところでこれまでのガラス結晶化法におい
ては、一般に微粒子化にともない磁性粉の飽和磁化が小
さくなりまた角型比も理論値0.5よりも大幅に小さく
なるという欠点があった。さらにはまた高密度記録特性
に関する重要なパラメータであるSHDrの値が微粒子
化にともない大きくなるなどの問題点があった。このた
め微粒子化は記録密度の向上において必須の条件にも関
わらず、媒体の出力特性を向上させる要因と劣化させる
要因が拮抗することにより微粒子化による短波長特性の
向上が期待ほど大きくならないのが実状であった。本発
明はこの点に鑑みてなされたものであって、ガラス結晶
化法において微粒子でありながら、十分な飽和磁化およ
び角型比を有しかつSHDrの小さい六方晶系フェライ
ト磁性粉を提供することを目的とする。However, the conventional glass crystallization method has the disadvantage that the saturation magnetization of the magnetic powder generally becomes smaller as the particle size becomes smaller and the squareness ratio becomes much smaller than the theoretical value of 0.5. Further, there is a problem that the value of SHDr, which is an important parameter relating to the high-density recording characteristics, increases with finer particles. For this reason, despite the indispensable conditions for improving the recording density, the improvement in the short-wavelength characteristics due to the atomization is not as great as expected because the factors that improve the output characteristics of the medium and the factors that deteriorate the media are opposed. It was actual. The present invention has been made in view of this point, and it is an object of the present invention to provide a hexagonal ferrite magnetic powder which has sufficient saturation magnetization and squareness ratio and has a small SHDr while being fine particles in a glass crystallization method. With the goal.
【0006】[0006]
【課題を解決するための手段】このガラス結晶化法にお
いて、目的とする六方晶系フェライト微粒子を得るため
には、各種製造条件たとえば原料の溶融、急冷、結晶化
工程などの精密な制御が必要である。本発明者らは、こ
のような微粒子でかつ特性の良好な六方晶系フェライト
磁性粉を得るために鋭意検討した結果、溶融、急冷化工
程で得られるガラスにおいて特にその磁気特性が重要で
あり、その値を所定の範囲に制御することにより、上記
特性を満足する磁性粉が得られることを見いだし本発明
に至った。In this glass crystallization method, in order to obtain desired hexagonal ferrite fine particles, precise control of various production conditions such as melting, quenching, and crystallization steps of raw materials is required. It is. The present inventors have conducted intensive studies to obtain hexagonal ferrite magnetic powder having such fine particles and good characteristics, and as a result, the magnetic properties of the glass obtained in the melting and quenching process are particularly important. By controlling the value within a predetermined range, it has been found that a magnetic powder satisfying the above characteristics can be obtained, and the present invention has been achieved.
【0007】すなわち本発明はガラス形成物質と六方晶
系フェライト成分の原料混合物を溶融し、その溶融物を
急冷して非晶質体を作成した後、その非晶質体をガラス
転移点以上の温度で熱処理することにより、その中に六
方晶系フェライト微粒子を結晶化させた後、その六方晶
系フェライト微粒子以外の成分を除去することを特徴と
するガラス結晶化法において、上記非晶質体の磁化を
0.1emu/g 〜2emu/gの範囲に制御することを特徴と
する。飽和磁化は磁場10kOe でVSM値である。非晶
質体の飽和磁化が0.1emu/g 以下の場合には、得られ
る磁性粉は本発明に比較し、微粒子化が困難であると同
時に、特に角型比および飽和磁化の値が一般に小さい傾
向にある。結晶化温度の調整により微粒子化は可能であ
るが、磁気特性はさらに劣化する。That is, according to the present invention, a raw material mixture of a glass-forming substance and a hexagonal ferrite component is melted, and the melt is quenched to form an amorphous body. A heat treatment at a temperature to crystallize the hexagonal ferrite fine particles therein, and then removing components other than the hexagonal ferrite fine particles, wherein the glass crystallization method comprises the steps of: Is controlled in the range of 0.1 emu / g to 2 emu / g. The saturation magnetization is a VSM value at a magnetic field of 10 kOe. When the saturation magnetization of the amorphous body is 0.1 emu / g or less, the obtained magnetic powder is more difficult to make finer than the present invention, and at the same time, in particular, the squareness ratio and the value of the saturation magnetization are generally low. It tends to be small. Fine particles can be formed by adjusting the crystallization temperature, but the magnetic properties are further deteriorated.
【0008】一方、非晶質体の磁化の値が2emu/g より
大きい場合も、本発明ほど微粒子化が容易ではなく、特
にSFDr値が大きくなる傾向にある。この場合も結晶
化温度の調整による微粒子化を実現すると、磁気特性は
さらに劣化する。非晶質体の磁化が上記範囲に制御され
ることにより、良好な微粒子磁性粉が得られる理由は必
ずしも明らかではないが、上記磁化が0.1emu/g より
小さい領域では、おそらく各元素がイオンとしてガラス
の中で完全に活性化しておらず、2emu/g を越える場合
にはガラスとしての無秩序状態の中にミクロな秩序状態
が生じており均一な結晶核の生成を阻害しているためと
考えられる。本発明を実現するためには、ガラス組成、
溶融、急冷化工程の最適な組み合わせが重要であり、夫
々の工程の最適条件が一義的に決まるわけではない。本
発明では、作製したガラスの磁性をモニターしこれを上
記範囲に制御することにより優れた磁気特性を有する微
粒子磁性粉が得られるのである。On the other hand, when the value of magnetization of the amorphous material is larger than 2 emu / g, it is not as easy to form fine particles as in the present invention, and particularly, the SFDr value tends to increase. Also in this case, when the fine particles are realized by adjusting the crystallization temperature, the magnetic characteristics are further deteriorated. It is not always clear why good magnetic powder is obtained by controlling the magnetization of the amorphous body to the above range, but in the region where the magnetization is smaller than 0.1 emu / g, each element is probably an ion. When it is not completely activated in the glass and exceeds 2 emu / g, a micro-ordered state is generated in the disordered state of the glass, which inhibits the formation of uniform crystal nuclei. Conceivable. In order to realize the present invention, a glass composition,
The optimal combination of the melting and quenching steps is important, and the optimal conditions for each step are not uniquely determined. In the present invention, by monitoring the magnetism of the produced glass and controlling it in the above range, a fine particle magnetic powder having excellent magnetic properties can be obtained.
【0009】本発明において、磁性粉としては、M型の
BaFe12019、W型のBaMe2 Fe16027
(なおMeは金属元素を示す。)、あるいはそれらの原
子の一部が他の元素で置換された六方晶系フェライトも
しくはM型とW型の複合粉、M型とスピネルの複合型六
方晶フェライトなどがあげられ、六方晶系フェライトを
構成する基本成分は、BaO、SrO、CaO、PbO
から選ばれた少なくとも一種とFe2 O3 であり、また
保磁力制御あるいは飽和磁化などの特性のための成分と
してはCo、Ni、Cu、Zn、Ti、Mg、Nb、S
n、Zr、V、Cr、Mo、Al、Ge、Wから選ばれ
た少なくとも一種があげられる。In the present invention, the magnetic powder includes M-type BaFe12019 and W-type BaMe 2 Fe16027.
(Note that Me represents a metal element.) Or hexagonal ferrite in which some of those atoms are substituted by another element, or composite powder of M and W, or composite hexagonal ferrite of M and spinel The basic components constituting the hexagonal ferrite are BaO, SrO, CaO, and PbO.
And at least one selected from the group consisting of Fe 2 O 3 and Co, Ni, Cu, Zn, Ti, Mg, Nb, and Sb as components for controlling coercive force or saturation magnetization.
At least one selected from n, Zr, V, Cr, Mo, Al, Ge, and W is given.
【0010】なかでも六方晶系フェライトとしては、A
O・n(Fe12−x−yM1xM2yO19−a)
(式中、AはBa、Sr、Caから選ばれる少なくとも
一種の元素、M1は2価から選ばれる少なくとも一種の
元素、M2は4−6価から選ばれる少なくとも一種の元
素、aは〔x+(3−m)y〕/2(なおmはM2の平
均原子価)で示され、nは0.8以上3以下の数、xあ
るいはyは少なくとも0以上で、x、yは夫々3および
2以下の数)で示されるのが好ましい。そして特にM1
としてはCo、Zn、Niから選択される少なくとも一
種の元素を用いることが効果的である。Of the hexagonal ferrites, A
On (Fe12-x-yM1xM2yO19-a)
(Where A is at least one element selected from Ba, Sr, and Ca, M1 is at least one element selected from divalent, M2 is at least one element selected from 4-6, and a is [x + ( 3-m) y] / 2 (where m is the average valence of M2), n is a number from 0.8 to 3, x or y is at least 0, and x and y are 3 and 2 respectively. The following numbers are preferred. And especially M1
It is effective to use at least one element selected from Co, Zn, and Ni.
【0011】本発明における磁性粉の用途は前述のとお
り広範なものであるが、特に磁気記録媒体に用いる場合
は、磁気的に安定であることが要求されるため、その平
均粒径は20−30nm程度、保磁力は高すぎると記録時
にヘッド磁界が飽和し、低すぎると記録信号の保持が不
可能となるため、200−2,500Oeとなるように調
整されることが望ましい。The use of the magnetic powder in the present invention is broad as described above. Particularly, when the magnetic powder is used for a magnetic recording medium, it is required to be magnetically stable. If the coercive force is about 30 nm and the coercive force is too high, the head magnetic field is saturated during recording, and if the coercive force is too low it becomes impossible to hold the recording signal.
【0012】[0012]
(実施例1および比較例1)出発原料としてB2 O3 =
31.35 mol%、BaO=28.68 mol%、Li2
O=4 mol%、Na2 O=4 mol%、Fe2 O3 =2
7.33 mol%、CoO=2.21 mol%、ZnO=
1.5 mol%、Nb2 O5 =0.93 mol%の組成を有
する粉末原料500gを選択し、これを乾式混合した
後、先端にノズルを有する白金ルツボの中で1,050
℃〜1600℃(実施例1−1;1,150℃、実施例
1−2;1,250℃、実施例1−3;1,450℃、
比較例1−1;1,050℃、比較例1−2;1,60
0℃)にて20分間溶融した。この溶融物を5g/sec の
流出量にて、500rpm 、ニップ圧5ton 、直径20c
m、長さ30cmのベアリング鋼製双ロールにて圧延急冷
し、ガラスフレークを作製した。次いでこのガラスフレ
ークに730℃×4Hの熱処理を行いBaフェライトを
生成させた。次いでこれを酸で洗浄することによりBa
フェライト以外の成分を選択除去し、水洗乾燥すること
により、Baフェライト微粒子を得た。(Example 1 and Comparative Example 1) B 2 O 3 =
31.35 mol%, BaO = 28.68 mol%, Li 2
O = 4 mol%, Na 2 O = 4 mol%, Fe 2 O 3 = 2
7.33 mol%, CoO = 2.21 mol%, ZnO =
500 g of a powder raw material having a composition of 1.5 mol% and Nb 2 O 5 = 0.93 mol% was selected, dry-mixed, and then placed in a platinum crucible having a nozzle at the tip, 1,050.
C to 1600C (Example 1-1; 1,150C, Example 1-2; 1,250C, Example 1-3; 1,450C,
Comparative Example 1-1; 1,050 ° C, Comparative Example 1-2; 1,60
(0 ° C.) for 20 minutes. The melt was flowed at a flow rate of 5 g / sec at 500 rpm, a nip pressure of 5 ton, and a diameter of 20 c.
Rolled and quenched with a twin roll of bearing steel having a length of 30 cm and a length of 30 cm to produce glass flakes. Next, the glass flakes were subjected to a heat treatment at 730 ° C. × 4H to generate Ba ferrite. This is then washed with an acid to obtain Ba.
Ba ferrite fine particles were obtained by selectively removing components other than ferrite and washing and drying with water.
【0013】(実施例2および比較例2)実施例1にお
いて、溶融温度を1,250℃とすると共に、溶融物の
流出量を2〜20g/sec (実施例2−1;2g/sec,実施
例2−2;5g/sec,実施例2−3;20g/sec,比較例2
−1;0.5g/sec,比較例2−2;50g/sec )とした
以外は実施例1と同様な条件にてガラスフレーク及び磁
性粉を作製した。Example 2 and Comparative Example 2 In Example 1, the melting temperature was set to 1,250 ° C., and the amount of the melt flowing out was 2 to 20 g / sec (Example 2-1; 2 g / sec, Example 2-2; 5 g / sec, Example 2-3; 20 g / sec, Comparative Example 2
-1; 0.5 g / sec, Comparative Example 2-2; 50 g / sec) to produce glass flakes and magnetic powder under the same conditions as in Example 1.
【0014】以上の実施例1および比較例1で得られた
ガラスフレークおよび磁性粉特性を表1に、実施例2及
び比較例2で得られたガラスフレークおよび磁性粉特性
を表2にそれぞれ示す。Table 1 shows the properties of the glass flakes and magnetic powder obtained in Example 1 and Comparative Example 1, and Table 2 shows the properties of the glass flakes and magnetic powder obtained in Example 2 and Comparative Example 2. .
【0015】以上の結果から明らかなように、本発明に
よる磁性粉においては、微粒子化が容易であり、かつ飽
和磁化、角型比が大きく、またきわめて小さなSFDr
を有することから高密度磁気記録用磁性粉として好適で
ある。またこのような特徴により本発明により得られた
磁性粉は、とりわけ短波長における媒体特性において優
れていることを確認した。また本発明の効果は、ガラス
組成およびフェライト組成が変化しても基本的に認めら
れる。As is evident from the above results, the magnetic powder according to the present invention can be easily formed into fine particles, has a high saturation magnetization, a high squareness ratio, and a very small SFDr.
Therefore, it is suitable as a magnetic powder for high-density magnetic recording. In addition, it was confirmed that the magnetic powder obtained according to the present invention was excellent in medium characteristics particularly at short wavelengths due to such characteristics. The effect of the present invention is basically recognized even if the glass composition and the ferrite composition change.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】上記の表1及び表2に示すデータに基づい
て、溶融温度に対するフレーク及び磁性粉の磁気特性と
SFDrとの関係をグラフ化したものを図1に、ガラス
流出量に対するフレーク及び磁性粉の磁気特性とSFD
rとの関係をグラフ化したものを図2に、夫々示す。図
中、「白丸」印及び「黒丸」印は、溶融条件を1,15
0、1,250、1,450℃にしたときの実施例1、
2、3のデータ、及びその下方範囲外の1,050℃、
上方範囲外の1,600℃にしたときの比較例1、2の
データを夫々示す。また「白三角」印及び「黒三角」印
は、ガラス流出量を2、5、20g/sec にしたときの実
施例1、2、3のデータ、及びその下方範囲外の0.
5、50g/sec にしたときの比較例1、2のデータを夫
々示す。FIG. 1 is a graph showing the relationship between the melting temperature and the magnetic characteristics of the flake and magnetic powder and SFDr based on the data shown in Tables 1 and 2 above. Magnetic Properties and SFD
FIG. 2 shows a graph of the relationship with r. In the figure, “white circle” and “black circle” indicate melting conditions of 1,15.
Example 1 at 0, 1, 250 and 1,450 ° C.
A few data and 1,050 ° C outside the lower range,
The data of Comparative Examples 1 and 2 at 1600 ° C. outside the upper range are shown respectively. The "white triangle" mark and the "black triangle" mark indicate the data of Examples 1, 2, and 3 when the glass outflow rate was 2, 5, and 20 g / sec, and the values of 0.
Data of Comparative Examples 1 and 2 at 5, 50 g / sec are shown, respectively.
【0019】上記の表1及び表2に示すデータに基づい
て、小さい方がよいSFDrと、大きい方がよい角型比
との相関関係を、本発明の実施例と比較例について対比
し、これを図3に示す。図3から明らかな通り、本発明
の実施例に示す製造方法で得られたBaフェライト磁性
粉のSFDr値と角型比の値は望ましい方向に収斂して
おり、広範囲に散開する比較例のものとは対照的であ
る。Based on the data shown in Tables 1 and 2, the correlation between the smaller SFDr and the larger squareness ratio is better for the embodiment of the present invention and the comparative example. Is shown in FIG. As is apparent from FIG. 3, the SFDr value and the squareness value of the Ba ferrite magnetic powder obtained by the manufacturing method shown in the example of the present invention converge in a desirable direction, and those of the comparative example in which the Ba ferrite magnetic powder is widely spread. In contrast.
【0020】[0020]
【発明の効果】以上の結果から明らかなように、本発明
による磁性粉においては、微粒子化が容易であり、かつ
飽和磁化、角型比が大きくまたきわめて小さなSFDr
を有することから高密度磁気記録用磁性粉として好適で
ある。またこのような特徴により本発明により得られた
磁性粉は、とりわけ短波長における媒体特性において優
れている。As is evident from the above results, the magnetic powder according to the present invention can be easily made into fine particles, and has a large saturation magnetization, a large squareness ratio and a very small SFDr.
Therefore, it is suitable as a magnetic powder for high-density magnetic recording. Further, the magnetic powder obtained by the present invention due to such characteristics is excellent in medium characteristics especially at a short wavelength.
【図1】本発明の実施例と比較例における、溶融温度に
対するSFDrと飽和磁化との関係を示すグラフ。FIG. 1 is a graph showing the relationship between SFDr and saturation magnetization with respect to melting temperature in Examples and Comparative Examples of the present invention.
【図2】本発明の実施例と比較例における、ガラス流出
量に対するSFDrと飽和磁化との関係を示すグラフ。FIG. 2 is a graph showing the relationship between the SFDr and the saturation magnetization with respect to the outflow amount of glass in Examples and Comparative Examples of the present invention.
【図3】本発明の実施例と比較例における、SFDrと
角型比の両立性を示すグラフ。FIG. 3 is a graph showing compatibility between SFDr and squareness ratio in an example of the present invention and a comparative example.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 悦治 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 研究開発センター内 (72)発明者 竹内 肇 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 研究開発センター内 (56)参考文献 特開 平4−284604(JP,A) 特開 昭64−42104(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/10 - 1/11 C01G 49/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Etsuji Ogawa 1 Toshiba-cho, Komukai, Koyuki-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Hajime Takeuchi Hajime Takeuchi Toshiba-cho, Koyuki-ku, Kawasaki-shi, Kanagawa No. 1 Toshiba Corporation Research and Development Center (56) References JP-A-4-284604 (JP, A) JP-A-64-42104 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) H01F 1/10-1/11 C01G 49/00
Claims (4)
分の原料混合物を溶融し、その溶融物を急冷して非晶質
体を作製した後、その非晶質体をガラス転移点以上の温
度で熱処理することにより、その中に六方晶系フェライ
ト微粒子を結晶化させた後、その六方晶系フェライト微
粒子以外の成分を除去する工程を含む磁性粉の製造方法
において、上記非晶質体の磁化を0.1emu/g 〜2emu/
g の範囲に制御することを特徴とする六方晶系フェライ
ト微粒子磁性粉の製造方法。1. A raw material mixture of a glass-forming substance and a hexagonal ferrite component is melted, and the melt is quenched to produce an amorphous body. By heat treatment, after crystallizing the hexagonal ferrite fine particles therein, in a method for producing a magnetic powder including a step of removing components other than the hexagonal ferrite fine particles, the magnetization of the amorphous body 0.1 emu / g-2 emu /
g. A method for producing magnetic powder of hexagonal ferrite fine particles, wherein the magnetic powder is controlled in the range of g.
e12−x−yM1x2yO19−a)、但しAはB
a、Sr、Caからなる群から選ばれる少なくとも一つ
の元素、M1は2価の群から選ばれる少なくとも一つの
元素、M2は4〜6価の群から選ばれる少なくとも一つ
の元素、aは〔x+(3−m)y〕/2(なおmはM2
の平均原子価)で示され、nは0.8以上3以下の数、
x、yは0以上且つ夫々3、2以下の数)で示される成
分を含むことを特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein the hexagonal ferrite is AO.n (F
e12-xyM1x2yO19-a), where A is B
at least one element selected from the group consisting of a, Sr, and Ca; M1 is at least one element selected from a divalent group; M2 is at least one element selected from a tetravalent to hexavalent group; (3-m) y] / 2 (m is M2
N is a number from 0.8 to 3,
2. The method according to claim 1, wherein x and y each include a component represented by 0 or more and a number of 3 or less.
50〜1,450℃であることを特徴とする請求項1ま
たは2記載の製造方法。3. The temperature at which the raw material mixture is melted is 1,1.
The method according to claim 1, wherein the temperature is 50 to 1,450 ° C. 4.
冷却することを特徴とする請求項1、2または3記載の
製造方法。4. The method according to claim 1, wherein the melt is cooled at a flow rate of 2 to 20 g / sec.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33569393A JP3251753B2 (en) | 1993-12-28 | 1993-12-28 | Method for producing Ba ferrite magnetic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33569393A JP3251753B2 (en) | 1993-12-28 | 1993-12-28 | Method for producing Ba ferrite magnetic powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07201547A JPH07201547A (en) | 1995-08-04 |
JP3251753B2 true JP3251753B2 (en) | 2002-01-28 |
Family
ID=18291438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33569393A Expired - Fee Related JP3251753B2 (en) | 1993-12-28 | 1993-12-28 | Method for producing Ba ferrite magnetic powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3251753B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012204726A (en) * | 2011-03-28 | 2012-10-22 | Fujifilm Corp | Magnetic powder for magnetic recording and method for manufacturing the same, and magnetic recording medium |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4675581B2 (en) * | 2004-05-31 | 2011-04-27 | Agcテクノグラス株式会社 | Method for producing hexagonal ferrite magnetic powder |
JP5284707B2 (en) * | 2008-07-23 | 2013-09-11 | 富士フイルム株式会社 | Method for producing hexagonal ferrite magnetic powder, magnetic recording medium and method for producing the same |
JP5502357B2 (en) | 2009-03-31 | 2014-05-28 | 富士フイルム株式会社 | Method for producing hexagonal ferrite magnetic powder and method for producing magnetic recording medium |
JP5615581B2 (en) * | 2010-03-31 | 2014-10-29 | 富士フイルム株式会社 | Method for producing magnetic powder for magnetic recording medium |
JP6077198B2 (en) * | 2011-05-11 | 2017-02-08 | Dowaエレクトロニクス株式会社 | Hexagonal ferrite agglomerated particles |
CN115321972B (en) * | 2022-08-09 | 2023-10-24 | 矿冶科技集团有限公司 | Chromium removal method and application of bonded permanent magnetic ferrite |
-
1993
- 1993-12-28 JP JP33569393A patent/JP3251753B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012204726A (en) * | 2011-03-28 | 2012-10-22 | Fujifilm Corp | Magnetic powder for magnetic recording and method for manufacturing the same, and magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPH07201547A (en) | 1995-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5340413A (en) | Fe-NI based soft magnetic alloys having nanocrystalline structure | |
US4569775A (en) | Method for manufacturing a magnetic powder for high density magnetic recording | |
JPS61131230A (en) | Magnetic powder for magnetic recording medium and magnetic recording medium using the powder | |
JP3251753B2 (en) | Method for producing Ba ferrite magnetic powder | |
US4820433A (en) | Magnetic powder for magnetic recording | |
JPS61136923A (en) | Hexagonal ferrite magnetic body for magnetic recording and its manufacture | |
JP3576332B2 (en) | Magnetic powder for magnetic recording | |
JP4182310B2 (en) | Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording | |
JPS6355122A (en) | Magnetic powder | |
US5062983A (en) | Magnetic powder for magnetic recording media | |
JPS60161341A (en) | Manufacturing method of hexagonal ferrite | |
KR960000501B1 (en) | Manufacturing method of hexagonal ferrite fine powder for high density magnetic recording | |
JP3429881B2 (en) | Composite type hexagonal ferrite magnetic powder and method for producing the same | |
JP2691790B2 (en) | Method for producing magnetic powder for magnetic recording medium | |
JPH05326233A (en) | Production of magnetic powder | |
JP2735281B2 (en) | Method for producing magnetic powder for magnetic recording medium | |
JPH0459620A (en) | Magnetic powder for magnetic recording and magnetic recording medium therefrom | |
JPH0727809B2 (en) | Method for producing hexagonal ferrite powder | |
KR960000502B1 (en) | Manufacturing method of hexagonal ferrite fine powder for magnetic recording | |
JPS63107818A (en) | Fine hexagonal ferrite particle and production thereof | |
KR0139130B1 (en) | Manufacturing method of hexagonal ferrite fine powder for magnetic recording | |
JPH04284604A (en) | Manufacture of hexagonal-system ferrite for magnetic recording | |
JPH1092618A (en) | Hexagonal ferrite magnetic powder and its manufacture | |
JPS63170218A (en) | Ferrite powder manufacturing method | |
JPH0685370B2 (en) | Method for producing hexagonal ferrite powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071116 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081116 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081116 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091116 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091116 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091116 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091116 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091116 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091116 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101116 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111116 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131116 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |