JPH10297910A - Purification method of sulfur hexafluoride - Google Patents
Purification method of sulfur hexafluorideInfo
- Publication number
- JPH10297910A JPH10297910A JP9109866A JP10986697A JPH10297910A JP H10297910 A JPH10297910 A JP H10297910A JP 9109866 A JP9109866 A JP 9109866A JP 10986697 A JP10986697 A JP 10986697A JP H10297910 A JPH10297910 A JP H10297910A
- Authority
- JP
- Japan
- Prior art keywords
- sulfur hexafluoride
- purifying
- aluminate
- sulfur
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 229910018503 SF6 Inorganic materials 0.000 title claims abstract description 25
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 229960000909 sulfur hexafluoride Drugs 0.000 title claims abstract description 25
- 238000000746 purification Methods 0.000 title claims description 21
- 239000012535 impurity Substances 0.000 claims abstract description 33
- 239000012629 purifying agent Substances 0.000 claims abstract description 32
- -1 alkali metal aluminate salt Chemical class 0.000 claims abstract description 29
- 239000007787 solid Substances 0.000 claims abstract description 22
- 150000001341 alkaline earth metal compounds Chemical class 0.000 claims abstract description 11
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 10
- 150000005621 tetraalkylammonium salts Chemical class 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical group [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 12
- 230000018044 dehydration Effects 0.000 claims description 10
- 238000006297 dehydration reaction Methods 0.000 claims description 10
- 238000007670 refining Methods 0.000 claims description 9
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 8
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 8
- 229910021536 Zeolite Inorganic materials 0.000 claims description 7
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 7
- 239000010457 zeolite Substances 0.000 claims description 7
- 239000003610 charcoal Substances 0.000 claims description 6
- 239000012024 dehydrating agents Substances 0.000 claims description 6
- WJZPIORVERXPPR-UHFFFAOYSA-L tetramethylazanium;carbonate Chemical compound [O-]C([O-])=O.C[N+](C)(C)C.C[N+](C)(C)C WJZPIORVERXPPR-UHFFFAOYSA-L 0.000 claims description 6
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 claims description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 4
- 150000004679 hydroxides Chemical class 0.000 claims description 4
- 150000002823 nitrates Chemical class 0.000 claims description 4
- KVOIJEARBNBHHP-UHFFFAOYSA-N potassium;oxido(oxo)alumane Chemical compound [K+].[O-][Al]=O KVOIJEARBNBHHP-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- 239000003245 coal Substances 0.000 claims description 3
- BPFZRKQDXVZTFD-UHFFFAOYSA-N disulfur decafluoride Chemical compound FS(F)(F)(F)(F)S(F)(F)(F)(F)F BPFZRKQDXVZTFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 3
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 239000011295 pitch Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- QHMQWEPBXSHHLH-UHFFFAOYSA-N sulfur tetrafluoride Chemical compound FS(F)(F)F QHMQWEPBXSHHLH-UHFFFAOYSA-N 0.000 claims description 3
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 claims description 3
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 3
- APBDREXAUGXCCV-UHFFFAOYSA-L tetraethylazanium;carbonate Chemical compound [O-]C([O-])=O.CC[N+](CC)(CC)CC.CC[N+](CC)(CC)CC APBDREXAUGXCCV-UHFFFAOYSA-L 0.000 claims description 3
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 3
- 239000005935 Sulfuryl fluoride Substances 0.000 claims description 2
- YNAAFGQNGMFIHH-UHFFFAOYSA-N ctk8g8788 Chemical compound [S]F YNAAFGQNGMFIHH-UHFFFAOYSA-N 0.000 claims description 2
- QTJXVIKNLHZIKL-UHFFFAOYSA-N sulfur difluoride Chemical compound FSF QTJXVIKNLHZIKL-UHFFFAOYSA-N 0.000 claims description 2
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 claims description 2
- LSJNBGSOIVSBBR-UHFFFAOYSA-N thionyl fluoride Chemical compound FS(F)=O LSJNBGSOIVSBBR-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 238000004458 analytical method Methods 0.000 description 29
- 229910052736 halogen Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000004817 gas chromatography Methods 0.000 description 7
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 5
- 235000011116 calcium hydroxide Nutrition 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 238000004868 gas analysis Methods 0.000 description 4
- 238000004255 ion exchange chromatography Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000005264 electron capture Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical class [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005048 flame photometry Methods 0.000 description 1
- 238000001765 gas chromatography-flame photometric detection Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/45—Compounds containing sulfur and halogen, with or without oxygen
- C01B17/4507—Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only
- C01B17/4515—Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only containing sulfur and fluorine only
- C01B17/453—Sulfur hexafluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
(57)【要約】
【課題】 不純物を含む六フッ化硫黄から簡便かつ効率
的に有害不純物を除去する六フッ化硫黄の精製方法を得
る。
【解決手段】 不純物を含む六フッ化硫黄を、アルカリ
土類金属化合物、アルミン酸アルカリ金属塩およびテト
ラアルキルアンモニウム塩からなる群から選ばれた1種
以上の化合物と炭素質固体とからなる精製剤と接触させ
る。(57) [Problem] To provide a method for purifying sulfur hexafluoride which easily and efficiently removes harmful impurities from sulfur hexafluoride containing impurities. SOLUTION: A purifying agent comprising a carbonaceous solid comprising sulfur hexafluoride containing impurities, at least one compound selected from the group consisting of an alkaline earth metal compound, an alkali metal aluminate salt and a tetraalkylammonium salt. Contact.
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、六フッ化硫黄の精
製方法に関するものであり、特に有害不純物を含む回収
六フッ化硫黄ガスを精製剤と接触させて精製する方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying sulfur hexafluoride, and more particularly to a method for purifying sulfur hexafluoride gas containing harmful impurities by contacting the gas with a purifying agent.
【0002】[0002]
【従来の技術】六フッ化硫黄(以下「SF6 」と記す)
は、気体として優れた電気絶縁性を有することから、遮
断機や変圧器などの気体絶縁媒体として需要が増大して
いる。SF6 それ自体は化学的に安定であり、毒性も腐
食性も認められないが、例えば縮小型変電設備の機器な
どに用いられると、コロナ放電や遮断時に発生するアー
クなどの強い電気的ストレスに曝され、分解して種々の
不純物を生成し障害をもたらすようになる。例えば、電
気的ストレスにより分解して生成する不純物の中で、四
フッ化硫黄(以下「SF4 」と記す)、二フッ化硫黄
(以下「SF2 」と記す)、一フッ化硫黄(以下「S2
F2」と記す)などは非常に反応性に富む物質であり、
機器内に微量の水分が存在すると、これと反応してフッ
化水素(以下「HF」と記す)、亜硫酸ガス(以下「S
O2 」と記す)、フッ化チオニル(以下「SOF2 」と
記す)、フッ化スルフリル(以下「SO2F2」と記す)
などの強酸性物質や微量の五フッ化硫黄(以下「S2 F
10」と記す)を生成する。これらの不純物を含むSF6
ガスを使用し続けると、機器類の金属部材を腐食するな
どの障害が現れるので、適宜に機器から抜き出して新し
いSF6 と入れ替えが行われる。BACKGROUND OF THE INVENTION sulfur hexafluoride (hereinafter referred to as "SF 6")
Because of its excellent electrical insulation properties as a gas, its demand is increasing as a gas-insulating medium for circuit breakers and transformers. SF 6 itself is chemically stable and neither toxic nor corrosive.However, when it is used in, for example, equipment of reduced-type substation equipment, it can be subjected to strong electrical stress such as corona discharge and arcs generated during interruption. Being exposed and decomposed to produce various impurities and cause obstacles. For example, among impurities generated by decomposition due to electric stress, sulfur tetrafluoride (hereinafter referred to as “SF 4 ”), sulfur difluoride (hereinafter referred to as “SF 2 ”), and sulfur monofluoride (hereinafter referred to as “SF 2 ”) "S 2
F 2 ) is a very reactive substance,
When a small amount of water exists in the apparatus, it reacts with the water and reacts with hydrogen fluoride (hereinafter referred to as “HF”), sulfur dioxide (hereinafter referred to as “S”).
O 2 ), thionyl fluoride (hereinafter “SOF 2 ”), sulfuryl fluoride (hereinafter “SO 2 F 2 ”)
Or a very small amount of sulfur pentafluoride (hereinafter referred to as “S 2 F
10 "). SF 6 containing these impurities
If the gas continues to be used, an obstacle such as corrosion of a metal member of the equipment will appear. Therefore, the gas is appropriately extracted from the equipment and replaced with a new SF 6 .
【0003】しかしSF6 ガスは高価であるばかりでな
く、地球温暖化など環境への影響も無視できない状況下
で、前記の有害不純物を含むSF6 は、回収して精製処
理した後リサイクルすることが求められるようになって
きた。この課題に対しては従来からも種々の精製方法が
提案されている。例えば、乾式法としては、回収ガス
を活性アルミナ、X型合成ゼオライトと接触させる方法
(特公昭47−6205号公報)、転化剤を用いて不
純物ガス成分を固体合成物と生成ガスとに転化させ、次
いでガス吸収剤を用いて前記の生成ガスを吸収除去する
方法(特開昭60−54723号公報)など、また湿式
法としては、回収ガスをアルカリ槽(水酸化カルシウ
ム水溶液)で処理する方法(浜野,ほか;大電力試験場
におけるSF6 ガス回収装置;平成8年電気学会全国大
会)、リチウム置換した巨大網状構造ポリマーと接触
させる方法(特開平6−211506号公報)などが知
られている。However SF 6 gas is not only expensive, in situations where not negligible impact on the environment such as global warming, SF 6 containing the harmful impurities, can be recycled after purification process to recover Has been required. Various purification methods have been proposed to address this problem. For example, as a dry method, a method in which a recovered gas is contacted with activated alumina and X-type synthetic zeolite (Japanese Patent Publication No. 47-6205), an impurity gas component is converted into a solid compound and a product gas using a converting agent. Then, a method of absorbing and removing the produced gas using a gas absorbent (Japanese Patent Application Laid-Open No. 60-54723), and a wet method in which the recovered gas is treated in an alkaline bath (aqueous calcium hydroxide solution). (Hamano, et al .: SF 6 gas recovery device at high power test station; 1996 National Conference of the Institute of Electrical Engineers of Japan), a method of contacting with a lithium-substituted polymer having a large network structure (Japanese Patent Application Laid-Open No. 6-212506), and the like. .
【0004】[0004]
【発明が解決しようとする課題】しかし、従来提案され
ている前記の各精製方法にはそれぞれ問題があった。例
えば前記の方法では、SO2 、SOF2 、SO2F2、
S2 F10などに対して十分な吸着効果が得られない、
の方法は、不純物を水酸化カルシウムと反応させて水素
を発生させ、この水素ガスを吸着除去するものである
が、可燃性の水素ガスを発生させる問題がありまた十分
な処理能力が得られない、の方法は湿式法であり設備
が大規模となる、は高価な吸収剤を用いるほか、湿式
法であるため大量の水分が混入する、などの問題があ
り、何れも工業的に採用できる経済的な方法ではなかっ
た。本発明は、上記の課題を解決するためになされたも
のであって、従ってその目的は、不純物を含むSF6 か
ら簡便かつ効率的に有害不純物を除去することができる
SF6 の精製方法を提供することにある。However, there has been a problem in each of the above-mentioned purification methods proposed so far. For example, in the above method, SO 2 , SOF 2 , SO 2 F 2 ,
Sufficient adsorption effect cannot be obtained for S 2 F 10 etc.
Is a method in which impurities are reacted with calcium hydroxide to generate hydrogen, and this hydrogen gas is adsorbed and removed. However, there is a problem that flammable hydrogen gas is generated, and sufficient processing capacity cannot be obtained. The method is a wet method and requires large-scale equipment.In addition to the use of expensive absorbents, the wet method involves a large amount of water and other problems. Was not a typical way. The present invention has been made in order to solve the above-described problems, and accordingly, has as its object to provide a method for purifying SF 6 that can easily and efficiently remove harmful impurities from SF 6 containing impurities. Is to do.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するた
めに本発明は、不純物を含むSF6 を、アルカリ土類金
属化合物、アルミン酸アルカリ金属塩およびテトラアル
キルアンモニウム塩からなる群から選ばれた1種以上の
化合物と炭素質固体とからなる精製剤と接触させるSF
6 の精製方法を提供する。前記の不純物を含むSF
6 は、不純物としてHF、SO2 、S2F2、SF2 、S
F4 、S2 F10、SOF2 およびSO2F2からなる群の
何れか1種以上を含むものであってよい。前記精製剤の
アルカリ土類金属化合物は、カルシウム、マグネシウ
ム、バリウムおよびストロンチウムの酸化物、水酸化
物、炭酸塩および硝酸塩からなる群から選ばれたもので
あることが好ましい。またアルミン酸アルカリ金属塩
は、アルミン酸リチウム、アルミン酸ナトリウム、アル
ミン酸カリウムおよびアルミン酸セシウムからなる群か
ら選ばれたものであることが好ましい。またテトラアル
キルアンモニウム塩は、水酸化テトラメチルアンモニウ
ム、水酸化テトラエチルアンモニウム、炭酸テトラメチ
ルアンモニウム、炭酸テトラエチルアンモニウム、塩化
テトラメチルアンモニウム、塩化テトラエチルアンモニ
ウム、アルミン酸テトラメチルアンモニウムおよびアル
ミン酸テトラエチルアンモニウムからなる群から選ばれ
たものであることが好ましい。前記精製剤の炭素質固体
は、コークス粉末、チャー炭、石炭、ピッチ、木炭、活
性炭およびカーボンブラックからなる群から選ばれた1
種以上であることが好ましい。前記精製剤の比表面積
は、80m2 /g〜1000m2 /gの範囲内であるこ
とが好ましい。また前記精製剤の平均細孔径は、7オン
グストローム〜1500オングストロームの範囲内であ
ることが好ましい。前記により精製されたSF6 中に含
まれるHF濃度は、0.1重量ppm以下とされること
が好ましい。また、前記のSF6 の精製方法は、脱水工
程が付加されていることが好ましい。この脱水工程は、
脱水剤としてゼオライトを用いるものであることが好ま
しい。前記により精製されたSF6 中に含まれる水分濃
度は、50重量ppm以下とされることが好ましい。Means for Solving the Problems The present invention to solve the aforementioned problem, is chosen the SF 6 containing impurities, alkaline earth metal compounds, alkali metal aluminate salt, and the group consisting of tetraalkylammonium salts Contacting with a purifying agent comprising one or more compounds and a carbonaceous solid
6 purification methods are provided. SF containing the above impurities
6 is HF, SO 2 , S 2 F 2 , SF 2 , S
It may include any one or more of the group consisting of F 4 , S 2 F 10 , SOF 2 and SO 2 F 2 . The alkaline earth metal compound of the refining agent is preferably selected from the group consisting of oxides, hydroxides, carbonates and nitrates of calcium, magnesium, barium and strontium. Further, the alkali metal aluminate is preferably selected from the group consisting of lithium aluminate, sodium aluminate, potassium aluminate and cesium aluminate. The tetraalkylammonium salt is selected from the group consisting of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetramethylammonium carbonate, tetraethylammonium carbonate, tetramethylammonium chloride, tetraethylammonium chloride, tetramethylammonium aluminate and tetraethylammonium aluminate. Preferably, it is selected. The carbonaceous solid of the refining agent is selected from the group consisting of coke powder, charcoal, coal, pitch, charcoal, activated carbon and carbon black.
Preferably, it is at least one species. The specific surface area of the refining agent is preferably in the range of 80m 2 / g~1000m 2 / g. Further, the average pore size of the purifying agent is preferably in the range of 7 Å to 1500 Å. The concentration of HF contained in the purified SF 6 is preferably 0.1 ppm by weight or less. Further, it is preferable that the above-mentioned method for purifying SF 6 further includes a dehydration step. This dehydration step
It is preferable to use zeolite as a dehydrating agent. The concentration of water contained in the purified SF 6 is preferably 50 ppm by weight or less.
【0006】[0006]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明のSF6 の精製方法は、例えばガス遮断器
(GCB)などのガス絶縁機器に使用されて、コロナ放
電や遮断時に発生する電気アークなどにより分解し有害
な不純物を生成したSF6 (以下「不純SF6 」と記
す)からこの有害不純物を除去し、リサイクルする際な
どの精製工程に適用される。これらのガス絶縁機器に使
用された後の不純SF6 は、一般にSF4 、SF2 、S
2F2、SO2 、SOF2 、SO2F2、S2 F10などの腐
食性有害不純物を含んでいる。Embodiments of the present invention will be described below. The method for purifying SF 6 according to the present invention is applied to gas insulating equipment such as a gas circuit breaker (GCB), for example, and SF 6 (hereinafter referred to as “SF 6”) which is decomposed by corona discharge or an electric arc generated at the time of interruption to generate harmful impurities. This harmful impurity is removed from "impure SF 6 ") and applied to a purification process such as recycling. Impurity SF 6 after being used in these gas insulated devices is generally SF 4 , SF 2 , S
Contains 2 F 2, SO 2, corrosive harmful impurities such as SOF 2, SO 2 F 2, S 2 F 10.
【0007】本発明の精製方法の一実施形態において
は、アルカリ土類金属化合物、アルミン酸アルカリ金属
塩および/またはテトラアルキルアンモニウム塩と炭素
質固体とからなる精製剤を、例えば反応管に充填し、こ
の反応管に室温で、前記の不純SF6 をガス流として流
通させる。これにより、不純SF6 中の不純物は精製剤
に吸着され、実質的に有害不純物を含まないSF6 (以
下「精製SF6 」と記す)を、簡便かつ効果的に回収す
ることができる。In one embodiment of the purification method of the present invention, a purifying agent comprising an alkaline earth metal compound, an alkali metal aluminate and / or a tetraalkylammonium salt and a carbonaceous solid is charged into, for example, a reaction tube. The impure SF 6 is allowed to flow as a gas stream through the reaction tube at room temperature. As a result, impurities in the impure SF 6 are adsorbed by the purifying agent, and SF 6 containing substantially no harmful impurities (hereinafter referred to as “purified SF 6 ”) can be simply and effectively recovered.
【0008】得られた精製SF6 を前記のガス絶縁機器
などにリサイクルするに際しては、精製SF6 中の水分
が50重量ppm以下とされることが好ましい。これ
は、前記のSF6 精製工程に、例えば脱水剤としてゼオ
ライトを用いる脱水工程を付加することにより達成する
ことができる。[0008] In the purification SF 6 obtained recycled like the gas insulated apparatus, it is preferable that moisture in the refining SF 6 is less 50 weight ppm. This can be achieved by, for example, adding a dehydration step using zeolite as a dehydrating agent to the above-mentioned SF 6 purification step.
【0009】以下、本発明の構成要素について詳しく説
明する。本発明に用いる精製剤は、アルカリ土類金属化
合物、アルミン酸アルカリ金属塩およびテトラアルキル
アンモニウム塩からなる群から選ばれた1種以上の化合
物と炭素質固体とからなる。Hereinafter, the components of the present invention will be described in detail. The refining agent used in the present invention comprises at least one compound selected from the group consisting of an alkaline earth metal compound, an alkali metal aluminate salt and a tetraalkylammonium salt, and a carbonaceous solid.
【0010】前記のアルカリ土類金属化合物の例として
は、カルシウム、マグネシウム、バリウムまたはストロ
ンチウムの酸化物、水酸化物、炭酸塩または硝酸塩など
を挙げることができる。これらは1種を単独で用いても
よく、または2種以上の混合物として用いてもよい。就
中、カルシウムの酸化物、水酸化物、炭酸塩または硝酸
塩が好ましく、安価に入手できて取扱いが容易な点で生
石灰、消石灰、または石灰石が更に好適である。Examples of the alkaline earth metal compounds include oxides, hydroxides, carbonates and nitrates of calcium, magnesium, barium or strontium. These may be used alone or as a mixture of two or more. Among them, calcium oxides, hydroxides, carbonates and nitrates are preferred, and quick lime, slaked lime or limestone is more preferred in that it is available at low cost and is easy to handle.
【0011】前記のアルミン酸アルカリ金属塩の例とし
ては、アルミン酸リチウム、アルミン酸ナトリウム、ア
ルミン酸カリウムまたはアルミン酸セシウムなどを挙げ
ることができる。これらは1種を単独で用いてもよく、
または2種以上の混合物として用いてもよい。就中、ア
ルミン酸ナトリウムまたはアルミン酸カリウムが入手の
容易さの点で好適である。特にアルミン酸ナトリウムが
好ましい。Examples of the alkali metal aluminate include lithium aluminate, sodium aluminate, potassium aluminate and cesium aluminate. These may be used alone,
Alternatively, they may be used as a mixture of two or more. Above all, sodium aluminate or potassium aluminate is preferred in view of availability. Particularly, sodium aluminate is preferred.
【0012】前記のテトラアルキルアンモニウム塩の例
としては、水酸化テトラメチルアンモニウム、水酸化テ
トラエチルアンモニウム、炭酸テトラメチルアンモニウ
ム、炭酸テトラエチルアンモニウム、塩化テトラメチル
アンモニウム、塩化テトラエチルアンモニウム、アルミ
ン酸テトラメチルアンモニウムまたはアルミン酸テトラ
エチルアンモニウムなどを挙げることができる。これら
は1種を単独で用いてもよく、または2種以上の混合物
として用いてもよい。就中、水酸化テトラメチルアンモ
ニウム、炭酸テトラメチルアンモニウム、塩化テトラメ
チルアンモニウムまたはアルミン酸テトラメチルアンモ
ニウムが入手の容易さの点で好適である。特に炭酸テト
ラメチルアンモニウムが好ましい。炭酸テトラメチルア
ンモニウムとアルミン酸テトラメチルアンモニウムはそ
れぞれ、水酸化テトラメチルアンモニウムに炭酸ガスま
たは水酸化アルミニウムを反応させて製造することがで
きる。Examples of the above tetraalkylammonium salts include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetramethylammonium carbonate, tetraethylammonium carbonate, tetramethylammonium chloride, tetraethylammonium chloride, tetramethylammonium aluminate or aluminate And tetraethylammonium acid. These may be used alone or as a mixture of two or more. Among them, tetramethylammonium hydroxide, tetramethylammonium carbonate, tetramethylammonium chloride or tetramethylammonium aluminate is preferred in terms of availability. Particularly, tetramethylammonium carbonate is preferred. Tetramethylammonium carbonate and tetramethylammonium aluminate can be respectively produced by reacting tetramethylammonium hydroxide with carbon dioxide gas or aluminum hydroxide.
【0013】前記の炭素質固体の例としては、コークス
粉末、チャー炭、石炭、ピッチ、木炭、活性炭およびカ
ーボンブラックなどを挙げることができる。これらは1
種を単独で用いてもよく、または2種以上の混合物とし
て用いてもよい。炭素質固体の形状としては、粉末また
は細粒状またはペレット状であることが好ましい。細粒
状の場合は、球形であっても破砕形であってもいずれで
もよい。これらの炭素質固体は、比表面積が100m2
/g〜2500m2 /gの範囲内、特に500m2 /g
〜2000m2 /gの範囲内であることが好ましい。特
に好適な炭素質固体の例としては、粉末状のものではチ
ャー炭、細粒状のものでは活性炭を挙げることができ
る。Examples of the carbonaceous solid include coke powder, charcoal, coal, pitch, charcoal, activated carbon and carbon black. These are 1
The species may be used alone or as a mixture of two or more. The carbonaceous solid is preferably in the form of powder, fine particles, or pellets. In the case of fine particles, they may be spherical or crushed. These carbonaceous solids have a specific surface area of 100 m 2.
/ G~2500m within the range of 2 / g, especially 500m 2 / g
It is preferably in the range of 20002000 m 2 / g. Particularly preferred examples of carbonaceous solids include charcoal in powdered form and activated carbon in finely divided form.
【0014】本発明に用いる精製剤は、種々の方法で調
製することができる。例えばアルミン酸ナトリウムなど
の水溶液に炭素質固体として活性炭などを浸漬し、攪拌
後に乾燥すれば、担持型の精製剤が得られる。また、例
えば消石灰粉末などとチャー炭粉末などとを所定の割合
に混合し、水を加えて混練し、取扱い易い粒径のペレッ
ト状に成形した後乾燥すれば、ペレット型の精製剤が得
られる。The purifying agent used in the present invention can be prepared by various methods. For example, if activated carbon or the like as a carbonaceous solid is immersed in an aqueous solution of sodium aluminate or the like, and then dried after stirring, a supported purifying agent is obtained. Also, for example, a mixture of slaked lime powder and charcoal powder and the like at a predetermined ratio, kneading by adding water, forming into a pellet having a particle size that is easy to handle, and then drying, a pellet-type refining agent can be obtained. .
【0015】精製剤が担持型である場合、例えばアルミ
ン酸アルカリ金属塩および/またはテトラアルキルアン
モニウム塩の炭素質固体への担持量は、炭素質固体とし
て活性炭を用いる場合、活性炭100mlに対する担持
量gとして1重/容%〜30重/容%の範囲内、特に5
重/容%〜20重/容%の範囲内とすることが好まし
い。1重/容%未満では効果が不十分であり、30重/
容%を越えると炭素質固体の細孔閉塞などが起こって逆
に効率が低下する。When the purifying agent is of a supported type, for example, the amount of the alkali metal aluminate and / or the tetraalkylammonium salt supported on the carbonaceous solid is, when activated carbon is used as the carbonaceous solid, the supported amount g per 100 ml of activated carbon. In the range of 1 weight / vol% to 30 weight / vol%, especially 5
Weight / volume% to 20 weight / volume%. If the amount is less than 1 weight / volume%, the effect is insufficient.
If the content exceeds%, the pores of the carbonaceous solid are blocked and the efficiency is reduced.
【0016】精製剤がペレット型である場合、例えばア
ルカリ土類金属化合物と炭素質固体の混合割合は、組成
物の種類にもよるが、同重量割合かまたはアルカリ土類
金属化合物の割合を大きくすることが好ましい。担持型
であってもペレット型であっても、精製剤は十分に乾燥
する必要があり、乾燥には乾燥ガスとして窒素、ヘリウ
ム、アルゴンなどの不活性ガスを用いることが好まし
い。When the refining agent is in the form of a pellet, for example, the mixing ratio of the alkaline earth metal compound and the carbonaceous solid depends on the type of the composition, but may be the same weight ratio or a large ratio of the alkaline earth metal compound. Is preferred. It is necessary to sufficiently dry the purifying agent, whether it is a carrier type or a pellet type, and it is preferable to use an inert gas such as nitrogen, helium, or argon as a drying gas for drying.
【0017】精製剤の比表面積は、80m2 /g〜10
00m2 /gの範囲内、特に100m2 /g〜700m
2 /gの範囲内とすることが好ましい。また精製剤の平
均細孔径は、7オングストローム〜1500オングスト
ロームの範囲内、特に7オングストローム〜1100オ
ングストロームの範囲内とすることが好ましい。これら
の範囲外では精製効率が低下する。前記範囲の比表面積
および平均細孔径は、精製剤の調製に際して素材、配合
割合、調製法などを選択することにより実現できる。The specific surface area of the purifying agent is from 80 m 2 / g to 10 m 2 / g.
Within the range of 00m 2 / g, especially 100m 2 / g~700m
It is preferably within the range of 2 / g. The average pore size of the purifying agent is preferably in the range of 7 Å to 1500 Å, particularly preferably in the range of 7 Å to 1100 Å. Outside these ranges, the purification efficiency is reduced. The specific surface area and the average pore diameter in the above ranges can be realized by selecting a material, a mixing ratio, a preparation method, and the like when preparing a purifying agent.
【0018】前記の精製剤を用いて不純SF6 を精製す
るに際しては、不純SF6 をこの精製剤と接触させる。
この接触工程において、不純SF6 中の不純物濃度は
2.0重量%以下であることが好ましい。不純物がこれ
以上含まれていると、大量の精製剤が必要となり、また
精製時間も多くかかるので好ましくない。When purifying impure SF 6 using the above-mentioned purifying agent, the impure SF 6 is brought into contact with this purifying agent.
In this contacting step, the impurity concentration in the impure SF 6 is preferably 2.0% by weight or less. If the impurities are contained more than this, a large amount of the purification agent is required, and the purification time is long, which is not preferable.
【0019】接触に際して不純SF6 は気体であっても
液体であってもよいが、通常は気体として接触させるこ
とが好ましい。接触方法としては一般に流体−固体接触
に用いられる方法が何れも採用可能である。従って流動
床方式や移動床方式も用いることができるが、一般には
固定床方式が好ましい。気−固接触方式を採用する場
合、接触工程の圧力は特に限定されないが、経済的見地
から大気圧〜2MPaの範囲内とすることが好ましい。
また接触工程の温度も特に限定されないが、例えば−4
0℃〜100℃の範囲内で適宜選択することができる。
特別な事情がなければ、経済的見地から接触温度は常温
とすることが好ましい。At the time of contact, the impure SF 6 may be a gas or a liquid, but it is usually preferable to contact it as a gas. As a contact method, any method generally used for fluid-solid contact can be adopted. Accordingly, a fluidized bed system or a moving bed system can be used, but a fixed bed system is generally preferred. When the gas-solid contact method is employed, the pressure in the contact step is not particularly limited, but is preferably in the range of atmospheric pressure to 2 MPa from an economic viewpoint.
The temperature of the contacting step is not particularly limited.
It can be appropriately selected within the range of 0 ° C to 100 ° C.
Unless there are special circumstances, it is preferable to set the contact temperature to normal temperature from an economic viewpoint.
【0020】以上説明した精製剤との接触工程によっ
て、不純SF6 は、例えばHF濃度として0.1重量p
pm以下(ハロゲンイオン分析、イオンクロマトグラフ
ィー)のレベルまで精製することができる。この精製条
件でSイオン量はSO4 -として0.1重量ppm以下
(イオンクロマトグラフィー)となる。更に他の有害不
純物であるSO2 、SF2 、SF4 、SO2F2およびS
OF2 も、ガスクロマトグラフィー(GC)およびガス
クロマトグラフィー/質量分析(GC/MAS)におい
て検出限界以下(0.1重量ppm以下)とすることが
できる。By the above-described step of contacting with a purifying agent, impure SF 6 can be converted to, for example, 0.1 wt.
pm or less (halogen ion analysis, ion chromatography). Under these purification conditions, the amount of S ions is 0.1 ppm by weight or less (ion chromatography) as SO 4 − . Furthermore, other harmful impurities such as SO 2 , SF 2 , SF 4 , SO 2 F 2 and S
OF 2 may also be the detection limit or less in a gas chromatography (GC) and gas chromatography / mass spectrometry (GC / MAS) and (0.1 wt ppm or less).
【0021】前記の接触工程で得られた精製SF6 を気
体絶縁媒体としてリサイクルするためには、SF6 分解
の一要因をなす水分を十分に除去する必要がある。そこ
で、本発明のSF6 の精製方法には、水分含量を厳重に
管理できる脱水工程を付加することが好ましい。この脱
水工程は、前記の接触工程の後に、好ましくは脱水剤と
して合成ゼオライトなどを用いる気−固接触により行う
ことが好ましい。この工程で用いるに好適な脱水剤は合
成ゼオライトであり、特に「モレキュラーシーブ(商品
名)」として一般に知られている分子ふるいの中から、
好適な細粒径範囲のものを選択して用いることが好まし
い。In order to recycle the purified SF 6 obtained in the contact step as a gaseous insulating medium, it is necessary to sufficiently remove water which is a factor of SF 6 decomposition. Therefore, it is preferable to add a dehydration step capable of strictly controlling the water content to the method for purifying SF 6 of the present invention. This dehydration step is preferably performed by gas-solid contact using a synthetic zeolite or the like as a dehydrating agent after the contacting step. A suitable dehydrating agent for use in this step is a synthetic zeolite, especially from molecular sieves commonly known as "molecular sieves (trade name)"
It is preferable to select and use those having a suitable fine particle size range.
【0022】前記の分子ふるいを脱水剤として用いる気
−固接触脱水工程は、圧力が大気圧〜2MPaの範囲
内、温度が−40℃〜100℃の範囲内、特に常温にお
いて運転することが経済的見地から好ましい。この脱水
工程によって、精製SF6 中の水分含量を50重量pp
m以下、更に、特に好ましい水分含量限界である10重
量ppm以下にすることができる。In the gas-solid contact dehydration step using the molecular sieve as a dehydrating agent, it is economical to operate at a pressure in the range of atmospheric pressure to 2 MPa, a temperature in the range of -40 ° C to 100 ° C, and particularly at room temperature. Preferred from a standpoint. By this dehydration step, the water content in the purified SF 6 is reduced to 50 wt.
m or less, and more preferably 10 ppm by weight or less, which is a particularly preferable moisture content limit.
【0023】[0023]
【実施例】以下、実施例により本発明を更に詳しく説明
する。不純SF6 試料 :試験のため、下記の不純SF6 試料を
調製した。The present invention will be described in more detail with reference to the following examples. Impure SF 6 sample : The following impure SF 6 sample was prepared for testing.
【0024】(不純SF6 試料1)六フッ化硫黄(昭和
電工社製、純分99.999%以上、ハロゲンイオン1
重量ppm以下)を、ガス絶縁開閉試験装置に約0.5
MPaの充填圧まで充填し、ガス絶縁開閉試験を繰り返
した後、このガスを、真空乾燥し冷却したシリンダー容
器に採取し、不純SF6 試料1とした。この試料の分析
結果を以下に示す。分析方法は、電子捕獲型分析法(G
C/ECD)、炎光光度分析法(GC/FPD)、熱伝
導度法(GC/TCD)、ガスクロマトグラフィー/質
量分析法(GC/MAS)、ハロゲンイオン分析法(イ
オンクロマトグラフィー)および水分分析法(水晶発振
子法)によった。分析結果は、水分を除くガス成分の重
量ppmで表し、H2 Oは別途に重量ppmで表示し
た。(以下、全ての分析結果を同様に表示する。) 成分分析値(単位は重量ppm); SF6 99.8430 CF4 0.0620 C2F6 0.0063 C2F4 0.0012 SOF2 0.0512 SO2F2 0.0022 SO2 0.0013 HF 0.0328 H2O 0.0086(Impurity SF 6 sample 1) Sulfur hexafluoride (manufactured by Showa Denko KK, purity: 99.999% or more, halogen ion 1)
Weight ppm or less) to the gas insulation
After filling up to the filling pressure of MPa and repeating the gas insulation opening / closing test, this gas was collected in a vacuum-dried and cooled cylinder container to obtain impure SF 6 sample 1. The analysis results of this sample are shown below. The analysis method was an electron capture type analysis method (G
C / ECD), flame photometry (GC / FPD), thermal conductivity (GC / TCD), gas chromatography / mass spectrometry (GC / MAS), halogen ion analysis (ion chromatography) and moisture The analysis method (crystal oscillator method) was used. The analysis results were expressed in ppm by weight of the gas components excluding water, and H 2 O was separately expressed in ppm by weight. (Hereinafter, all the analysis results are shown in the same manner.) Component analysis value (unit is ppm by weight); SF 6 9.8430 CF 4 0.0620 C 2 F 6 0.0063 C 2 F 4 0.0012 SOF 2 0.0512 SO 2 F 2 0.0022 SO 2 0.0013 HF 0.0328 H 2 O 0.0086
【0025】(不純SF6 試料2)前記の不純SF6 試
料1に更に市販の四フッ化硫黄(SF4 )および五フッ
化硫黄(S2 F10)を添加し、不純SF6 試料2とし
た。この試料の分析結果を以下に示す。S2 F10の分析
方法は電子捕獲型分析法(GC/ECD)によった。 成分分析値(単位は重量ppm); SF6 99.8422 CF4 0.0620 C2F6 0.0063 C2F4 0.0012 SOF2 0.0512 SO2F2 0.0022 SO2 0.0013 SF4 0.0005 S2 F10 0.0003 HF 0.0328 H2O 0.0118(Impurity SF 6 sample 2) To the above impure SF 6 sample 1, commercially available sulfur tetrafluoride (SF 4 ) and sulfur pentafluoride (S 2 F 10 ) were further added, and the impure SF 6 sample 2 did. The analysis results of this sample are shown below. The analysis method of S 2 F 10 was based on an electron capture analysis (GC / ECD). Component analysis value (unit is ppm by weight); SF 6 9.8422 CF 4 0.0620 C 2 F 6 0.0063 C 2 F 4 0.0012 SOF 2 0.0512 SO 2 F 2 0.0022 SO 2 0. [0013] SF 4 0.0005 S 2 F 10 0.0003 HF 0.0328 H 2 O 0.0118
【0026】精製剤の調製:下記の3種の精製剤を調製
した。 (精製剤1)アルミン酸ナトリウムの25%水溶液40
mlに、粒状活性炭(比表面積1200m2 /g、粒径
0.5mm〜2mm)100mlを浸漬し、攪拌後、乾
燥窒素ガスにて200℃で3時間乾燥させ、水分を含ま
ないアルミン酸ナトリウム担持活性炭(NaAlO2 担
持量10g/100ml活性炭)を調製し、精製剤1と
した。精製剤1は、比表面積が約570m2 /g、平均
細孔径が約14オングストロームであった。 Preparation of Purifying Agent : The following three types of purifying agents were prepared. (Purifying agent 1) 25% aqueous solution of sodium aluminate 40
100 ml of granular activated carbon (specific surface area: 1200 m 2 / g, particle size: 0.5 mm to 2 mm) was immersed in the mixture, stirred, dried with dry nitrogen gas at 200 ° C. for 3 hours, and supported with water-free sodium aluminate. Activated carbon (NaAlO 2 carrying amount 10 g / 100 ml activated carbon) was prepared and used as Purifying Agent 1. Purifying agent 1 had a specific surface area of about 570 m 2 / g and an average pore diameter of about 14 Å.
【0027】(精製剤2)水酸化テトラメチルアンモニ
ウムの25%水溶液40mlに、粒状活性炭(比表面積
1200m2 /g、粒径0.5mm〜2mm)100m
lを浸漬し、攪拌後、乾燥窒素ガスにて50℃で5時間
乾燥させ、水分を含まないテトラメチルアンモニウム担
持活性炭((CH3)4NOH担持量10g/100ml
活性炭)を調製し、精製剤2とした。精製剤2は、比表
面積が約560m2 /g、平均細孔径が約13オングス
トロームであった。(Purifying agent 2 ) 100 m of granular activated carbon (specific surface area: 1200 m 2 / g, particle size: 0.5 mm to 2 mm) is added to 40 ml of a 25% aqueous solution of tetramethylammonium hydroxide.
After immersion, stirring and drying at 50 ° C. for 5 hours with dry nitrogen gas, tetramethylammonium-supported activated carbon ((CH 3 ) 4 NOH supported water-free amount 10 g / 100 ml)
(Activated carbon) was prepared and used as a purification agent 2. Purifying agent 2 had a specific surface area of about 560 m 2 / g and an average pore diameter of about 13 Å.
【0028】(精製剤3)粒度250μm以下のチャー
炭と粒度250μm以下の消石灰とを、重量比1:3の
割合で配合し、ヘンシェルミキサーで混合しながら水を
加えて造粒し、次いで110℃で4時間乾燥し、更に窒
素雰囲気下800℃で8時間熱処理して脱水焼成し、得
られた焼成物を2mm〜4mmのペレットに整粒して精
製剤3を調製した。精製剤3は炭素(C)と酸化カルシ
ウム(CaO)が主成分であり、比表面積が約120m
2 /g、平均細孔径が約1000オングストロームであ
った。(Purifying agent 3) Charcoal having a particle size of 250 μm or less and slaked lime having a particle size of 250 μm or less are blended at a weight ratio of 1: 3, and water is added thereto while mixing with a Henschel mixer, and the mixture is granulated. After drying at 4 ° C. for 4 hours, heat treatment was performed at 800 ° C. for 8 hours in a nitrogen atmosphere, and dehydration and firing were performed. The obtained fired product was sized into pellets of 2 mm to 4 mm to prepare a purifying agent 3. Purifying agent 3 is mainly composed of carbon (C) and calcium oxide (CaO), and has a specific surface area of about 120 m.
2 / g and an average pore diameter of about 1000 Å.
【0029】精製実験: (実施例1)容積75mlのSUS製シリンダーに、前
記の精製剤1を40ml充填し、これに前記の不純SF
6 試料1を、室温で12NL/hrの速度で供給した。
シリンダーの出口でガスを採取し、ガス分析およびハロ
ゲンイオン分析を行った。ハロゲンイオン分析は、超純
水に出口ガスを一定時間吹き込み、この試料をイオンク
ロマトグラフィーにより分析した。分析結果を以下に示
す。 成分分析値(単位は重量ppm,−は測定限界以下); SF6 99.9467 CF4 0.0482 C2F6 0.0051 C2F4 − SOF2 − SO2F2 − SO2 − HF − F- <0.001 SO4 - 0.004 H2 O 0.0129 上記の結果から、精製剤1によって、不純SF6 試料1
中の有害不純物が効果的に除去されたことは明かであ
る。 Purification Experiment : (Example 1) A SUS cylinder having a capacity of 75 ml was filled with 40 ml of the above-mentioned purifying agent 1 and the above impure SF was added thereto.
6 Sample 1 was supplied at room temperature at a rate of 12 NL / hr.
Gas was collected at the outlet of the cylinder, and gas analysis and halogen ion analysis were performed. In the halogen ion analysis, an outlet gas was blown into ultrapure water for a certain period of time, and the sample was analyzed by ion chromatography. The analysis results are shown below. Component analysis (unit weight ppm, - below measurement limit); SF 6 99.9467 CF 4 0.0482 C 2 F 6 0.0051 C 2 F 4 - SOF 2 - SO 2 F 2 - SO 2 - HF - F - <0.001 SO 4 - 0.004 from H 2 O 0.0129 the above results, the purification agent 1, impure SF 6 sample 1
It is clear that the harmful impurities in it have been effectively removed.
【0030】(実施例2)容積75mlのSUS製シリ
ンダーに、前記の精製剤2を40ml充填し、これに前
記の不純SF6 試料1を、室温で20NL/hrの速度
で供給した。シリンダーの出口でガスを採取し、実施例
1と同様にしてガス分析およびハロゲンイオン分析を行
った。分析結果を以下に示す。 成分分析値(単位は重量ppm,−は測定限界以下); SF6 99.9415 CF4 0.0528 C2F6 0.0057 C2F4 − SOF2 − SO2F2 − SO2 − HF − F- <0.01 SO4 - 0.01 H2 O 約150 上記の結果から、精製剤1によって、不純SF6 試料1
中の有害不純物が効果的に除去されたことは明かであ
る。(Example 2) A SUS cylinder having a capacity of 75 ml was filled with 40 ml of the above-mentioned purifying agent 2, and the impure SF 6 sample 1 was supplied thereto at room temperature at a rate of 20 NL / hr. Gas was collected at the outlet of the cylinder, and gas analysis and halogen ion analysis were performed in the same manner as in Example 1. The analysis results are shown below. Component analysis (unit weight ppm, - below measurement limit); SF 6 99.9415 CF 4 0.0528 C 2 F 6 0.0057 C 2 F 4 - SOF 2 - SO 2 F 2 - SO 2 - HF - F - <0.01 SO 4 - from 0.01 H 2 O to about 150 above results, the purification agent 1, impure SF 6 sample 1
It is clear that the harmful impurities in it have been effectively removed.
【0031】(実施例3)実施例2で得られた出口ガス
から水分を除去する実験を行った。容積75mlのSU
S製シリンダーに、市販の合成ゼオライト(ユニオン昭
和社製モレキュラーシーブ3A)を60ml充填し、こ
れに前記の実施例2で得られた出口ガスを導入し、排出
ガス中の水分を分析した。分析値は5重量ppm以下で
あった。この実施例3の方法によりSF6 試料中の水分
が所定限度以下まで効果的に除去されたことは明かであ
る。Example 3 An experiment was conducted to remove water from the outlet gas obtained in Example 2. SU with a capacity of 75 ml
An S cylinder was filled with 60 ml of a commercially available synthetic zeolite (Molecular sieve 3A manufactured by Union Showa), and the outlet gas obtained in Example 2 was introduced into the cylinder to analyze the moisture in the exhaust gas. The analysis value was 5 ppm by weight or less. It is clear that the water in the SF 6 sample was effectively removed to below a predetermined limit by the method of Example 3.
【0032】(実施例4)容積75mlのSUS製シリ
ンダー2本を直列に連結し、第一のシリンダーには精製
剤3を40ml充填し、第二のシリンダーには精製剤1
を40ml充填し、第一のシリンダーから不純SF6 試
料1を、室温で20NL/hrの速度で供給した。第二
シリンダーの出口でガスを採取し、実施例1と同様にし
てガス分析およびハロゲンイオン分析を行った。分析結
果を以下に示す。 成分分析値(単位は重量ppm,−は測定限界以下); SF6 99.9579 CF4 0.0389 C2F6 0.0032 C2F4 − SOF2 − SO2F2 − SO2 − HF − F- <0.001 SO4 - 0.002 H2 O 0.005 上記の結果から、精製剤3および精製剤1の併用は、不
純SF6 試料1中の有害不純物の除去に有効であるばか
りでなく、パーフルオロカーボン類(CF4 、C2F6)
の除去にも有効であることがわかる。Example 4 Two SUS cylinders each having a capacity of 75 ml were connected in series, the first cylinder was filled with 40 ml of the purifying agent 3, and the second cylinder was charged with the purifying agent 1
Was filled, and impure SF 6 sample 1 was supplied from the first cylinder at room temperature at a rate of 20 NL / hr. Gas was collected at the outlet of the second cylinder, and gas analysis and halogen ion analysis were performed in the same manner as in Example 1. The analysis results are shown below. Component analysis (unit weight ppm, - below measurement limit); SF 6 99.9579 CF 4 0.0389 C 2 F 6 0.0032 C 2 F 4 - SOF 2 - SO 2 F 2 - SO 2 - HF - F - <0.001 SO 4 - 0.002 from H 2 O 0.005 the above results, the combination purifier 3 and purification agent 1 is effective in removing harmful impurities impure SF 6 in a sample 1 Not only perfluorocarbons (CF 4 , C 2 F 6 )
It can be seen that the method is also effective in removing slag.
【0033】(実施例5)容積75mlのSUS製シリ
ンダーに、前記の精製剤1を40ml充填し、これに前
記の不純SF6 試料2を、室温で12NL/hrの速度
で供給した。シリンダーの出口でガスを採取し、実施例
1と同様にしてガス分析およびハロゲンイオン分析を行
った。S2 F10の分析方法は電子捕獲型分析法(GC/
ECD)によった。分析結果を以下に示す。 成分分析値(単位は重量ppm,−は測定限界以下); SF6 99.8423 CF4 0.0472 C2F6 0.0050 C2F4 − SOF2 − SO2F2 − SO2 − SF4 − S2 F10 <0.0001 HF − F- <0.001 SO4 - 0.003 H2 O 0.0124 上記の結果から、精製剤1によって、不純SF6 試料2
中のSF4 およびS2F10も、他の有害不純物と同様に
効果的に除去されたことは明かである。Example 5 A SUS cylinder having a capacity of 75 ml was filled with 40 ml of the purifying agent 1 described above, and the impure SF 6 sample 2 was supplied thereto at room temperature at a rate of 12 NL / hr. Gas was collected at the outlet of the cylinder, and gas analysis and halogen ion analysis were performed in the same manner as in Example 1. The analysis method of S 2 F 10 is electron capture type analysis (GC /
ECD). The analysis results are shown below. Component analysis (unit weight ppm, - below measurement limit); SF 6 99.8423 CF 4 0.0472 C 2 F 6 0.0050 C 2 F 4 - SOF 2 - SO 2 F 2 - SO 2 - SF 4 - S 2 F 10 <0.0001 HF - F - <0.001 SO 4 - 0.003 from H 2 O 0.0124 the above results, the purification agent 1, impure SF 6 sample 2
It is clear that the SF 4 and S 2 F 10 therein were effectively removed as well as other harmful impurities.
【0034】[0034]
【発明の効果】本発明の六フッ化硫黄の精製方法は、不
純物を含む六フッ化硫黄を、アルカリ土類金属化合物、
アルミン酸アルカリ金属塩またはテトラアルキルアンモ
ニウム塩から選ばれた1種以上の化合物と炭素質固体と
からなる精製剤と接触させるものであるので、大規模な
設備を必要とせず、簡便かつ効果的に有害不純物を除去
することができる。更に本発明の精製方法は、脱水工程
を付加することによりSF6 分解の一要因をなす水分を
除去することができて、精製SF6 を気体絶縁媒体とし
てリサイクルさせることができるようになる。According to the method for purifying sulfur hexafluoride of the present invention, sulfur hexafluoride containing impurities is converted into an alkaline earth metal compound,
Since it is to be brought into contact with a refining agent comprising one or more compounds selected from an alkali metal aluminate salt or a tetraalkylammonium salt and a carbonaceous solid, a large-scale facility is not required, and it is simple and effective. Harmful impurities can be removed. Further, in the purification method of the present invention, by adding a dehydration step, water which is a factor of SF 6 decomposition can be removed, and the purified SF 6 can be recycled as a gas insulating medium.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 博基 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社化学品研究所内 (72)発明者 中條 哲夫 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社化学品研究所内 (72)発明者 大井 敏夫 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社川崎工場内 (72)発明者 丸茂 国臣 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社化学品研究所内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroki Ohno 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Denko KK Chemical Research Laboratory (72) Inventor Tetsuo Nakajo 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Toshio Oi 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture In-house Kawasaki Plant (72) Inventor Kuniomi Marumo 5- Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture 1 Showa Denko KK Chemical Research Laboratory
Claims (12)
土類金属化合物、アルミン酸アルカリ金属塩およびテト
ラアルキルアンモニウム塩からなる群から選ばれた1種
以上の化合物と炭素質固体とからなる精製剤と接触させ
る六フッ化硫黄の精製方法。1. A method comprising the steps of: removing sulfur hexafluoride containing impurities from a carbonaceous solid comprising at least one compound selected from the group consisting of an alkaline earth metal compound, an alkali metal aluminate salt and a tetraalkylammonium salt; A method for purifying sulfur hexafluoride to be brought into contact with a preparation.
一フッ化硫黄、二フッ化硫黄、四フッ化硫黄、五フッ化
硫黄、フッ化チオニルおよびフッ化スルフリルからなる
群の何れか1種以上を含む六フッ化硫黄を、請求項1に
記載の精製剤と接触させる六フッ化硫黄の精製方法。2. Hydrogen fluoride, sulfur dioxide gas as impurities,
The sulfur hexafluoride comprising at least one of the group consisting of sulfur monofluoride, sulfur difluoride, sulfur tetrafluoride, sulfur pentafluoride, thionyl fluoride and sulfuryl fluoride, according to claim 1, A method for purifying sulfur hexafluoride in contact with a purifying agent.
ム、マグネシウム、バリウムおよびストロンチウムの酸
化物、水酸化物、炭酸塩および硝酸塩からなる群から選
ばれたものである請求項1に記載の六フッ化硫黄の精製
方法。3. The hexafluoride according to claim 1, wherein the alkaline earth metal compound is selected from the group consisting of oxides, hydroxides, carbonates and nitrates of calcium, magnesium, barium and strontium. A method for purifying sulfur.
酸リチウム、アルミン酸ナトリウム、アルミン酸カリウ
ムおよびアルミン酸セシウムからなる群から選ばれたも
のである請求項1に記載の六フッ化硫黄の精製方法。4. The method for purifying sulfur hexafluoride according to claim 1, wherein the alkali metal aluminate is selected from the group consisting of lithium aluminate, sodium aluminate, potassium aluminate and cesium aluminate. .
化テトラメチルアンモニウム、水酸化テトラエチルアン
モニウム、炭酸テトラメチルアンモニウム、炭酸テトラ
エチルアンモニウム、塩化テトラメチルアンモニウム、
塩化テトラエチルアンモニウム、アルミン酸テトラメチ
ルアンモニウムおよびアルミン酸テトラエチルアンモニ
ウムからなる群から選ばれたものである請求項1に記載
の六フッ化硫黄の精製方法。5. The method of claim 1, wherein the tetraalkylammonium salt is tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetramethylammonium carbonate, tetraethylammonium carbonate, tetramethylammonium chloride,
The method for purifying sulfur hexafluoride according to claim 1, wherein the method is selected from the group consisting of tetraethylammonium chloride, tetramethylammonium aluminate, and tetraethylammonium aluminate.
石炭、ピッチ、木炭、活性炭およびカーボンブラックか
らなる群から選ばれた1種以上である請求項1に記載の
六フッ化硫黄の精製方法。6. The carbonaceous solid is coke powder, charcoal,
The method for purifying sulfur hexafluoride according to claim 1, wherein the method is at least one selected from the group consisting of coal, pitch, charcoal, activated carbon, and carbon black.
00m2 /gの範囲内である請求項1に記載の六フッ化
硫黄の精製方法。7. The purification agent has a specific surface area of 80 m 2 / g to 10 m 2 / g.
Method for purifying sulfur hexafluoride according to claim 1 is in the range of 00m 2 / g.
ム〜1500オングストロームの範囲内である請求項1
に記載の六フッ化硫黄の精製方法。8. The refining agent of claim 1, wherein the average pore size is in the range of 7 Å to 1500 Å.
The method for purifying sulfur hexafluoride according to the above.
ッ化水素濃度を0.1重量ppm以下とする請求項1に
記載の六フッ化硫黄の精製方法。9. The method for purifying sulfur hexafluoride according to claim 1, wherein the concentration of hydrogen fluoride contained in the purified sulfur hexafluoride is 0.1 ppm by weight or less.
の六フッ化硫黄の精製方法。10. The method for purifying sulfur hexafluoride according to claim 1, further comprising a dehydration step.
を用いるものである請求項9に記載の六フッ化硫黄の精
製方法。11. The method for purifying sulfur hexafluoride according to claim 9, wherein the dehydrating step uses zeolite as a dehydrating agent.
水分濃度を50重量ppm以下とする請求項10に記載
の六フッ化硫黄の精製方法。12. The method for purifying sulfur hexafluoride according to claim 10, wherein the concentration of water contained in the purified sulfur hexafluoride is 50 ppm by weight or less.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10986697A JP3882018B2 (en) | 1997-04-25 | 1997-04-25 | Method for purifying sulfur hexafluoride |
KR1019980014335A KR100529748B1 (en) | 1997-04-25 | 1998-04-22 | Method for Purifying Sulfur Hexafluoride |
GB9808849A GB2324482B (en) | 1997-04-25 | 1998-04-24 | Process for purifying sulphur hexafluoride |
TW087106334A TW375531B (en) | 1997-04-25 | 1998-04-24 | Method for refining sulfur hexafluoride |
DE19818435A DE19818435A1 (en) | 1997-04-25 | 1998-04-24 | Process for purifying sulfur hexafluoride |
HK98114156A HK1012850A1 (en) | 1997-04-25 | 1998-12-21 | Process for purifying sulphur hexafluoride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10986697A JP3882018B2 (en) | 1997-04-25 | 1997-04-25 | Method for purifying sulfur hexafluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10297910A true JPH10297910A (en) | 1998-11-10 |
JP3882018B2 JP3882018B2 (en) | 2007-02-14 |
Family
ID=14521192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10986697A Expired - Fee Related JP3882018B2 (en) | 1997-04-25 | 1997-04-25 | Method for purifying sulfur hexafluoride |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP3882018B2 (en) |
KR (1) | KR100529748B1 (en) |
DE (1) | DE19818435A1 (en) |
GB (1) | GB2324482B (en) |
HK (1) | HK1012850A1 (en) |
TW (1) | TW375531B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100529748B1 (en) * | 1997-04-25 | 2006-03-06 | 쇼와 덴코 가부시키가이샤 | Method for Purifying Sulfur Hexafluoride |
JP2008516421A (en) * | 2004-10-01 | 2008-05-15 | メルク パテント ゲーエムベーハー | Electronic devices including organic semiconductors |
WO2009048114A1 (en) * | 2007-10-12 | 2009-04-16 | Taiyo Nippon Sanso Corporation | Gas purification method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10223336B4 (en) * | 2002-05-25 | 2006-07-20 | Fred Stemmer Gmbh Recycling | Process for the neutralization of decomposition products formed in plants containing sulfur hexafluoride (SF6) |
GB2414701A (en) | 2004-06-05 | 2005-12-07 | Black & Decker Inc | Rotary spindle for a power tool |
FR2992871B1 (en) * | 2012-07-05 | 2015-02-20 | Dehon S A | PURIFICATION DEVICE AND METHOD FOR REGENERATING SF6 |
CN105727686B (en) * | 2016-03-25 | 2017-12-08 | 张玲 | A kind of method for adsorbing purification sulfur hexafluoride |
CN113155913B (en) * | 2021-04-21 | 2022-07-08 | 浙江大学 | Gas sensor for detecting sulfur hexafluoride decomposition products and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1212945B (en) * | 1964-07-07 | 1966-03-24 | Kali Chemie Ag | Process for the removal of sulfuryl fluoride from gas mixtures containing sulfur hexafluoride |
US4652438A (en) * | 1985-11-18 | 1987-03-24 | Gte Laboratories Incorporated | Chemical vapor purification of fluorides |
US4959101A (en) * | 1987-06-29 | 1990-09-25 | Aga Ab | Process for degassing aluminum melts with sulfur hexafluoride |
US5252259A (en) * | 1991-04-22 | 1993-10-12 | Hercules Incorporated | Purification of sulfur hexafluoride |
US5536302A (en) * | 1994-03-23 | 1996-07-16 | Air Products And Chemicals, Inc. | Adsorbent for removal of trace oxygen from inert gases |
JP3882018B2 (en) * | 1997-04-25 | 2007-02-14 | 昭和電工株式会社 | Method for purifying sulfur hexafluoride |
-
1997
- 1997-04-25 JP JP10986697A patent/JP3882018B2/en not_active Expired - Fee Related
-
1998
- 1998-04-22 KR KR1019980014335A patent/KR100529748B1/en not_active Expired - Fee Related
- 1998-04-24 GB GB9808849A patent/GB2324482B/en not_active Expired - Fee Related
- 1998-04-24 DE DE19818435A patent/DE19818435A1/en not_active Withdrawn
- 1998-04-24 TW TW087106334A patent/TW375531B/en not_active IP Right Cessation
- 1998-12-21 HK HK98114156A patent/HK1012850A1/en not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100529748B1 (en) * | 1997-04-25 | 2006-03-06 | 쇼와 덴코 가부시키가이샤 | Method for Purifying Sulfur Hexafluoride |
JP2008516421A (en) * | 2004-10-01 | 2008-05-15 | メルク パテント ゲーエムベーハー | Electronic devices including organic semiconductors |
US9150687B2 (en) | 2004-10-01 | 2015-10-06 | Merck Patent Gmbh | Electronic devices containing organic semi-conductors |
WO2009048114A1 (en) * | 2007-10-12 | 2009-04-16 | Taiyo Nippon Sanso Corporation | Gas purification method |
KR101196867B1 (en) | 2007-10-12 | 2012-11-01 | 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 | Gas purification method |
US8357228B2 (en) | 2007-10-12 | 2013-01-22 | Taiyo Nippon Sanso Corporation | Gas purification method |
JP5516951B2 (en) * | 2007-10-12 | 2014-06-11 | 大陽日酸株式会社 | Gas purification method |
Also Published As
Publication number | Publication date |
---|---|
GB2324482B (en) | 2001-07-04 |
TW375531B (en) | 1999-12-01 |
KR19980081619A (en) | 1998-11-25 |
KR100529748B1 (en) | 2006-03-06 |
HK1012850A1 (en) | 1999-08-13 |
GB2324482A (en) | 1998-10-28 |
GB9808849D0 (en) | 1998-06-24 |
JP3882018B2 (en) | 2007-02-14 |
DE19818435A1 (en) | 1998-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3976447A (en) | Removal of hydrogen fluoride from gaseous mixture by absorption on alkaline earth metal fluoride | |
JP3356965B2 (en) | SF6 gas recovery / purification processing apparatus and method | |
US6649082B2 (en) | Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof | |
JP3882018B2 (en) | Method for purifying sulfur hexafluoride | |
JP2001338910A (en) | Abatement agent for halogen type gas, abatement method and its use | |
JP3073321B2 (en) | How to purify harmful gases | |
JP2581642B2 (en) | Etching exhaust gas abatement agent and exhaust gas treatment method | |
JP2886387B2 (en) | Purification method of sulfur hexafluoride | |
JPH06327932A (en) | Purifying method of harmful gas | |
WO2001089666A1 (en) | Composition and method for rendering halogen-containing gas harmless | |
JP2001017831A (en) | Treating agent for halogen gas | |
KR100412982B1 (en) | Cleaning agent of harmful gas and purification method using it | |
CN115364875B (en) | Catalyst for blocking end of perfluoropolyether, preparation method, regeneration method and application thereof, and method for blocking end of perfluoropolyether by using catalyst | |
JP4518460B2 (en) | Method for selectively recovering fluorine components from exhaust gas | |
KR920007856B1 (en) | Method of removing gassy acidic halogen compound | |
US7326279B2 (en) | Method for removing harmful substance in vent gas | |
JP5423594B2 (en) | Method for removing fluorine-containing compound gas | |
JP2000225338A (en) | S2F10 Decomposition Reagent and Decomposition Method | |
JPS58124516A (en) | Separation of carbon monooxide from mixed gas | |
CN110280211B (en) | Drying agent of perfluoroisobutyronitrile, preparation method and application thereof | |
CA1052292A (en) | Removal of hydrogen fluoride from gaseous mixture by absorption on alkaline earth metal fluoride | |
US6309618B1 (en) | Method for treating exhaust gas containing fluorine-containing interhalogen compound, and treating agent and treating apparatus | |
JPH11276858A (en) | Decomposer for fluorine-containing compound gas and its manufacture | |
CN106622186A (en) | Preparation method of adsorbent based on sulfur hexafluoride decomposers in electric equipment | |
KR100356305B1 (en) | Reactive agent and process for decomposing nitrogen fluoride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040202 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061018 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |